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Abstract
Organizations that collect and sell data face increasing
scrutiny for the discriminatory use of data. We propose a
novel unsupervised approach to transform data into a com-
pressed binary representation independent of sensitive at-
tributes. We show that in an information bottleneck frame-
work, a parsimonious representation should filter out infor-
mation related to sensitive attributes if they are provided
directly to the decoder. Empirical results show that the
proposed method, FBC, achieves state-of-the-art accuracy-
fairness trade-off. Explicit control of the entropy of the repre-
sentation bit stream allows the user to move smoothly and
simultaneously along both rate-distortion and rate-fairness
curves.

Introduction
A growing body of evidence has questioned the fairness of
machine learning algorithms across a wide range of appli-
cations, including judicial decisions (ProPublica 2016), face
recognition (Buolamwini and Gebru 2018), degree comple-
tion (Gardner, Brooks, and Baker 2019) or medical treat-
ment (Pfohl et al. 2019). Of particular concerns are potential
discriminatory uses of data on the basis of racial or ethnic
origin, political opinion, religion, or gender.

Therefore, organizations that collect and sell data are in-
creasingly liable if future downstream uses of the data are
biased against protected demographic groups. One of their
challenges is to anticipate and control how the data will be
processed by downstream users. Unsupervised fair repre-
sentation learning approaches (Madras et al. (2018), Zemel
et al. (2013), Gitiaux and Rangwala (2020), Moyer et al.
(2018)) offers a flexible fairness solution to this challenge. A
typical architecture in fair representation learning includes
an encoder that maps the data into a representation and a
decoder that reconstructs the data from its representation.
The objective of the architecture is to extract from a data
X the underlying latent factors Z that correlate with unob-
served and potentially diverse task labels, while remaining
independent of sensitive factors S.

This paper asks whether an encoder that filters out infor-
mation redundancies could generate fair representations. In-
tuitively, if sensitive attributes S are direct inputs to the de-
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coder, an encoder that aims for conciseness would not waste
code length to encode information related to S in the latent
factors Z. We show that in an information bottleneck frame-
work (Tishby, Pereira, and Bialek 2000), this intuition is
theoretically founded: constraining the information flowing
from the dataX to the representationZ forces the encoder to
control the dependencies between sensitive attributes S and
representations Z. It is sufficient to constraint the mutual in-
formation I(Z,X) between Z and X in order to minimize
the mutual information I(Z, S) between Z and S.

Therefore, instead of directly penalizing I(Z, S), we re-
cast fair representation learning as a rate distortion problem
that controls explicitly the bit rate I(Z,X) encoded in the
latent factors Z. We model the representation Z as a binary
bit stream, which allows us to monitor the bit rate more ef-
fectively than floating point representations that may main-
tain redundant bit patterns. We estimate the entropy of the
code Z with an auxiliary auto-regressive network that pre-
dicts each bit in the latent code Z conditional on previous
bits in the code. One advantage of the method is that the
auxiliary network collaborates with the encoder to minimize
the cross-entropy of the code.

Empirically, we demonstrate that the resulting method,
Fairness by Binary Compression (henceforth, FBC) is com-
petitive with state-of-the art methods in fair representation
learning. Our contributions are as follows:

1. We show that controlling for the mutual information
I(Z,X) is an effective way to remove dependencies be-
tween sensitive attributes and latent factors Z, while pre-
serving inZ, the information useful for downstream tasks.

2. We find that compressing the data into a binary code as in
FBC generates a better accuracy-fairness trade-off than
limiting the information channel capacity by adding noise
(as in variants of β-VAE, (Higgins et al. 2017)).

3. We show that increasing the value of the coefficient on
the bit rate constraint I(Z,X) in our information bottle-
neck framework allows to move smoothly along both rate-
distortion and rate-fairness curves.
Related work. The machine learning literature increas-

ingly explores how algorithms can adversely impact pro-
tected demographic groups (e.g individuals self-identified as
Female or African-American) (see Chouldechova and Roth
(2018) for a review). Research questions revolve around how
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to define fairness (Dwork et al. (2012)), how to enforce fair-
ness in standard classification algorithms (e.g. Agarwal et al.
(2018), Kim, Reingold, and Rothblum (2018), Kearns et al.
(2018)) or audit a black box classifier for its fairness (e.g
Feldman et al. (2015), Gitiaux and Rangwala (2019)).

This paper relates to recent efforts towards transforming
data into fair and general purpose representations that are not
tailored to a pre-specified specific downstream task. Many
contributions use a supervised setting where the downstream
task label is known while training the encoder-decoder ar-
chitecture (e.g Madras et al. (2018), Edwards and Storkey
(2015), Moyer et al. (2018) Song et al. (2018) or Jaiswal
et al. (2019)). However, Zemel et al. (2013), Gitiaux and
Rangwala (2020) and Locatello et al. (2019) argue that in
practice, an organization that collects data cannot anticipate
what the downstream use of the data will be. In this unsu-
pervised setting, the literature has focused on penalizing ap-
proximations of the mutual information between represen-
tations and sensitive attributes: maximum mean discrepancy
penalty (Gretton et al. (2012)) for deterministic (Li, Swer-
sky, and Zemel (2014)) or variational (Louizos et al. (2015))
autoencoders (see Table 1); cross-entropy of an adversarial
auditor that predicts sensitive attributes from the represen-
tations (Madras et al. (2018), Edwards and Storkey (2015),
Zhang, Lemoine, and Mitchell (2018) or Xu et al. (2018)).

Our approach contrasts with existing work since it does
not control directly for the leakage between sensitive at-
tributes and representations. FBC obtains fair representa-
tions only by controlling its bit rate. In a supervised set-
ting, Jaiswal et al. (2019) show that nuisance factors can
be removed from a representation by over-compressing it.
We extend their insights to unsupervised settings and show
the superiority of bit stream representations over noisy ones
to remove nuisance factors. Our insights could offer an ef-
fective alternative to methods that learn representations in-
variant to nuisance factors (e.g. (Achille and Soatto 2018),
(Jaiswal et al. 2020), (Jaiswal et al. 2018)).

Our paper borrows soft-quantization techniques when
backpropagating through the model (Agustsson et al. 2017)
and hard quantization techniques during the forward pass
(Mentzer et al. 2018). We find that in our fair representa-
tion setting, explicit control of the bit rate of the representa-
tion leads to better accuracy-fairness trade-off than floating
point counterpart. We estimate the entropy of the code as in
Mentzer et al. (2018) by computing the distribution P (Z) of
Z as an auto-regressive product of conditional distributions,
and by modeling the auto-regressive structure with a Pix-
elCNN architecture (Oord, Kalchbrenner, and Kavukcuoglu
(2016), Van den Oord et al. (2016)).

Fair Information Bottleneck
Consider a population of individuals represented by features
X ∈ X ⊂ [0, 1]dx and sensitive attributes in S ∈ S ⊂
{0, 1}ds , where dx is the dimension of the feature space
and ds is the dimension of the sensitive attributes space. In
this paper, we do not restrict ourselves to binary sensitive
attributes and we allow ds > 1. The objective of fair rep-
resentation learning is to map the features space X into a
m−dimensional representation spaceZ ⊂ [0, 1]m, such that

(i) Z maximizes the information related to X , but (ii) min-
imizes the information related to sensitive attributes S. We
can express this as

max
Z

I(X, {Z, S})− γI(Z, S) (1)

where I(X,S) and I(X, {Z, S}) denote the mutual infor-
mation between Z and S and between X and (Z, S), re-
spectively; and γ ≥ 0 controls the fairness penalty I(Z, S).

Existing methods focus on solving directly the problem
(1) by approximating the mutual information I(Z, S) be-
tween Z and S via the cross-entropy of an adversarial au-
ditor that predicts S from Z (Madras et al. (2018), Edwards
and Storkey (2015), Gitiaux and Rangwala (2020)) or via
the maximum mean discrepancy between Z and S (Louizos
et al. (2015)).

In this paper, we instead reduce the fair representation
learning program (1) to an information bottleneck problem
that consists of encoding X into a parsimonious code Z,
while ensuring that this code Z along with a side channel S
allows a good reconstruction of X . The mutual information
between X and S can be written as

I(Z, S)
(a)
= I(Z, {X,S})− I(Z,X|S)

(b)
= I(Z,X) + I(Z, S|X)− I(Z,X|S)

(c)
= I(Z,X)− I(Z,X|S)

(d)
= I(Z,X)− I(X, {Z, S}) + I(X,S).

where (a), (b) and (d) use the chain rule for mutual in-
formation; and, (c) uses the fact that Z is only encoded
from X , so H(Z|X,S) = H(Z|X) and I(Z, S|X) =
H(Z|X) − H(Z|X,S) = 0. Since the mutual information
between X and S does not depend on the code Z, the fair
representation learning (1) is equivalent to the following fair
information bottleneck:

max
Z

(1 + γ)I(X, {Z, S})− γI(Z,X). (2)

Intuitively, compressing information about X forces the
code Z to avoid information redundancy, particularly redun-
dancy related to the sensitive attribute S, since the decoder
has direct access to S. Note that there is no explicit con-
straint in (2) to impose independence between Z and S.

If the representationZ is obtained by a deterministic func-
tion of the data X , once X is known, Z is known and
H(Z|X) = 0. Therefore, the mutual information I(Z,X) is
equal to the entropyH(Z) of the representation Z. Since the
entropy of the data X does not depend on the representation
Z, we can replace I(X, {Z, S}) = H(X)−H(X|Z, S) by
Ez,s,x log(P (x|z, s) in the information bottleneck (2) and
solve for:

min
Z
Ex,z,s[− log(P (X|Z, S)] + βH(Z), (3)

where β = γ/(γ + 1). Therefore, the fair representation
problem, in its information bottleneck interpretation, can be
recast as a rate-distortion trade-off. A lossy compression of
the data into a representation Z forces the independence
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Methods Fairness by controlling: Examples
I(Z, S) I(Z,X)

Adversarial Minimizing auditor’s 7 Madras et al. (2018), Edwards and Storkey (2015),
cross-entropy Creager et al. (2019)

MMD Mimizing maximum 7 Li, Swersky, and Zemel (2014), Louizos et al. (2015)
mean discrepancy

β− VAE 7 Noisy Z Higgins et al. (2017), This paper
FBC 7 Binary Z This paper

Table 1: Methods in unsupervised fair representation learning organized by whether the fairness properties of the learned
representations is obtained by minimizing the mutual information between sensitive attributes S and representations Z; or by
minimizing the mutual information between data X and representations Z; and whether Z is modelled as a binary bit stream
or is convolved with Gaussian noise.

between sensitive attribute and representation but increases
the distortion cost measured by the negative log-likelihood
of the reconstructed data Ex,z,s[− log(P (X|Z, S)]. The pa-
rameter β in equation (3) controls the competitive objectives
of low distortion and fairness-by-compression: the larger β,
the fewer the dependencies between Z and S.

Proposed Method
There are two avenues to control for I(Z,X) in the infor-
mation bottleneck (2) (see Figure 1): (i) adding noise to Z
to control the capacity of the information channel between
X and Z; or, (ii) storing Z as a bit stream whose entropy is
explicitly controlled.

The noisy avenue (i) is a variant of variational autoen-
coders, so called β−VAE (Higgins et al. 2017), that models
the posterior distribution P (Z|X) ofZ as Gaussian distribu-
tions (see Figure 1a). The channel capacity and thus the mu-
tual information between X and Z is constrained by mini-
mizing the Kullback divergence between these posterior dis-
tributions and an isotropic Gaussian prior (Braithwaite and
Kleijn (2018)). In the context of fair representation learning,
(Louizos et al. 2015) and (Creager et al. 2019) use variants
of β−VAE, but do not focus on how limiting the channel
capacity I(Z,X) could lead to fair representations. Instead,
they add further constraints on I(Z, S).

We implement the binary avenue with a method –FBC
(see Figure 1b) – that consists of an encoder F : X → Rm,
a binarizerB : Rm → {0, 1}m and a decoderG : {0, 1}m×
S → X . The encoder F maps each data point x into a la-
tent variable e = F (x). The binarizer B binarizes the latent
variable e into a bit stream z of length m. The decoder G
reconstructs a data point x̂ = G(z, s) from the bitstream z
and the sensitive attribute s. We model encoder and decoder
as neural networks whose architecture varies with the type
of data at hand.

The binarization layer controls explicitly the bit al-
lowance of the learned representation and thus forces the en-
coder to strip redundancies – including sensitive attributes.
Binarization is a two step process: (i) mapping the latent
variable e into [0, 1]m; (ii) converting real values into 0-1
bit. We achieve the first step by applying a neural network
layer with an activation function z = (tanh(e) + 1)/2. We
achieve the second step by rounding z to the closest inte-
ger 0 or 1. One issue with this approach is that the result-

ing binarizer B is not differentiable with respect to z. To
sidestep the issue, we follow Mentzer et al. (2018) or Theis
et al. (2017) and rely on soft binarization during backward
passes through the neural network. Formally, during a back-
ward pass we replace z by a soft-binary variable ż:

ż =
exp(−σ||z − 1||22)

exp(−σ||z − 1||22) + exp(−σ||z||22)
,

where σ is an hyperparameter that controls the soft-
binarization. During the forward pass, we use the binary
variable z instead of its soft-binary counterpart ż to control
the bitrate of the binary representation Z 1.

To estimate the entropy H(z), we factorize the distribu-
tionP (z) over {0, 1}m by writing z = (z1, ..., zm) (Mentzer
et al. (2018)) and by computing P (z) as the product of con-
ditional distributions:

P (z) =

m∏
i=1

p(zi|zi−1, zi−2, ..., z1) ,
m∏
i=1

p(zi|z.<i), (4)

where z.<i = (z1, z2, ..., zi−1). The order of the bits z1,
..., zm is arbitrary, but consistent across all data points. We
model P with a neural network Q that predicts the value of
each bit zi given the previous values zi−1, zi−2, ..., z1. With
the factorization (4), the entropy H(z) is given by

H(z) = Ez

[
m∑
i=1

− log(Q(zi|z.<i))

]
−KL(P ||Q)

≤ CE(P,Q),

(5)

where CE(P,Q) is the cross entropy between P and Q.
Therefore, minimizing the cross-entropy loss of the neural
network Q minimizes an upper bound of the entropy of the
code z. The encoder F and the entropy estimator Q coop-
erate. The lower the cross-entropy of Q is, the lower is the
estimate of the bit rate H(z). Therefore, the encoder has in-
centives to make the bit stream easy to predict for the neural
networkQ. Designing a powerful predictor for the bit stream
z does not necessary complicate the loss landscape, unlike
what could happen with adversarial methods (Berard et al.
(2019)).

Since the prediction of Q for the ith bit depends on the
values of the previous bits zi−1, ..., z1, the factorization of

1In Pytorch, the binarizer returns (z − ż).detach() + ż.
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X

Encoder F (X) µ, σ

Z ∼ N (µ, σ2) Z Decoder G(Z,S)

S

(a) β−VAE

X

Encoder F (X) e

Binarizer B(e) Z Decoder G(Z,S)

S

(b) FBC

Figure 1: Unsupervised methods to obtain fair representations z by compression. Variables are: featuresX; sensitive attribute S;
representation Z. β−VAE generates noisy representations with mean µ and variance σ2. FBC generates binary representations.

P (z) imposes a causality relation, where the (i + 1)th, ...,
mth bits should not influence the prediction for zi. We could
enforce this causality constraint by using an iterative method
that would first compute P (z2|z1), then P (z3|z1, z2),..., and
lastly, P (zm|z1, ..., zm−1). However, it will require O(m)
operations that cannot be parallelized. Instead, we follow
Mentzer et al. (2018) and enforce the causality constraint by
using an architecture for Q similar to PixelCNN (Van den
Oord et al. (2016), Oord, Kalchbrenner, and Kavukcuoglu
(2016)). We model z as a 2D

√
m ×

√
m matrix and con-

volve it with one-zero masks, which are equal to one only
from their leftmost/top position to the center of the filter. In-
tuitively, the ith output from this convolution depends only
on the bits located to the left and above the bit zi. The ad-
vantage of using a PixelCNN structure, as noted in Mentzer
et al. (2018), is to enforce the causality constraint and com-
pute P (zi|z.<i) for all bits zi in parallel, instead of comput-
ing P (zi|z.<i) sequentially from i = 1 to i = m.

Experiments
Comparative Methods
The objective of this experimental section is to demonstrate
that Fairness by Binary Compression – FBC – can achieve
state-of-the art performance compared to four benchmarks
in fair representations learning: β-VAE, Adv, MMD and
VFAE.

(i) β-VAE (Higgins et al. (2017)) solves the information bot-
tleneck by variational inference and generates fair repre-
sentations by adding Gaussian noise which upper-bounds
the mutual information between Z and X;

(ii) MMD ((Li, Swersky, and Zemel 2014)) uses a determinis-
tic auto-encoder and enforces fairness by minimizing the
maximum mean discrepancy ((Gretton et al. 2012)) be-
tween the distribution of latent factors Z conditioned on
sensitive attributes S;

(iii) VFAE (Louizos et al. (2015)) extends β-VAE by adding
a maximum mean discrepancy penalty;

(iv) Adv (Edwards and Storkey (2015)) uses a deterministic
auto-encoder as for MMD, but enforces the fairness con-
straint by maximizing the cross-entropy of an adversarial
auditor that predicts sensitive attributes S from represen-
tations Z.

Although FBC shares the deterministic nature of Adv and
MMD, it is more closely related to β−VAE, since β−VAE
obtains fairness without explicit constraint on the mutual

information of I(Z, S). The main difference between our
approach FBC and β−VAE is that FBC controls the en-
tropy of a binary coding of the data, while β−VAE generates
noisy representations and approximates the mutual informa-
tion I(Z,X) with the Kullback divergence between Q(z|x)
and a Gaussian prior P (z). Note that the use of a vanilla
β−VAE in a fairness context is novel: only its cousin VFAE
with an additional MMD penalty has been proposed as a fair
representation method.

Both FBC and β−VAE attempt to obtain fairness by con-
trolling I(Z,X). However, β−VAE assumes further that the
prior distribution of the representation is an isotropic Gaus-
sian. FBC does not require such a strong assumption and
could still work well even if the data is not generated from
a factorized distribution. β−VAE is meant to compress and
factorize. The main result from this paper is that compres-
sion is sufficient to learn fair representations and thus, dis-
entanglement might be too restrictive. For problems where
factorization could be hard to achieve in an unsupervised
setting (Locatello et al. 2018), we would expect FBC to out-
perform β−VAE.

Experimental Protocol
The overall experimental procedure consists of:

(i) Training an encoder-decoder architecture (F,B,G) along
with an estimator of the code entropy Q;

(ii) Freezing its parameters;

(iii) Training an auditing network Aud : Z → S that predicts
sensitive attributes from Z.

(iv) Training a task network T : Z → Y that predicts a task
label Y from Z.

The encoder-decoder does not access the task labels dur-
ing training: our representation learning approach is unsu-
pervised with respect to downstream task labels. Datasets
are split into a training set used to trained the encoder-
decoder architecture; two test sets, one to train both task
and auditing networks on samples not seen by the encoder-
decoder; one to evaluate their respective performances.

Pareto fronts. To compare systematically performances
across methods, we rely on Pareto fronts that estimates the
maximum information that can be attained by a method for a
given level of fairness. We approximate information content
as the accuracy Ay of the task network T when predicting
the downstream label Y . The larger Ay , the more useful is
the learned representation for downstream task labels.
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Figure 2: Pareto Front for fair representation learning approaches for DSprites and three benchmark datasets. This shows an
accuracy-fairness trade-off by comparing the accuracy As of auditors that predict sensitive attributes S from representations Z
to the accuracy of predicting a task label Y from Z. The dashed horizontal line represents the chance level of predicting Y . The
dashed vertical line represents the chance level of predicting S. Ranges of x− and y− axes varies across datasets.

We measure how much a representation Z leaks informa-
tion related to sensitive attributes S by the best accuracy
As among a set of auditing classifiers Aud : Z → S that
predict S from Z. The intuition is that if the distributions
p(Z|S = s) of Z conditioned on S do not depend on s, the
accuracy of any classifier predicting S from Z would remain
near chance level. In the binary case S = {0, 1}, compar-
ing As to chance level accuracy is a statistical test of inde-
pendence with good theoretical properties (Lopez-Paz and
Oquab (2016)). If the sensitive classes are furthermore bal-
anced (P (S = 0) = P (S = 1)) and the task labels are bi-
nary (Y = {0, 1}), As estimates the worst demographic dis-
parity that can be obtained by a downstream task classifier
T that uses Z as an input (Gitiaux and Rangwala (2020)).
In the general case S = {0, 1}ds , the lower As compared to
chance level, the more independent Z and S are.

Rate distortion curves. To demonstrate further our theo-
retical insights from section 2, we study both rate-distortion
and rate-fairness curves of compressing methods FBC and
β−VAE.

The rate-distortion function RD(D) of an encoder-
decoder is measured as the minimum bitrate (in nats) nec-
essary for the distortion Ex,z,s[− log(p(X|Z, S)] to be less
than D (Tishby, Pereira, and Bialek (2000)):

RD(D) = min I(Z,X) s.t. Ex,z,s[− log(p(X|Z, S)] ≤ D.
(6)

We introduce a new concept, rate-fairness function
RF (∆), and define it as the maximum bit rate allowed for
the accuracy As of the auditing classifier to remain less than
∆

RF (∆) = max I(Z,X) s.t. As ≤ ∆. (7)

The rate-fairness function captures the maximum infor-
mation Z can contain while keeping As under a given
threshold. To obtain both rate-distortion and rate-fairness
curves for either our binary compression –FBC – or varia-
tional –β-VAE and VFAE – approaches , we vary the value
of the parameter β controlling the rate-distortion trade-off

and for each value of β, we train the model 50 times with
different seeds. For our binary compression method, FBC,
the bit rate is approximated by the cross-entropy of the en-
tropy estimator Q in (5); for variational-based methods, the
bit rate is approximated by the Kullback divergence be-
tween Q(z|x) and a Gaussian prior. In both cases, the ap-
proximation is an upper bound to the true bit-rate (in nats)
of Z. We estimate the distortion generated by the encoder-
decoder procedure as the l2 loss between reconstructed data
X̂ = G(B(F (X))) and observed data X .

Robustness to Fairness Metrics. The fair information
bottleneck (1) aims at controlling the flow of information
between Z and S. (McNamara, Ong, and Williamson 2017)
show that minimizing I(Z, S) minimizes an upper bound of
the demographic disparity ∆(T ) of a task network T that
predicts a binary task label Y from Z, where demographic
parity ∆(T ) is defined as

∆(T ) =
∑
s∈S
|P (T (x) = 1|S = s)− P (T (x) = 1|S 6= s)|.

(8)
Moreover, the fair information bottleneck (1) is solved

without a prior knowledge of specific downstream task la-
bels Y . Therefore, (1) is not designed to control for fair-
ness criteria that rely on labels Y (e.g. equality of odds or
opportunites, (Hardt et al. 2016)) or on a specific classifier
(e.g. individual fairness, (Dwork et al. 2012)), unless down-
stream task labels are orthogonal to sensitive attributes con-
ditional on features X: Y ⊥ S|X . In practice, we explore
whether empirically FBC can generate representations that
exhibit for a given task network T , low differences in false
positive rates ∆FPR(T ) with

∆FPR(T ) ,
∑
s∈S
|P (T (x) = 1|Y = 0, S = s)

− P (T (x) = 1|Y = 0, S 6= s)|
(9)
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Figure 3: Rate distortion/fairness curves. Each dot corresponds to one simulation of FBC. Distortion is measured as the l2 loss
between reconstructed and observed data.

Figure 4: Effect of β. This shows the effect of increasing the coefficient β for the code entropy in (3) on the bit rate and the
auditor’s accuracy As of representations generated by FBC. Changes in β allows to move smoothly along the rate-fairness
curve.

Datasets
First, we apply our experimental protocol to a synthetic
dataset – DSprites Unfair, 2 – that contains 64 by 64 black
and white images of various shapes (heart, square, circle).
Images in the DSprites dataset are constructed from six in-
dependent factors of variation: color (black or white); shape
(square, heart, ellipse), scales (6 values), orientation (40 an-
gles in [0, 2π]); x- and y- positions (32 values each). We
modify the sampling to generate a source of potential un-
fairness and use as sensitive attribute a variable that encodes
the quadrant of the circle the orientation angle belongs to.

Then, we extend our experimental protocol to three
benchmark datasets in fair machine learning: Adults, Com-
pas and Heritage. The Adults dataset 3 contains 49K indi-
viduals and includes information on 10 features related to
professional occupation, education attainment, race, capital
gains, hours worked and marital status. Sensitive attributes
is made of 10 categories that intersect gender and race to
which individuals self-identify to. The downstream task la-
bel Y correspond to whether an individual earns more than
50K per year.

The Compas data 4 contains 7K individuals with informa-

2https://github.com/deepmind/dsprites-dataset/
3https://archive.ics.uci.edu/ml/datasets/adult
4https://github.com/propublica/compas-analysis/

tion related to their criminal history, misdemeanors, gender,
age and race. Sensitive attributes intersect self-reported race
and gender and result in four categories. The downstream
task label Y assesses whether an individual presents a high
risk of recidivism.

The Health Heritage dataset 5 contains 220K individuals
with 66 features related to age, clinical diagnoses and proce-
dure, lab results, drug prescriptions and claims payment ag-
gregated over 3 years. Sensitive attributes are 18 categories
that intersect the gender which individuals self-identify to
and their reported age. The downstream task label Y relates
to whether an individual has a positive Charlson comorbidity
Index.

Results and Discussion
Pareto Fronts
Figure 2 shows the Pareto fronts across five comparative
methods for the DSprites and real-world datasets, respec-
tively. Across all dataset, the higher and more leftward the
Pareto front, the higher is the task accuracy Ay for a given
auditor accuracy As and the better is the accuracy-fairness
trade-off. From these Pareto fronts, we can draw three con-
clusions.

5https://foreverdata.org/1015/index.html
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First, on all datasets, controlling for the mutual informa-
tion between Z and X – as in FBC and β−VAE – is suf-
ficient to reduce the accuracy As of the auditor Aud. This
result is consistent with our theoretical observation that min-
imizing proxies for the information rate I(Z,X) is sufficient
to minimize I(Z, S), provided that a side-channel provides
the sensitive attributes S to the decoder.

Second, in the (As, Ay)− plan, our method, FBC
achieves either similar (Adults, Heritage) or better
(DSprites, Compas) accuracy-fairness trade-off than the
variational method β−VAE that controls I(Z,X) by adding
noise to the information channel between X and Z. Across
all experiments, the Pareto fronts obtained from FBC are at
least as upward and leftward as for β−VAE. This is consis-
tent with our intuition that FBC may outperform β−VAE
in situations where disentanglement of the data into factor-
ized representation is difficult (see (Locatello et al. 2018) for
DSprites).

Third, FBC is a method that appears to be more consis-
tently state-of-the-art in terms of performances compared
to existing methods. . FBC offers a better accuracy-fairness
trade-off for Compas and DSprites than MMD, VFAE and
Adv and is competitive for Adults and Heritage. This is true
although Adv, VFAE and MMD control directly the mu-
tual information between Z and S, while FBC controls only
I(Z,X). The adversarial methods do not manage to gen-
erate representations with low As for the DSprites dataset,
possibly because in this higher dimensional problem, the op-
timization gets stuck in local minima where the adversary
has no predictive power, regardless of the encoded represen-
tation.

Rate-distortion and Rate-fairness
Figure 3 confirms that for FBC, a lower bit rate estimated by
the cross entropy CE(p, q) corresponds to a lower accuracy
for the auditing classifier Aud. Both rate-distortion (R,D)
and rate-fairness (R,∆) curves show the same monotonic
behavior: as distortion moves up along the rate-distortion
curves, lack of fairness as measured by As moves down.
However, for real-word datasets, particularly for Adults and
Compas, we observe more variance in the auditor accuracy’s
As given a representation bit rate. We attribute this higher
variance to a smaller sample size – 617 for Compas and
3, 256 for Adult on the test set.

Figure 4 shows that controlling for the level of com-
pression by increasing the value of β in (3) allows moving
smoothly along the rate-fairness curve. This is true whether
the mutual information I(Z,X) between data and represen-
tation is controlled by the bitstream entropy as in FBC (Fig-
ure 4) or by adding a noisy channel as in β−VAE (see re-
sults in appendix). However, binary compression allows a
tighter control of the fairness of the representation Z than
variational-based methods since in Figure 2, for a given au-
ditor’s accuracy As, FBC allows the downstream classifier
to achieve a higher accuracy Ay while predicting Y from Z.

Other Fairness Metrics
Figure 5 extends the pareto fronts of Figure 2 to additional
fairness criteria. It plots the median accuracy obtained by

task network T against its differences in false positive rates
∆FPR and its demographic disparity ∆.

First, all the methods tested – Adv, β−VAE and FBC
– generate an accuracy/fairness trade-off by reducing differ-
ences of false positive rates and demographic disparity at the
cost of a lower downstream accuracy. Figure 5 illustrates a
fairness transfer, where general purpose fair representations
can offer some guarantees against some fairness criteria that
the auto-encoder is not trained to minimize. This transfer is
all the more remarkable for differences in false positive rates
that rely on downstream task labels Y that were not accessed
by the auto-encoder during its training.

Second, for a given value of ∆FPRn or ∆, FBC reaches
higher task accuracy Ay than β−VAE and is competitive
with Adv for low values of ∆FPR and ∆.

Representation Embeddings
Figure 6 shows the t − SNE visualizations (Maaten and
Hinton (2008)) of the representations generated by FBC for
different values of the parameter β that controls the rate-
distortion trade-off in (3) for the Adults dataset. Without
control of the representation bit rate – β = 0 – the t−SNE
plot show a cluster of Females that are isolated from males
and thus, are easily detected by an auditor that predicts S
from Z.

With enough compression – β = 0.35 – the representation
not only looks more parsimonious, but also does not sepa-
rate Females from Males as much as without compression
(β = 0). In the embeddings space, Females plots are either
within clusters of Males or on the edges of these clusters.
Moreover, the t − SNE visualizations separate individuals
by income level regardless of the compression level, which
confirms that the representations generated by FBC are use-
ful for classification tasks that predict income level from Z.
t−SNE plots for Compas and Heritage are in the technical
appendix.

To quantitatively assess the local homogeneity of the sen-
sitive attribute in the embedding space (Figure 6, top), we
compute the average distance of females to their top-10 male
neighbors and normalize it by the average distance between
all individuals. We find that our homogeneity measure de-
creases by 30% when compressing the data (from left to
right plot). But, a similar measure of homogeneity for out-
comes (bottom row) decreases only by 8%. This result con-
firms the visual perception that compression decreases the
local homogeneity of sensitive attributes more than the ho-
mogeneity of downstream task labels.

Conclusion
This paper introduces a new method – Fairness by Binary
Compression (FBC) – to map data into a latent space, while
guaranteeing that the latent variables are independent of sen-
sitive attributes. Our method is motivated by the observation
that in an information bottleneck framework, controlling for
the mutual information between representation and data is
sufficient to remove unwanted factors, provided that these
unwanted factors are direct inputs to the decoder.

Our empirical findings confirm our theoretical intuition:
FBC offers a state-of-the-art accuracy-fairness trade-off
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Figure 5: Differences in false positive rates and demographic disparity of downstream task networks. This shows pareto fronts
for Adults and Compas as in 2, but using ∆ ((8)) ∆FPR ( (9)) as a fairness criteria. Shaded areas show the area between the
25− th and 75− th quantiles of the pareto front.

Figure 6: Adults t-SNE visualizations colored with gender
(S) and income level (Y ) of the representations obtained by
FBC for different values of the parameter β controlling the
compression rate of FBC.

across four benchmark datasets. Moreover, we observe that
encoding the representation into a binary stream allows a
tighter control of the fairness-accuracy trade-off than limit-
ing the information channel capacity by adding noise. Our
results suggest further research into encoder-decoder whose
architecture allows a tighter control of the representation’s
bit rate and thus, of its fairness.
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