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Abstract

As an emerging field in Machine Learning, Explainable AI
(XAI) has been offering remarkable performance in interpret-
ing the decisions made by Convolutional Neural Networks
(CNNs). To achieve visual explanations for CNNs, methods
based on class activation mapping and randomized input sam-
pling have gained great popularity. However, the attribution
methods based on these techniques provide low-resolution
and blurry explanation maps that limit their explanation abil-
ity. To circumvent this issue, visualization based on various
layers is sought. In this work, we collect visualization maps
from multiple layers of the model based on an attribution-
based input sampling technique and aggregate them to reach
a fine-grained and complete explanation. We also propose a
layer selection strategy that applies to the whole family of
CNN-based models, based on which our extraction frame-
work is applied to visualize the last layers of each convolu-
tional block of the model. Moreover, we perform an empiri-
cal analysis of the efficacy of derived lower-level information
to enhance the represented attributions. Comprehensive ex-
periments conducted on shallow and deep models trained on
natural and industrial datasets, using both ground-truth and
model-truth based evaluation metrics validate our proposed
algorithm by meeting or outperforming the state-of-the-art
methods in terms of explanation ability and visual quality,
demonstrating that our method shows stability regardless of
the size of objects or instances to be explained.

Introduction
Deep Neural models based on Convolutional Neural Net-
works (CNNs) have rendered inspiring breakthroughs in a
wide variety of computer vision tasks. However, the lack
of interpretability hurdles the understanding of decisions
made by these models. This diminishes the trust consumers
have for CNNs and limits the interactions between users and
systems established based on such models. Explainable AI
(XAI) attempts to interpret these cumbersome models (Hoff-
man et al. 2018). The offered interpretation ability has put
XAI in the center of attention in various fields, especially
where any single false prediction can cause severe conse-
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Figure 1: Comparison of conventional XAI methods with
SISE (our proposed) to demonstrate SISE’s ability to gener-
ate class discriminative explanations on a ResNet-50 model.

quences (e.g., healthcare) or where regulations force auto-
motive decision-making systems to provide users with ex-
planations (e.g., criminal justice) (Lipton 2018).

This work particularly addresses the problem of visual ex-
plainability, which is a branch of post-hoc XAI. This field
aims to visualize the behavior of models trained for image
recognition tasks (Barredo Arrieta et al. 2019). The outcome
of these methods is a heatmap in the same size as the input
image named “explanation map”, representing the evidence
leading the model to decide.

Prior works on visual explainable AI can be broadly
categorized into ‘approximation-based’ (Ribeiro,
Singh, and Guestrin 2016), ‘backpropagation-based’,
‘perturbation-based’, and ‘CAM-based’ methodologies.
In backpropagation-based methods, only the local attri-
butions are represented, making them unable to measure
global sensitivity. This drawback is addressed by image
perturbation techniques used in recent works such as RISE
(Petsiuk, Das, and Saenko 2018), and Score-CAM (Wang
et al. 2020). However, feedforwarding several perturbed
images in these works makes them very slow. On the other
hand, explanation maps produced by CAM-based methods
suffer from a lack of spatial resolution as they are formed
by combining the feature maps in the last convolutional
layer of CNNs, which lack spatial information regarding the
captured attributions.

In this work, we delve deeper into providing a solution
for interpreting CNN-based models by analyzing multiple
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layers of the network. Our solution concentrates on mutual
utilization of features represented inside a CNN in different
semantic levels, achieving class discriminability and spatial
resolution simultaneously. Inheriting productive ideas from
the aforementioned types of approaches, we formulate a
four-phase explanation method. In the first three phases, in-
formation extracted from multiple layers of the CNN is rep-
resented in their accompanying visualization maps. These
maps are then combined via a fusion module to form a
unique explanation map in the last phase. The main contri-
butions of our work can be summarized as follows:

• We introduce a novel XAI algorithm that offers both spa-
tial resolution and explanation completeness in its output
explanation map by 1) using multiple layers from the “in-
termediate blocks” of the target CNN, 2) selecting crucial
feature maps from the outputs of the layers, 3) employing
an attribution-based technique for input sampling to visu-
alize the perspective of each layer, and 4) applying a fea-
ture aggregation step to reach refined explanation maps.

• We propose a strategy to select the minimum number of
intermediate layers from a given CNN to probe and visu-
alize their discovered features in order to provide the local
explanations of the whole CNN. We discuss the applica-
bility of this strategy to all of the feedforward CNNs.

• We conduct thorough experiments on various models
trained on object detection and industrial anomaly clas-
sification datasets. To justify our method, we employ var-
ious metrics to compare our proposed method with other
conventional approaches. Therefore, we show that the in-
formation between layers can be correctly combined to
improve its inference’s visual explainability.

Related Work
Backpropagation-based methods In general, calculating
the gradient of a model’s output to the input features or
the hidden neurons is the basis of this type of explana-
tion algorithms. The earliest backpropagation-based meth-
ods operate by computing the model’s confidence score’s
sensitivity to each of the input features directly (Simonyan,
Vedaldi, and Zisserman 2014; Zeiler and Fergus 2014).
To develop such methods, in some preceding works like
DeepLift (Shrikumar, Greenside, and Kundaje 2017), In-
tegratedGradient (Sundararajan, Taly, and Yan 2017) and
SmoothGrad (Smilkov et al. 2017), backpropagation-based
equations are adapted to tackle the gradient issues. Some
approaches such as LRP (Bach et al. 2015), SGLRP (Iwana,
Kuroki, and Uchida 2019), and RAP (Nam et al. 2020) mod-
ify backpropagation rules to measure the relevance or irrele-
vance of the input features to the model’s prediction. More-
over, FullGrad (Srinivas and Fleuret 2019) and Excitation
Backpropagation (Zhang et al. 2018) run by aggregating gra-
dient information from several layers of the network.

Perturbation-based methods Several visual explanation
methods probe the model’s behavior using perturbed copies
of the input. In general, various strategies can be chosen
to perform input sampling. Like RISE (Petsiuk, Das, and
Saenko 2018), few of these approaches proposed random

perturbation techniques to yield strong approximations of
explanations. In Extremal Perturbation (Fong, Patrick, and
Vedaldi 2019), an optimization problem is formulated to op-
timize a smooth perturbation mask maximizing the model’s
output confidence score. Most of the perturbation-based
methods’ noticeable property is that they treat the model like
a “black-box” instead of a “white-box.”

CAM-based methods Based on the Class Activation
Mapping method (Zhou et al. 2016), an extensive research
effort has been put to blend high-level features extracted
by CNNs in a unique explanation map. CAM-based meth-
ods operate in three steps: 1) feeding the model with the
input image, 2) scoring the feature maps in the last con-
volutional layer, and 3) combining the feature maps using
the computed scores as weights. Grad-CAM (Selvaraju et al.
2017) and Grad-CAM++ (Chattopadhay et al. 2018) utilize
backpropagation in the second step which causes underes-
timation of sensitivity information due to gradient issues.
Ablation-CAM (Ramaswamy et al. 2020), Smooth Grad-
CAM++ (Omeiza et al. 2019), and Score-CAM (Wang et al.
2020) have been developed to overcome these drawbacks.

Despite the strength of CAM-based methods in captur-
ing the features extracted in CNNs, the lack of localiza-
tion information in the coarse high-level feature maps lim-
its such methods’ performance by producing blurry explana-
tions. Also, upsampling low-dimension feature maps to the
size of input images distorts the location of captured fea-
tures in some cases. Some recent works (Meng et al. 2019;
Rebuffi et al. 2020) addressed these limitations by amalga-
mating visualization maps obtained from multiple layers to
achieve a fair trade-off between spatial resolution and class-
distinctiveness of the features forming explanation maps.

Methodology
Our proposed algorithm is motivated by methods aiming to
interpret the model’s prediction using input sampling tech-
niques. These methods have shown a great faithfulness in ra-
tionally inferring the predictions of models. However, they
suffer from instability as their output depends on random
sampling (RISE) or random initialization for optimizing a
perturbation mask (Extremal perturbation). Also, such algo-
rithms require an excessive runtime to provide their users
with generalized results. To address these limitations, we
advance a CNN-specific algorithm that improves their fi-
delity and plausibility (in the view of reasoning) with adap-
tive computational overhead for practical usage. We term
our algorithm as Semantic Input Sampling for Explanation
(SISE). To claim such a reform, we replace the randomized
input sampling technique in RISE with a sampling technique
that relies on the feature maps derived from multiple layers.
We call this procedure attribution-based input sampling and
show that it provides the perspective of the model in various
semantic levels, reducing the applicability of SISE to CNNs.

As sketched in Figs. 3 and 5, SISE consists of four phases.
In the first phase, multiple layers of the model are selected,
and a set of corresponding output feature maps are extracted.
For each set of feature maps in the second phase, a sub-
set containing the most important feature maps is sampled
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with a backward pass. The selected feature maps are then
post-processed to create sets of perturbation masks to be uti-
lized in the third phase for attribution-based input sampling
and are termed as attribution masks. The first three phases
are applied to multiple layers of the CNN to output a 2-
dimensional saliency map named visualization map for each
layer. Such obtained visualization maps are aggregated in
the last phase to reach the final explanation map.

In the following section, we present a block-wise layer
selection policy, showing that the richest knowledge in any
CNN can be derived by probing the output of (the last layer
in) each convolutional blocks, followed by the discussion of
the phase-by-phase methodology of SISE.

Block-Wise Feature Explanation
As we attempt to visualize multiple layers of the CNNs to
merge spatial information and semantic information discov-
ered by the CNN-based model, we intend to define the most
crucial layers for explicating the model’s decisions to reach
a complete understanding of the model by visualizing the
minimum number of layers.

Regardless of the specification of their architecture, all
types of CNNs consist of convolutional blocks connected
via pooling layers that aid the network to justify the ex-
istence of semantic instances. Each convolutional block is
formed by cascading multiple layers, which may vary from
a simple convolutional filter to more complex structures
(e.g., bottleneck or MBConv layers). However, the dimen-
sions of their input and output signal are the same. In a con-
volutional block, assuming the number of layers to be L,
each ith layer can be represented with the function fi(.),
where i = {1, ..., L}. Denoting the input to each ith layer
as yi, the whole block can be mathematically described as
F (y1) = fL(yL). For plain CNNs (e.g., VGG, GoogleNet),
the output of each convolutional block can be represented
with the equation below:

F (y1) = fL(fL−1(...(f1(y1))) (1)

After the emergence of residual networks that utilize skip-
connection layers to propagate the signals through a convo-
lutional block in the families as ResNet models, DenseNet,
EfficientNet (Tan and Le 2019; Huang et al. 2017; Sandler
et al. 2018), and the models whose architecture are adap-
tively learned (Zoph and Le 2016), it is debated that these
neural networks can be represented with a more complicated
view. These types of networks can be viewed by the unrav-
eled perspective, as presented in (Veit, Wilber, and Belongie
2016). Based on this perspective as in Fig. 2, the connection
between the input and output is formulated as follows:

yi+1 = fi(yi) + yi (2)

and hence,

F (y1) = y1 +f1(y1)+ ...+fL(y1 + ...+fL−1(yL−1)) (3)

The unraveled architecture as in Fig. 2 is comprehen-
sive enough to be generalized even to shallower CNN-based
models that lack skip-connection layers. For plain networks,

Figure 2: Architecture of the residual convolutional blocks
as in (Shen, Ma, and Li 2018). (a) raveled schematic of a
residual network, (b) unraveled view of the residual network.

the layer functions fi can be decomposed to an identity func-
tion I and a residual function gi as follows:

fi(yi) = I(yi) + gi(yi) (4)

Such a decomposition, yields to a similar equation form
as equation 2, and consequently, equation 3.

yi+1 = gi(yi) + yi (5)

It can be inferred from the unraveled view that while feed-
ing the model with an input, signals might not pass through
all convolutional layers as they may skip some layers and
be propagated to the next ones directly. However, this is not
the case for pooling layers. Considering they change the sig-
nals’ dimensions, equation 4 cannot be applied to such lay-
ers. To prove this hypothesis, an experiment was conducted
in (Veit, Wilber, and Belongie 2016), where the correspond-
ing test errors are reported for removing a layer individually
from a residual network. It was observed that a significant
degradation in test performance is recorded only when the
pooling layers are removed.

Based on this hypothesis and result, most of the informa-
tion in each model can be collected by probing the pool-
ing layers. Thus, by visualizing these layers, it is possible
to track the way features are propagated through convolu-
tional blocks. Therefore, we derive attribution masks from
the feature maps in the last layers of all of their convolu-
tional blocks for any given CNN. Then, for each of these
layers, we build a corresponding visualization map. These
maps are utilized to perform a block-wise feature aggrega-
tion in the last phase of our method.

Feature Map Selection
As discussed, the first two phases of SISE take responsibility
to create multiple sets of attribution masks. In the first phase,
we feed the model with an input image to derive sets of fea-
ture maps from various layers of the model. Then, we sam-
ple the most deterministic feature maps among each set and
post-process them to obtain corresponding sets of attribution
masks. These masks are utilized for performing attribution-
based input sampling.

Assume Ψ : I → R be a trained model that outputs
a confidence score for a given input image, where I is
the space of RGB images I = {I|I : Λ → R3}, and
Λ = {1, ...,H} × {1, ...,W} is the set of locations (pixels)
in the image. Given any model and image, the goal of an ex-
planation algorithm is to reach an explanation map SI,Ψ(λ),
that assigns an “importance value” to each location in the
image (λ ∈ Λ). Also, let l be a layer containing N feature
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Figure 3: Schematic of SISE’s layer visualization framework (first three phases). The procedure in this framework is applied to
multiple layers and is followed by the fusion framework (as in Fig. 5).

maps represented as A(l)
k (k = {1, ..., N}) and the space of

locations in these feature maps be denoted as Λ(l). These
feature maps are collected by probing the feature extractor
units of the model, and a similar strategy is also utilized in
(Wang et al. 2020). The feature maps are formed in these
units independently from the classifier part of the model.
Thus, using the whole set of feature maps does not reflect
the outlook of CNN’s classifier.

To identify and reject the class-indiscriminative feature
maps, we partially backpropagate the signal to the layer l
to score the average gradient of model’s confidence score to
each of the feature maps. These average gradient scores are
represented as follows:

α
(l)
k =

∑
λ(l)∈Λ(l)

∂Ψ(I)

∂A
(l)
k (λ(l))

(6)

The feature maps with corresponding non-positive average
gradient scores - α(l)

k , tend to contain features related to
other classes rather than the class of interest. Terming such
feature maps as ‘negative-gradient’, we define the set of at-
tribution masks obtained from the ‘positive-gradient’ feature
maps, M (l)

d , as:

M
(l)
d = {Ω(A

(l)
k )|k ∈ {1, ..., N}, α(l)

k > µ× β(l)} (7)

where β(l) denotes the maximum average gradient recorded.

β(l) = max
k∈{1,...,N}

(α
(l)
k ) (8)

In equation 7, µ ∈ R≥0 is a threshold parameter that is 0 by
default to discard negative-gradient feature maps while re-
taining only the positive-gradients. Furthermore, Ω(.) repre-
sents a post-processing function that converts feature maps
to attribution masks. This function contains a ‘bilinear in-
terpolation,’ upsampling the feature maps to the size of the
input image, followed by a linear transformation that nor-
malizes the values in the mask in the range [0, 1]. A visual
comparison of attribution masks and random masks in Fig.
4 emphasizes such advantages of the former.

Attribution-Based Input Sampling
Considering the same notations as the previous section, and
according to RISE method, the confidence scores observed
for the copies of an image masked with a set of binary masks
(M : Λ→ {0, 1}) are used to form the explanation map by,

SI,Ψ(λ) = EM [Ψ(I �m)|m(λ) = 1] (9)

where I � m denotes a masked image obtained by point-
wise multiplication between the input image and a mask
m ∈M . The representation of equation 9 can be modified to
be generalized for sets of smooth masks (M : Λ → [0, 1]).
Hence, we reformat equation 9 as:

SI,Ψ(λ) = EM [Ψ(I �m) · Cm(λ)] (10)

where the term Cm(λ) indicates the contribution amount of
each pixel in the masked image. Setting the contribution in-
dicator as Cm(λ) = m(λ), makes equation 10 equivalent to
equation 9. We normalize these scores according to the size
of perturbation masks to decrease the assigned reward to the
background pixels when a high score is reached for a mask
with too many activated pixels. Thus, we define this term as:

Cm(λ) =
m(λ)∑
λ∈Λm(λ)

(11)

Such a formulation increases the concentration on smaller
features, particularly when multiple objects (either from the
same instance or different ones) are present in an image.

Figure 4: Qualitative comparison of (a) attribution masks de-
rived from different blocks of a VGG16 network as in SISE,
with (b) random masks employed in RISE.
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Figure 5: SISE fusion module for a CNN with 5 convolu-
tional blocks.

Putting block-wise layer selection policy and attribu-
tion mask selection strategy together with the modified
RISE framework, for each CNN containing B convolu-
tional blocks, the last layer of each block is indicated as
lb ∈ {1, ..., B}. Using equations 10 and 11, we form cor-
responding visualization maps for each of these layers by:

V
(lb)
I,Ψ (λ) = E

M
(lb)

d

[Ψ(I �m) · Cm(λ)] (12)

Fusion Module
In the fourth phase of SISE, the flow of features from low-
level to high-level blocks are tracked. The inputs to the fu-
sion module are the visualization layers obtained from the
third phase of SISE. On the other hand, this module’s out-
put is a 2-dimensional explanation map, which is the output
of SISE. The fusion block is responsible for correcting spa-
tial distortions caused by upsampling coarse feature maps
to higher dimensions and refining the localization of attribu-
tions derived from the model.

Our fusion module is designed with cascaded fusion
blocks. In each block, the feature information from the vi-
sualization maps representing explanations for two consec-
utive blocks is collected using an “addition” block. Then, the
features that are absent in the latter visualization map are re-
moved from the collective information by masking the out-
put of the addition block with a binary mask indicating the
activated regions in the latter visualization map. To reach the
binary mask, we apply an adaptive threshold to the latter vi-
sualization map, determined by Otsu’s method (Otsu 1979).
By cascading fusion blocks as in Fig. 5, the features deter-
mining the model’s prediction are represented in a more fine-
grained manner while the inexplicit features are discarded.

Experiments
We verify our method’s performance on shallow and deep
CNNs, including VGG16, ResNet-50, and ResNet-101 ar-
chitectures. To conduct the experiments, we employed PAS-
CAL VOC 20071 (Everingham et al. 2010) and Severstal
2 datasets. The former is a popular object detection dataset
containing 4952 test images belonging to 20 object classes.
As images with many small object occurrences and multiple
instances of different classes are prevalent in this dataset,
it is hard for an XAI algorithm to perform well on the

1http://host.robots.ox.ac.uk/pascal/VOC/voc2007
2https://www.kaggle.com/c/severstal-steel-defect-detection.

whole dataset. The latter is an industrial steel defect detec-
tion dataset created for anomaly detection and steel defect
segmentation problems. We reformatted it into a defect clas-
sification dataset instead, containing 11505 test images from
5 different classes, including one normal class and four dif-
ferent defects classes. Class imbalance, intraclass variation,
and interclass similarity are the main challenges of this re-
cast dataset.

Experimental Setup
Experiments conducted on the PASCAL VOC 2007 dataset3
are evaluated on its test set with a VGG16, and a ResNet-
50 model from the TorchRay library (Fong, Patrick, and
Vedaldi 2019), trained by (Zhang et al. 2018), both trained
for multi-label image classification. The top-5 accuracies of
the models on the test set are 93.29% and 93.09%, respec-
tively. On the other hand, for conducting experiments on
Severstal, we trained a ResNet-101 model (with a test ac-
curacy of 86.58%) on the recast dataset to assess the perfor-
mance of the proposed method in the task of visual defect
inspection. To recast the Severstal dataset for classification,
the train and test images were cropped into patches of size
256×256. In our evaluations, a balanced subset of 1381 test
images belonging to defect classes labeled as 1, 2, 3, and 4
is chosen. We have implemented SISE on Keras and set the
parameter µ to its default value, 0.

Qualitative Results
Based on explanation quality, we have compared SISE with
other state-of-the-art methods on sample images from the
Pascal dataset in Fig. 6 and Severstal dataset in Fig. 8. Im-
ages with both normal-sized and small object instances are
shown along with their corresponding confidence scores.
Moreover, Figs. 1 and 7 with images of multiple objects
from different classes depict the superior ability of SISE in
discriminating the explanations of various classes in com-
parison with other methods and RISE in particular.

Quantitative Results
Quantitative analysis includes evaluation results categorized
into ‘ground truth-based’ and ‘model truth-based’ metrics.
The former is used to justify the model by assessing the ex-
tent to which the algorithm satisfies the users by providing
visually superior explanations, while the latter is used to an-
alyze the model behavior by assessing the faithfulness of the
algorithm and its correctness in capturing the attributions in
line with the model’s prediction procedure. The reported re-
sults of RISE and Extremal Perturbation in Table 1 are aver-
aged on three runs. The utilized metrics are discussed below.

Ground truth-based Metrics: The state-of-the-art expla-
nation algorithms are compared with SISE based on three
distinct ground-truth based metrics to justify the visual qual-
ity of the explanation maps generated by our method. Denot-
ing the ground-truth mask asG and the achieved explanation
map as S, the evaluation metrics used are:

3Last date accessed: 20 August 2020
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Figure 6: Qualitative comparison of the state-of-the-art XAI methods with our proposed SISE for test images from the PASCAL
VOC 2007 dataset. The first two rows are the results from a ResNet-50 model, and the last two are from a VGG16 model.

Figure 7: Class discriminative ability of SISE vs. RISE ob-
tained from a VGG16 model

Energy-Based Pointing Game (EBPG) evaluates the
precision and denoising ability of XAI algorithms (Wang
et al. 2020). Extending the traditional Pointing Game, EBPG
considers all pixels in the resultant explanation map S for
evaluation by measuring the fraction of its energy captured
in the corresponding ground truthG, asEBPG = ||S�G||1

||S||1 .
mIoU analyses the localization ability and meaningful-

ness of the attributions captured in an explanation map. In
our experiments, we select the top 20% pixels highlighted in
each explanation map S and compute the mean intersection
over union with their corresponding ground-truth masks.

Bounding box (Bbox) (Schulz et al. 2020) is taken into
account as a size-adaptive variant of mIoU. Considering N
as the number of ground truth pixels in G, the Bbox score is
calculated by selecting the top N pixels in S and evaluating
the corresponding fraction captured over G.

Model truth-based metrics: To evaluate the correlation
between the representations of our method and the model’s
predictions, model-truth based metrics are employed to
compare SISE with the other state-of-the-art methods. As
visual explanation algorithms’ main objective is to envision
the model’s perspective for its predictions, these metrics are
considered of higher importance.

Figure 8: Qualitative comparison of explanation maps by a
ResNet-101 model on test images from Severstal dataset.

Drop% and Increase%, as introduced in (Chattopad-
hay et al. 2018) and later modified by (Ramaswamy et al.
2020; Fu et al. 2020), can be interpreted as an indicator of
the positive attributions missed and the negative attribution
discarded from the explanation map respectively. Given a
model Ψ(.), an input image Ii from a dataset containing K
images, and an explanation map S(Ii), the Drop/Increase %
metric selects the most important pixels in S(Ii) to mea-
sure their contribution towards the model’s prediction. A
threshold function T (.) is applied on S(Ii) to select the
top 15% pixels that are then extracted from Ii using point-
wise multiplication and fed to the model. The confidence
scores on such perturbed images are then compared with
the original score, according to the equations Drop% =
1
K

∑K
i=1

max(0,Ψ(Ii)−Ψ(Ii�T (Ii)))
Ψ(Ii)

×100 and Increase% =∑K
i=1 sign(Ψ(Ii � T (Ii))−Ψ(Ii)).

Discussion
The experimental results in Figs. 1, 6, 7, and 8 demonstrate
the resolution, and concreteness of SISE explanation maps,
which is further supported by justifying our method via
ground truth-based evaluation metrics as in Table 1. Also,
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Model Metric Grad-CAM Grad- Extremal RISE Score- Integrated FullGrad SISECAM++ Perturbation CAM Gradient

VGG16

EBPG 55.44 46.29 61.19 33.44 46.42 36.87 38.72 60.54
mIoU 26.52 28.1 25.44 27.11 27.71 14.11 26.61 27.79
Bbox 51.7 55.59 51.2 54.59 54.98 33.97 54.17 55.68
Drop 49.47 60.63 43.90 39.62 39.79 64.74 60.78 38.40

Increase 31.08 23.89 32.65 37.76 36.42 26.17 22.73 37.96

ResNet-50

EBPG 60.08 47.78 63.24 32.86 35.56 40.62 39.55 66.08
mIoU 32.16 30.16 26.29 27.4 31.0 15.41 20.2 31.37
Bbox 60.25 58.66 52.34 55.55 60.02 34.79 44.94 61.59
Drop 35.80 41.77 39.38 39.77 35.36 66.12 65.99 30.92

Increase 36.58 32.15 34.27 37.08 37.08 24.24 25.36 40.22

Table 1: Results of ground truth-based and model truth-based metrics for state-of-the-art XAI methods along with SISE (pro-
posed) on two networks trained on the PASCAL VOC 2007 dataset. For each metric, the best is shown in bold, and the
second-best is underlined. Except for Drop%, the higher is better for all other metrics. All values are reported in percentage.

XAI method Drop% Increase%
Grad-CAM 67.44 12.46

Grad-CAM++ 64.1 12.96
RISE 63.25 15.63

Score-CAM 64.29 10.35
FullGrad 77.23 10.26

SISE 61.06 15.64

Table 2: Results of model truth-based metrics of SISE and
state-of-the-art algorithms on a ResNet-101 model trained
on Severstal data set.

model truth-based metrics in Tables 1 and 2 prove SISE’s
supremacy in highlighting the evidence, based on which the
model makes a prediction. Similar to the CAM-based meth-
ods, the output of the last convolutional block plays the
most critical role in our method. However, by considering
the intermediate layers based on the block-wise layer selec-
tion, SISE’s advantageous properties are enhanced. Further-
more, utilizing attribution-based input sampling instead of a
randomized sampling, ignoring the unrelated feature maps,
and modifying the linear combination step dramatically im-
proves the visual clarity and completeness offered by SISE.

Complexity Evaluation In addition to performance eval-
uations, a runtime test is carried out to compare the com-
plexity of the methods, using a Tesla T4 GPU with 16GB
of memory and the ResNet-50 model. Reported runtimes
were averaged over 100 trials using random images from the
PASCAL VOC 2007 test set. Grad-CAM and Grad-CAM++
achieved the best runtimes, 19 and 20 milliseconds, respec-
tively. On the other hand, Extremal Perturbation recorded
the longest runtime, 78.37 seconds, since it optimizes nu-
merous variables. In comparison with RISE, which has a
runtime of 26.08 seconds, SISE runs in 9.21 seconds.

Ablation Study While RISE uses around 8000 random
masks to operate on a ResNet-50 model, SISE uses around

1900 attribution masks with µ set to 0, out of a total of 3904
feature maps initially extracted from the same ResNet-50
model before negative-gradient feature maps were removed.
The difference in the number of masks allows SISE to op-
erate in around 9.21 seconds. To analyze the effect of re-
ducing the number of attribution masks on SISE’s perfor-
mance, an ablation study is carried. By changing µ to 0.3, a
scanty variation in the boundary of explanation maps can be
noticed while the runtime is reduced to 2.18 seconds. This
shows that ignoring feature maps with low gradient values
does not considerably affect SISE outputs since they tend to
be assigned low scores in the third phase of SISE anyway.
By increasing µ to 0.5, a slight decline in the performance
is recorded along with a runtime of just 0.65 seconds. A
more detailed analysis of the effect of µ on various evalu-
ation metrics along with an extensive discussion of our al-
gorithm and additional results on MS COCO 2014 dataset
(Lin et al. 2014) are provided in the technical appendix of
our extended version on arXiv4.

Conclusion
In this work, we propose SISE - a novel visual explana-
tion algorithm specialized to the family of CNN-based mod-
els. SISE generates explanations by aggregating visualiza-
tion maps obtained from the output of convolutional blocks
through attribution-based input sampling. Qualitative results
show that our method can output high-resolution explana-
tion maps, the quality of which is emphasized by quanti-
tative analysis using ground truth-based metrics. Moreover,
model truth-based metrics demonstrate that our method also
outperforms other state-of-the-art methods in providing con-
crete explanations. Our experiments reveal that mutual uti-
lization of features captured in final and intermediate layers
of the model aids in producing explanation maps that accu-
rately locate object instances and reach a greater portion of
attributions leading the model to make a decision.

4https://arxiv.org/abs/2010.00672

11645



Acknowledgements
This research was supported by LG AI Research. The au-
thors thank all anonymous reviewers for their detailed sug-
gestions and critical comments on the original manuscript
that substantially helped to improve the clarity of this paper.

References
Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller,
K.-R.; and Samek, W. 2015. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance prop-
agation. PloS one 10(7): e0130140.
Barredo Arrieta, A.; Diaz Rodriguez, N.; Del Ser, J.; Ben-
netot, A.; Tabik, S.; Barbado González, A.; Garcia, S.; Gil-
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