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Abstract
Interpretable machine learning has gained much attention re-
cently. Briefness and comprehensiveness are necessary in or-
der to provide a large amount of information concisely when
explaining a black-box decision system. However, existing
interpretable machine learning methods fail to consider brief-
ness and comprehensiveness simultaneously, leading to re-
dundant explanations. We propose the variational informa-
tion bottleneck for interpretation, VIBI, a system-agnostic in-
terpretable method that provides a brief but comprehensive
explanation. VIBI adopts an information theoretic principle,
information bottleneck principle, as a criterion for finding
such explanations. For each instance, VIBI selects key fea-
tures that are maximally compressed about an input (brief-
ness), and informative about a decision made by a black-box
system on that input (comprehensive). We evaluate VIBI on
three datasets and compare with state-of-the-art interpretable
machine learning methods in terms of both interpretability
and fidelity evaluated by human and quantitative metrics.

Introduction
Interpretability is crucial in building and deploying black-
box decision systems such as deep learning models. Inter-
pretation of a black-box system helps decide whether or not
to follow its decisions, or understand the logic behind the
system. In recent years, the extensive use of deep learning
black-box systems has given rise to interpretable machine
learning approaches (Lipton 2016; Doshi-Velez and Kim
2017), which aim to explain how black-box systems work or
why they reach certain decisions. In order to provide suffi-
cient information while avoiding redundancy when explain-
ing a black-box decision, we need to consider both briefness
and comprehensiveness. However, existing approaches lack
in-depth consideration for and fail to find both brief but com-
prehensive explanation.

In order to obtain brief but comprehensive explana-
tion, we adopt the information bottleneck principle (Tishby,
Pereira, and Bialek 2000). This principle provides an appeal-
ing information theoretic perspective for learning supervised
models by defining what we mean by a ‘good’ represen-
tation. The principle says that the optimal model transmits
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as much information as possible from its input to its output
through a compressed representation called the information
bottleneck. Then, the information bottleneck will maximally
compress the mutual information (MI) with an input while
preserving as much as possible MI with the output. Recently,
it has been shown that the principle also applies to deep neu-
ral networks and each layer of a deep neural network can
work as an information bottleneck (Tishby and Zaslavsky
2015; Shwartz-Ziv and Tishby 2017). Using this idea of in-
formation bottleneck principle, we define a brief but com-
prehensive explanation as maximally informative about the
black-box decision while compressive about a given input.

In this paper, we introduce the variational information
bottleneck for interpretation (VIBI), a system-agnostic in-
formation bottleneck model that provides a brief but com-
prehensive explanation for every single decision made by a
black-box model. VIBI is composed of two parts: explainer
and approximator, each of which is modeled by a deep neu-
ral network. The explainer returns a probability whether a
chunk of features such as a word, phrase, sentence or a group
of pixels will be selected as an explanation or not for each
instance, and an approximator mimics behaviour of a black-
box model. Using the information bottleneck principle, we
learn an explainer that favors brief explanations while en-
forcing that the explanations alone suffice for accurate ap-
proximations to a black-box model.

Our main contribution is to provide a convincing appli-
cation of the information bottleneck principle that system-
atically defines and generates a ‘good’ explanation. Based
on this principle, we develop VIBI that favors a brief but
comprehensive explanation. In order to make the objective
function of VIBI tractable, we derive a variational approxi-
mation to the objective. The beneficial characteristics of our
method are as follows. 1) System-agnostic: VIBI is learned
in a post-hoc manner. A model making black-box predic-
tions, denoted by black-box (decision) system or black-box
model, is learned or given as a separate process of learn-
ing VIBI. VIBI then learns the explanations by only us-
ing input and output of the black-box system. Because of
this, VIBI can explain any types of black-box decision sys-
tems (i.g., agnostic to black-box systems that should be ex-
plained), hence there is no trade-off between task accuracy
of a black-box system and interpretability of an explainer.
2) Cognitive chunk: Cognitive chunk is defined as a group
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of raw features whose identity is understandable to human.
VIBI groups non-cognitive raw features such as a pixel and
letter into a cognitive chunk (e.g. a group of pixels, a word,
a phrase, a sentence) and selects each unit as an explanation.
3) Separate explainer and approximator: The explainer and
approximator are designed for separated tasks so that we do
not need to limit the approximator to have a simple struc-
ture, which may reduce the fidelity (the ability to imitate the
behaviour of a black-box) of approximator.

Related Work
Existing methods are categorized into system-specific and
system-agnostic methods. System-specific methods only ex-
plain certain black-box decision systems (e.g. using back-
propagation algorithm), while system-agnostic methods ex-
plain any black-box decision systems.

System-specific methods. To measure change of output
with respect to change of input is an intuitive way of obtain-
ing feature attribution for the output. Using this idea, Zeiler
and Fergus (2014), and Zintgraf et al. (2017) observe the
change of output by making perturbation to each instance.
Baehrens et al. (2010); Simonyan, Vedaldi, and Zisserman
(2013), and Smilkov et al. (2017) use computationally more
efficient approaches; they measure the change of output by
propagating contribution of each feature through layers of
a deep neural network towards an input. However, these
approaches fail to detect the changes of output when the
prediction function is flattened at the instance (Shrikumar,
Greenside, and Kundaje 2017), which leads to interpreta-
tions focusing on irrelevant features. In order to solve this
problem, the layer-wise relevance propagation (Bach et al.
2015; Binder et al. 2016), DeepLIFT (Shrikumar, Greenside,
and Kundaje 2017), and Integrated Gradients (Sundararajan,
Taly, and Yan 2017) compare the changes of output to its ref-
erence output. While these methods are used in a post-hoc
manner, other methods such as (Yang et al. 2016; Mullen-
bach et al. 2018; Lei, Barzilay, and Jaakkola 2016) simul-
taneously learns the interpretation with a black-box model.
However, such methods may result in accuracy loss due to
the trade-off between the accuracy for the task and the inter-
pretability to human.

System-agnostic methods. The great advantage of
system-agnostic interpretable machine learning methods
over system-specific methods is that their usage is not re-
stricted to a specific black-box system. One of the most well-
known system-agnostic methods is LIME (Ribeiro, Singh,
and Guestrin 2016). It explains the decision of an instance
by locally approximating the black-box decision boundary
around the instance with an inherently interpretable model
such as sparse linear or decision trees. The approximator
is learned by samples generated by perturbing a given in-
stance. Lundberg and Lee (2017) proposes SHAP, a unified
measure defined over the additive feature attribution scores
in order to achieve local accuracy, missingness, and consis-
tency. As SHAP does, Dabkowski and Gal (2017); Fong and
Vedaldi (2017), and Petsiuk, Das, and Saenko (2018) use
sample perturbation but they rather learn or estimate desired
perturbation masks than using perturbed samples to learn an

approximator. Guidotti et al. (2019) generate exemplar im-
ages in the latent feature space and use the generated images
as explanation. L2X (Chen et al. 2018) learns a stochastic
map that selects instance-wise features that are most infor-
mative for black-box decisions. Unlike LIME and SHAP,
which approximate local behaviors of a black-box system
with a simple (linear) model, L2X does not put a limit on the
structure of the approximator helping avoid losing fidelity of
the approximator. Our method VIBI is system-agnostic. Our
comparison experiments will be focused on comparison with
existing system-agnostic methods.

Method
Perspective From Information Bottleneck Principle
The information bottleneck principle (Tishby, Pereira, and
Bialek 2000) provides an appealing information theoretic
view for learning a supervised model by defining what we
mean by a ‘good’ representation. The principle says that the
optimal model transmits as much information as possible
from the input x to the output y through a compressed rep-
resentation t (called the information bottleneck). The repre-
sentation t is stochastically defined and the optimal stochas-
tic mapping p(t|x) is obtained by optimizing the following
problem with a Markov chain assumption y→ x→ t:

p(t|x) = argmax
p(t|x),p(y|t),p(t)

I(t,y)− β I(x, t) (1)

where I(·, ·) is the MI and β is a Lagrange multiplier repre-
senting the trade-off between the compressiveness −I(x, t)
and informativeness I(t,y) of the representation t.

We adopt the information bottleneck principle as a crite-
rion for finding brief but comprehensive explanations. Our
aim is to learn an explainer generating explanations that are
maximally informative about the black-box decision while
compressive about a given input.

Proposed Approach
We introduce VIBI, a system-agnostic interpretation ap-
proach that provides brief but comprehensive explanations
for decisions made by black-box decision system. In order
to achieve this, we optimize the following information bot-
tleneck objective.

p(z|x) = argmax
p(z|x),p(y|t)

I(t,y)− β I(x, t) (2)

where I(t,y) represents the sufficiency of information re-
tained for explaining the black-box output y,−I(x, t) repre-
sents the briefness of the explanation t, and β is a Lagrange
multiplier representing a trade-off between the two. The pri-
mary difference between our information bottleneck objec-
tive (2) and the one in (Tishby, Pereira, and Bialek 2000)
is as follows: the latter aims to identify a stochastic map
of the representation t that itself works as an information
bottleneck, whereas our objective aims to identify a stochas-
tic map of z performing instance-wise selection of cognitive
chunks and define information bottleneck as a function of z
and the input x.

As illustrated in Figure 1A, VIBI is composed of two
parts: the explainer and the approximator, each of which is
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Figure 1: Illustration of VIBI. (A) VIBI is composed of two parts: explainer and approximator. The explainer selects a group of
k key cognitive chunks given an instance while the approximator mimics the behaviour of a black-box system using the selected
keys as inputs. (B) We set each word as a cognitive chunk and k = 2. 1© The explainer takes an input x and returns a stochastic
k-hot random vector z which indicates whether each cognitive chunk will be selected as an explanation or not. 2© t(x) provides
instance-specific explanation. 3© The approximator takes t(x) as an input and approximates the black-box output.

modeled by a deep neural network. The explainer selects a
group of k key cognitive chunks given an instance while the
approximator mimics the behaviour of the black-box system
using the selected keys as the input. k controls the level of
sparsity in z. In detail, the explainer p(z|x;θe) is a map from
an input x to its attribution scores pj(x) = p(zj |x) where
j is for the j-th cognitive chunk and zj is a binary indicator
whether the chunk will be selected or not. The attribution
score indicates the probability that each cognitive chunk to
be selected. In order to select top k cognitive chunks as an
explanation, a k-hot vector z is sampled from a categorical
distribution with class probabilities pj(x) = p(zj |x) and the
j-th cognitive chunk is selected if zj = 1. More specifically,
the explanation t is defined as follows:

ti = (x� z)i = xi × zj ,
where j indicates a cognitive chunk, each of which corre-
sponds to multiple row features i. The approximator is mod-
eled by another deep neural network p(y|t;θa), which mim-
ics the black-box decision system. It takes t as an input and
returns an output approximating the black-box output for the
instance x. θa and θe represent the weight parameters of
neural networks. The explainer and approximator are trained
jointly by minimizing a cost function that favors concise ex-
planations while enforcing that the explanations alone suf-
fice for accurate prediction.

To achieve compressiveness, in addition to encouraging
small MI between explanations and inputs, we also encour-
age the number of selected cognitive chunks to be small, i.e.,
encouraging z to be sparse. Note that MI and sparsity are
two complementary approaches for achieving compression.
MI aims at reducing semantic redundancy in explanations.
Sparsity cannot achieve such a goal. For example, consider
a movie review where “great” occurs a lot and two explana-
tions in judging the sentiment of the review: “great, great”
and “great, thought-provoking”. They have the same level of
sparsity (k = 2), but the former has semantic redundancy. In
this case, MI helps to choose a better explanation. The first
explanation has a larger MI with the input document. The
second explanation has smaller MI and hence is more brief
and preferable.

The variational bound. The current form of information
bottleneck objective is intractable due to the MIs I(t,y) and
I(x, t). We address this problem by using a variational ap-
proximation of our information bottleneck objective. In this
section, we summarize the results and refer to Supplemen-
tary Materials S1 for details.

Variational bound for I(x, t): We first show that I(x, t) ≤
I(x, z)+C where C is constant and use the lower bound for
−I(x, z)−C as a lower bound for −I(x, t). As a result, we
obtain:

I(x, t) ≤ I(x, z) + C ≤ E(x,z)∼p(x,z)

[
log

p(z|x)
r(z)

]
+ C

= Ex∼p(x)DKL(p(z|x), r(z)) + C (3)

Note that with proper choices of r(z) and p(z|x),
we can assume that the Kullback-Leibler divergence
DKL(p(z|x), r(z)) has an analytical form.

Variational bound for I(t,y): We obtain the lower bound
for I(t,y) by using q(y|t) to approximate p(y|t), which
works as an approximator to the black-box system. As a re-
sult, we obtain:

I(t,y) ≥ E(t,y)∼p(t,y) [log q(y|t)]
= Ex∼p(x)Ey|x∼p(y|x)Et|x∼p(t|x) [log q(y|t)] (4)

where p(t|x,y) = p(t|x) by the Markov chain assumption
y ↔ x ↔ t. Combining Equations (3) and (4), we obtain
the following variational bound:

I(t,y)− β I(x, t)

≥Ex∼p(x)Ey|x∼p(y|x)Et|x∼p(t|x) [log q(y|t)]
− β Ex∼p(x)DKL(p(z|x), r(z)) + C∗. (5)

where C∗ = −Cβ can be ignored since it is independent of
the optimization procedure. We use the empirical data dis-
tribution to approximate p(x,y) = p(x)p(y|x) and p(x).

Continuous relaxation and reparameterization. Cur-
rent form of the bound (5) is still intractable because we
need to sum over the

(
d
k

)
combinations of feature subsets.

This is because we sample top k out of d cognitive chunks
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where each chunk is assumed drawn from a categorical dis-
tribution with class probabilities pj(x) = p(zj |x). In or-
der to avoid this, we use the generalized Gumbel-softmax
trick (Jang, Gu, and Poole 2017; Chen et al. 2018). This
is a well-known technique that is used to approximate a
non-differentiable categorical subset sampling with differ-
entiable Gumbel-softmax samples. The steps are as follows.

First, we independently sample a cognitive chunk for k
times. For each time, a random perturbation ej is added to
the log probability of each cognitive chunk log pj(x). From
this, Concrete random vector c = (c1, · · · , cd) working as
a continuous, differentiable approximation to argmax is de-
fined:

gj = − log (− log ej) where ej ∼ U(0, 1)

cj =
exp

((
gj + log pj(x)

)
/τ
)∑d

j=1 exp
((

gj + log pj(x)
)
/τ
) ,

where τ is a tuning parameter for the temperature of
Gumbel-Softmax distribution. Next, we define a continuous-
relaxed random vector z∗ = [z∗1, · · · , z∗d]> as the element-
wise maximum of the independently sampled Concrete vec-
tors c(l) where l = 1, · · · , k:

z∗j = max
l

c(l)j for l = 1, · · · , k

With this sampling scheme, we approximate the k-hot ran-
dom vector and have the continuous approximation to the
variational bound (5). This trick allows using standard back-
propagation to compute the gradients of the parameters via
reparameterization. By putting everything together, we ob-
tain:

1

NL

N∑
n

L∑
l

[
log q(y(n)|x(n) � f(e

(l)
(n),x(n)))

− β DKL(p(z
∗
(n)|x(n)), r(z

∗
(n)))

]
where N is the number of samples, n indicate the
n-th sample, f(e

(l)
(n),x(n)) = z∗(n), q(y(n)|x(n) �

z∗(n)) is the approximator to the black-box system and
−DKL(p(z

∗|x(n)), r(z
∗)) represents the compactness of the

explanation. Once we learn the model, the attribution score
pj(x) for each cognitive chunk is used to select top k key
cognitive chunks that are maximally compressive about the
input x and informative about the black-box decision y on
that input.

Experiments
We evaluated VIBI on three datasets and compared with
state-of-the-art interpretable machine learning methods.
The evaluation is performed from two perspectives: inter-
pretability and fidelity. The interpretability indicates the
ability to explain a black-box model with human under-
standable terms. The fidelity implies how accurately our
approximator approximates the black-box model. Based
on these criteria, we compared VIBI with three state-of-
the-art system-agnostic methods (LIME (Ribeiro, Singh,

and Guestrin 2016), SHAP (Lundberg and Lee 2017) and
L2X (Chen et al. 2018)), and a commonly used model-
specific method called Saliency Map (Simonyan, Vedaldi,
and Zisserman 2013). For fair comparison, we compare
with methods that learned in a post-hoc manner, so that we
use the same black-box systems that should be explained.
For Saliency Map, we used the smooth gradient tech-
nique (Smilkov et al. 2017) to get visually sharp gradient-
based sensitivity maps over the basic gradient saliency map.
See Supplementary Material S2 for further experimental de-
tails.

We examined how VIBI performs across different ex-
perimental settings varying the number of selected chunks
k (amount or number of explanation), size of chunk (unit
of explanation), and trade-off parameter β (trade-off be-
tween the compressiveness of explanation and informa-
tion preserved about the output). The settings of hyper-
parameter tuning include (bold indicate the choice for
our final model): the temperature for Gumbel-softmax
approximation τ – {0.1, 0.2, 0.5,0.7, 1}, learning rate
– 5 × 10−3, 10−3, 5 × 10−4,10−4, 5 × 10−5} and β
– {0, 0.001, 0.01,0.1, 1, 10, 100}. We use Adam algo-
rithm (Kingma and Ba 2014) with batch size 100 for MNIST
and 50 for IMDB, the coefficients used for computing
running averages of gradient and its square (β1, β2) =
(0.5, 0.999), and ε = 10−8. We tuned the hyperparameters
via grid search and picked up the hyperparameters that yield
the best fidelity score on the validation set. The code is pub-
licly available on GitHub: github.com/SeojinBang/VIBI.

LSTM Movie Sentiment Prediction Model Using
IMDB
The IMDB (Maas et al. 2011) is a large text dataset contain-
ing movie reviews labeled by sentiment (positive/negative).
We grouped the reviews into training, validation, and test
sets, which have 25,000, 12,500, and 12,500 reviews respec-
tively. Then, we trained a hierarchical LSTM for sentiment
prediction, which has two LSTM layers where each layer
encodes words and sentences respectively. It achieved 87%
of test accuracy. In order to explain this LSTM black-box
model, we applied VIBI. We parameterized the explainer
using a bidirectional LSTM and approximator using a 2D
CNN. For the details of the black-box model and VIBI ar-
chitectures, see Supplementary Material S2.1.

VIBI explains why the LSTM predicts each movie re-
view to be positive/negative and provides instance-wise key
words that are the most important attributes to the senti-
ment prediction. As seen in the top-right and top-left of Fig-
ure 2, VIBI shows that the positive (or negative) words pass
through the bottleneck and make a correct prediction. The
bottom of Figure 2 shows that the LSTM sentiment predic-
tion model makes a wrong prediction for a negative review
because the review includes several positive words such as
‘enjoyable’ and ‘exciting’.

CNN Digit Recognition Model Using MNIST
The MNIST (LeCun et al. 1998) is a large dataset con-
tains 28 × 28 sized images of handwritten digits (0 to 9).
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I do NOT understand why anyone would waste their time 

or money on utter trash like this … Don't get me wrong 

-- I LOVE a good Western -- Notice I said "GOOD" -- 

this is just trash. The acting is horrible -- Val 

Kilmer must know someone or owed a favor or something 

for them just to use his face and name in this 

ridiculous piece of crap... True: Negative / B-Box: Negative

I watched this movie when it was released and being really young 

and not too much into cinema it was one of the most fascinating 

cinematic experiences I ever had and it really left a mark 

inside me. At first I didn't quite understand the story and 

probably failed to … He plays so well the man that falls in love 

slowly but so deeply with Katherine Clifton, opens up his heart 

and dives into this prohibited affair….

B

True: Positive / B-Box: Positive

The reality of the mafia environment is absolutely dog-eat-dog where a gangster will be killed for showing any sign of 

weakness because they become a liability. I've got no problem with the human side of gansters' being portrayed but 

Bugsy steers too far in the direction of soft, comical, men. The film is enjoyable but is only light entertainment and 

not a biopic of a man who, though exciting, was extremely dangerous and fearsome. The acting's all good and the 

direction very solid. The locations and era are very well represented and the themes very interesting….

C

True: Negative / B-Box: Positive

A

Figure 2: The movie reviews and explanations provided by VIBI were randomly selected from the validation set. The selected
words are colored red. Each word is used as a cognitive chunk and k = 5 words are provided for each review. (A) VIBI
explains why the negative review is correctly predicted as negative by highlighting the negative words (waste, horrible) and
an adjective describing a negative noun (just). (B) VIBI explains why the positive review is correctly predicted as positive
by highlighting the positive words (most fascinating). (C) VIBI explains why the negative review is incorrectly predicted as
positive by highlighting positive words (enjoyable, exciting).

Same digit, different angles. Different digits, upside down Difference between 7 and 1 Same digit, similar features

A B C D

Figure 3: The hand-written digits and explanations provided by VIBI were randomly selected from the validation set. The
selected patches are colored red if the pixel is activated (i.e. white) and yellow otherwise (i.e. black). A patch composed of
4× 4 pixels is used as a cognitive chunk and k = 4 patches are identified for each image.

We grouped the images into training, validation, and test
sets, which have 50,000, 10,000, and 10,000 images respec-
tively, and trained a simple 2D CNN for the digit recogni-
tion, which achieved 97% of test accuracy. In order to ex-
plain this CNN black-box model, we applied VIBI. We pa-
rameterized each the explainer and approximator using a 2D
CNN. For the details of the black-box model and VIBI ar-
chitectures, see Supplementary Material S2.2.

VIBI explains how the CNN characterizes a digit and rec-
ognizes differences between digits. The first two examples
in Figure 3 show that the CNN recognizes digits using both
shapes and angles. In the first example, the CNN character-
izes ‘1’s by straightly aligned patches along with the acti-
vated regions although ‘1’s in the left and right panels are
written at different angles. Contrary to the first example, the
second example shows that the CNN recognizes the differ-
ence between ‘9’ and ‘6’ by their differences in angles. The
last two examples in Figure 3 show that the CNN catches a
difference of ‘7’s from ‘1’s by patches located on the acti-
vated horizontal line on ‘7’ (see the cyan circle) and recog-
nizes ‘8’s by two patches on the top of the digits and another
two patches at the bottom circle. More qualitative examples
for VIBI and the baselines are shown in Figure S2.

The briefness of explanations also depends on the sparsity
k. Figure S4 shows how our method works under different

sparsity. When we increase k, VIBI tends to select patches
that are the same with or nearby previously selected patches
and additionally select patches that catch new characteristics
of digits.

TCR To Epitope Binding Prediction Model Using
VDJdb And IEDB
We next illustrate how VIBI can be used to get insights
from a model and ensure the safety of a model in a real
world application. Identifying which T-cell receptor (TCR)
will bind to a specific epitope (i.e. cancer induced peptide
molecules presented by the major histocompatibility com-
plex to T-cells) is important for screening T-cells or genet-
ically engineering T-cells that are effective in recognizing
and destroying tumor cells. Therefore, there has been ef-
forts in developing computational methods to predict bind-
ing affinity of given TCR-epitope pairs (Jurtz et al. 2018;
Jokinen et al. 2019). These approaches rely on known in-
teracting TCR-epitope pairs available from VDJdb (Shugay
et al. 2017) and IEDB (Vita et al. 2014), which are the largest
databases of several thousand entries. However, the number
of unique TCRs harbored in a single individual is estimated
to be 1010 (Lythe et al. 2016) and a theoretical number of
epitopes of length l is 20l, which are much larger than the
number of known interacting TCR-epitope pairs.
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Figure 4: Black-box prediction scores of (A) VDJdb and (B) IEDB. (C) Black-box prediction scores between the matched and
unmatched instances from IEDB and (D) those by six epitope sequences. (E) An example of matched explanation (The VIBI
selected amino acids are shaded).

One of the main concerns is whether a black-box model
trained on such limited dataset can accurately predict TCR-
epitope bindings of out-of-samples. This concern becomes
pressing in a TCR-epitope binding prediction model trained
on VDJdb (For details of the data, black-box model ar-
chitecture, and parameter tuning, see Supplementary Mate-
rial S2.3). The model accurately predicted the (in-sample)
bindings from VDJdb (recall 0.79, Figure 4A). However,
it achieved poor prediction performance when it is used to
predict the (out-of-sample) bindings from another dataset,
IEDB (recall 0.40, Figure 4B). In an attempt to address this
problem, we applied VIBI and determined whether or not
to accept a decision made by the black-box model based on
VIBI’s explanation. As illustrated in Figure 4E, VIBI pro-
vided matched explanations—the identical amino acids in
same positions (S and Y in this example) are highlighted in
different TCR sequences when they are bound to the same
epitope (GILGFVFTL in this example). Moreover, we found
that if two TCR sequences binding to the same epitope, each
from IEDB and VDJdb, are assigned with matched explana-
tions by VIBI, then it significantly better predicts the bind-
ing than the others with no matching TCRs (Figure 4C-D, p-
values are shown). Therefore, if a TCR sequence from IEDB
has a matched explanation to a TCR from VDJdb, then we
safely follow the positive decision made by the black-box
model.

Fidelity
We assessed fidelity of the methods in approximating the
black-box output. First, we compared the ability of the ap-
proximators to imitate behaviour of the black-box, denoted
as Approximator fidelity. (See Text S2.4 for details about
how each approximator fidelity is evaluated.) As shown
in Table 1, VIBI has a better approximator fidelity than
Saliency, LIME and SHAP in most cases. VIBI and L2X
showed similar levels of approximator fidelity, so we fur-
ther compared them based on Rationale fidelity. The differ-
ence between approximator and rationale fidelity is as fol-
lows. Approximator fidelity is quantified by prediction per-
formance of the approximators that takes t∗, the continu-
ous relaxation of t, as an input and the black-box output as
a targeted label; rationale fidelity is quantified by using t
instead of t∗. Note that t only takes the top k chunks and
sets the others to be zero, while t∗ sets the others to be
small, non-zero values. Therefore, rationale fidelity allows
to evaluate how much information purely flows through the
explanations, not through a narrow crack made during the
continuous relaxation procedure. As shown in Table 1, VIBI
has a better rationale fidelity than L2X in most cases. Note
that L2X can be viewed as a special case of VIBI without
the compressiveness term, i.e., β = 0. The rationale fidelity
empirically demonstrates that the compressiveness term can
help the information to flow purely through the explanations.
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Approximator Fidelity Rationale Fidelity

chunk size k Saliency LIME SHAP L2X VIBI (Ours) L2X VIBI (Ours)

IMDB

sentence 1 38.7 ± 0.9 72.7 ± 0.8 49.5 ± 1.0 87.6 ± 0.6 87.7 ± 0.6 72.7 ± 0.8 73.1 ± 0.8
word 5 41.9 ± 0.9 75.6 ± 0.8 50.1 ± 1.0 73.8 ± 0.8 74.4 ± 0.8 63.8 ± 0.8 65.7 ± 0.8

5 words 1 42.4 ± 0.9 29.0 ± 0.8 49.7 ± 1.0 75.9 ± 0.7 76.4 ± 0.7 60.1 ± 0.9 63.2 ± 0.8
5 words 3 41.4 ± 0.9 67.9 ± 0.8 49.1 ± 1.0 83.3 ± 0.7 83.5 ± 0.7 69.4 ± 0.8 66.0 ± 0.8

MNIST

2× 2 16 91.2 ± 0.6 77.0 ± 0.8 94.2 ± 0.5 93.4 ± 0.5 94.8 ± 0.4 73.5 ± 0.9 77.1 ± 0.8
2× 2 24 93.8 ± 0.5 80.7 ± 0.8 95.4 ± 0.4 95.1 ± 0.4 95.3 ± 0.4 77.6 ± 0.8 85.6 ± 0.7
2× 2 40 95.7 ± 0.4 85.9 ± 0.7 95.4 ± 0.4 96.7 ± 0.4 96.2 ± 0.4 81.1 ± 0.8 91.5 ± 0.5
4× 4 4 86.3 ± 0.7 60.9 ± 1.0 94.8 ± 0.4 95.3 ± 0.4 94.8 ± 0.4 65.0 ± 0.9 77.5 ± 0.8
4× 4 6 90.6 ± 0.6 63.7 ± 0.9 93.6 ± 0.5 95.7 ± 0.4 95.6 ± 0.4 51.1 ± 1.0 70.1 ± 0.9
4× 4 10 94.9 ± 0.4 70.5 ± 0.9 95.1 ± 0.4 96.5 ± 0.4 96.7 ± 0.4 83.5 ± 0.7 93.3 ± 0.5

Table 1: Evaluation of approximator and rationale fidelity. β = 0.1 for VIBI. Accuracy and 0.95 confidence interval is shown.
We performed three runs for each method and reported the best results. See more evaluations using F1-score and further results
from different parameter settings in Table S4 and S6 for approximator fidelity and Table S3 and S5 for rationale fidelity.

Saliency LIME L2X VIBI (Ours)

IMDB 34.2% 33.8% 35.6% 44.7%
MNIST 3.448 1.369 1.936 3.526

Table 2: Evaluation of interpretability. For IMDB, the per-
centage indicates how well the MTurk worker’s answers
match the black-box output. For MNIST, the score indicates
how well the highlighted chunks catch key characteristics of
handwritten digits (0 to 5). The average scores over all sam-
ples is shown. See the survey example and detailed results
in Supplementary Material S3.

Interpretability Evaluated By Humans
We evaluated interpretability of the methods on the
LSTM movie sentiment prediction model and the CNN
digit recognition model. For the movie sentiment pre-
diction model, we provided instances that the black-box
model had correctly predicted and asked humans to in-
fer the output of the primary sentiment of the movie
review (Positive/Negative/Neutral) given five key words
selected by each method. Each method was evaluated
by the humans on Amazon Mechanical Turk (MTurk,
https://www.mturk.com/) who are awarded the Masters
Qualification, high-performance workers who have demon-
strated excellence across a wide range of tasks. We randomly
selected and evaluated 200 instances for VIBI and 100 in-
stances for the others. Five workers were assigned per in-
stance. For the digit recognition model, we asked humans to
directly score the explanation on a 0–5 scale. Each method
was evaluated by 16 graduate students at Carnegie Mellon
University who have taken at least one graduate-level ma-
chine learning class. For each method, 100 instances were
randomly selected and evaluated. Four cognitive chunks
with the size 4× 4 were provided as an explanation for each
instance (β = 0.1 for VIBI). On average, 4.26 students were
assigned per instance. Further details regarding the experi-
ments can be found in Supplementary Material S3.

As shown by the Table 2, VIBI better explains the black-
box models. When explaining the movie sentiment predic-

tion model, humans better inferred the (correctly predicted)
black-box output given the five keywords when they were
provided by VIBI. Therefore, it better captures the most con-
tributing key words to the LSTM decision and better ex-
plains why the LSTM predicted each movie review by pro-
viding five key words. For explaining the digit recognition
model, VIBI also highlighted the most concise chunks for
explaining key characteristics of handwritten digit. Thus, it
better explains how the CNN model recognized each the
handwritten digit.

Conclusion
We employ the information bottleneck principle as a crite-
rion for learning ‘good’ explanations, providing a convinc-
ing application of the principle in explaining a black-box
decision system. Instance-wisely selected cognitive chunks
work as an information bottleneck, hence, provide concise
but comprehensive explanations for each decision made by
a black-box system. Information bottleneck uses MI to mea-
sure briefness and comprehensiveness, and provides a prin-
cipled way of balancing them. MI can measure the redun-
dancy between raw data and explanations and measure the
relevance between explanations and prediction results at the
latent semantics level in a holistic way.

However, the way this information is represented may
have a substantial effect on interpretability. VIBI helps to ad-
dress this issue to some extent by always returning a certain
form of output (i.e., a k-hot vector z assigned to each chunk)
and having a certain form of the information bottleneck layer
(i.e., a masked input) so that it makes sure that the explana-
tions are easily understandable to humans. In practice, such
a chunking strategy leads to a deviation from the strict the-
ory that a ’good’ explanation is the most compressed one but
helps to achieve better interpretability in practice.
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