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Abstract

We consider the problem of responsibility attribution in the
setting of parametric Markov chains. Given a family of
Markov chains over a set of parameters, and a property, re-
sponsibility attribution asks how the difference in the value
of the property should be attributed to the parameters when
they change from one point in the parameter space to another.
We formalize responsibility as path-based attribution
schemes studied in cooperative game theory. An attribution
scheme in a game determines how a value (a surplus or a
cost) is distributed among a set of participants. Path-based at-
tribution schemes include the well-studied Aumann-Shapley
and the Shapley-Shubik schemes. In our context, an attribu-
tion scheme measures the responsibility of each parameter on
the value function of the parametric Markov chain.
We study the decision problem for path-based attribution
schemes. Our main technical result is an algorithm for de-
ciding if a path-based attribution scheme for a rational (ratios
of polynomials) cost function is over a rational threshold. In
particular, it is decidable if the Aumann-Shapley value for a
player is at least a given rational number. As a consequence,
we show that responsibility attribution is decidable for para-
metric Markov chains and for a general class of properties
that include expectation and variance of discounted sum and
long-run average rewards, as well as specifications in tempo-
ral logic.

Introduction
Methods that explain the behavior of complex mathematical
models has become an important research direction in re-
cent years, as such models are increasingly used in making
decisions that affect our lives in crucial ways. An impor-
tant problem in explainability is responsibility attribution: a
quantitative estimation of the relative importance of model
features to a final outcome. While explainability and respon-
sibility has been broadly studied for many statistical models,
to the best of our knowledge, they have never been formal-
ized for Markov chains.

In this paper, we develop a theory of responsiblity for
parametric Markov chains (pMCs) based on attribution
schemes from game theory. Our perspective on responsi-
bility focuses on the influence of a parameter on properties
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in pMCs and does not relate to moral, epistemic, or orga-
nizational considerations. In an abstract setting, attribution
schemes consider a function f(x1, . . . , xn) in n parameters.
When the parameters change from one setting to another,
thereby changing the value of the function, the attribution
problem is to determine what portion of the overall change
in f should be attributed to each parameter. Attribution prob-
lems formalize the informal notion of responsibility in a
quantitative sense: the attribution of a specific parameter can
be interpreted as its responsibility in the overall change.

Attribution problems formalize the notion of responsibil-
ity in many areas of economics and engineering. For an eco-
nomics example, suppose that multiple suppliers cooperate
to produce a product. The profit f(x1, . . . , xn) has to be
shared between them. For an example pertaining to pMCs,
consider a fault tree modeling the overall failure probability
of an entire system based on the failure probabilities of its
components. A natural question is how “responsible” each
component is to the overall failure of the system; that is,
how should the responsibility of failure be allocated to the
failure of each individual component?

One can write down some properties that an attribution
function must satisfy (the “axiomatic approach”). For exam-
ple, the sum of attributions over all parameters should be the
change in the value of the function, if the function is inde-
pendent of a parameter then its attribution should be zero,
and the attribution should not depend on the identity of the
parameters. When f is a linear function, f(x1, . . . , xn) =∑
i cixi, and each parameter changes from an initial value

ai to a final value bi, a simple attribution scheme could as-
sign the attribution ci(bi−ai) to the ith parameter. However,
when f is non-linear, a small change in one parameter may
be responsible for a large change in f and a linear attribu-
tion would not take this into account. When each parameter
changes infinitesimally, one can compute the partial deriva-
tive of the function f with respect to each parameter at the
current valuation; this corresponds to approximating f lo-
cally by a linear function. If the parameters change by a sig-
nificant amount, the partial derivative is a poor choice.

Instead, the cooperative game theory literature, and
more recently, the machine learning literature, has consid-
ered path-based attribution schemes (Friedman and Moulin
1999). Given an initial and a final value of the parameters, a
path-based attribution scheme fixes a family of paths and as-
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signs an attribution to a parameter by integrating the partial
derivative of the function f along the paths. Path-based attri-
bution is a very general technique; it obtains as special cases
the classical values of cooperative game theory such as the
Shapley-Shubik value (Shapley and Shubik 1954; Shubik
1962) and the Aumann-Shapley value (Aumann and Shapley
1974). Moreover, they can be characterized axiomatically.

We consider the decision problem for path-based attribu-
tion schemes. Given a function f , two evaluation points that
give values to each parameter, and a vector of rationals r,
one for each parameter, the attribution decision problem asks
if a specific path-based attribution scheme assigns at least ri
to parameter i to explain the change in f between the two
evaluation points. We show this problem is decidable when
f is a rational function (a ratio of polynomials).

In particular, the above decision problem is decidable for
Shapley-Shubik and the Aumann-Shapley values for ratio-
nal functions. Decidability of the Shapley-Shubik value is
not surprising: by definition, it corresponds to the sum of
exponentially many evaluations of a rational function.1 That
the Aumann-Shapley value is also decidable is more sub-
tle, since the Aumann-Shapley value involves computing
definite integrals of rational functions and therefore con-
tains transcendental functions. While one can numerically
approximate such functions to arbitrary precision, one may
still not be able to distinguish where the value of the value
of the integral lies with respect to the rational threshold.

Our decidability result uses Baker’s theorem from tran-
scendental number theory (Baker 1977). The definite inte-
gral of a rational function along an affine path can be writ-
ten as a linear form in logarithms of algebraic numbers. We
use Baker’s theorem, and algorithms on algebraic numbers,
to provide an algorithm to check if the linear form is greater
than the given rational.

Our result proves, as a special case, decidability of path-
based attribution schemes for pMCs. A pMC represents a
family of Markov chains, one for each choice of the param-
eters. We consider a broad class of specifications on pMCs,
which includes classical discounted and long run average re-
wards, as well as specifications given by formulas of (quan-
titative) temporal logics. For this broad class of specifica-
tions, the expected value (and in fact the variance) can be
obtained as a rational function of the parameters under semi-
algebraic constraints. Using our decidability result, we con-
clude that the attribution problem for pMCs against this class
of specifications is decidable.

We summarize our contributions as follows.

• We formalize the notion of responsibility for pMCs using
attribution schemes from game theory;

• We provide an algorithm to decide if a path-based attribu-
tion scheme for a rational function is over a threshold;

• As a special case, we apply the algorithm to show decid-
ability of the responsibility attribution problem for pMCs.

1Note that computing the Shapley value in simple settings is
already #P-hard (Deng and Papadimitriou 1994).

Related Work
As far as we know, the responsibility problem has not been
studied for operational stochastic models, nor was the rela-
tionship between attribution schemes and responsibility ex-
plored in this context.

The Shapley value (Shapley 1953) is a fundamental build-
ing block in the understanding of cooperative games. Gener-
alizations of this central notion include the Shapley-Shubik
value (Shapley and Shubik 1954; Shubik 1962) and the
Aumann-Shapley value (Aumann and Shapley 1974). This
theory was applied in the economics literature under the
name of cost-sharing schemes (Mirman and Tauman 1982;
Billera, Heath, and Raanan 1978; Billera and Heath 1982;
Friedman and Moulin 1999), where suitable axiomatiza-
tions distill the aforementioned values as canonical schemes.
Computational complexity questions for variants of the
Shapley value have been studied extensively (Deng and Pa-
padimitriou 1994; Fatima, Wooldridge, and Jennings 2008;
Skibski et al. 2019, 2020) but not the Aumann-Shapley
value. Recently, Shapley-like values have been rediscovered
for the explanation of machine learning models (Lundberg
and Lee 2017; Lundberg, Erion, and Lee 2018; Sundarara-
jan and Najmi 2019). In this context, attribution schemes
help to measure the influence of the input parameters on the
outcome of the learned model.

Parametric Markov chains (pMC) have initially been in-
troduced in a restricted form, where transition probabili-
ties belong to certain intervals (Jonsson and Larsen 1991;
Givan, Leach, and Dean 2000; Kozine and Utkin 2002).
Model checking this class of pMCs against probabilistic
computation tree logic (PCTL) has been considered (Sen,
Viswanathan, and Agha 2006). It has also been studied how
valuations for pMCs with prescribed properties can be found
(Lanotte, Maggiolo-Schettini, and Troina 2007). Perturba-
tion analysis on pMCs in the spirit of (Chen et al. 2014;
Su et al. 2016) discusses how volatile a given property is
under changes of the parameters. The distance-based per-
spective on the parameter space employed there results in a
global viewpoint on parameter changes. Our approach, on
the other hand, takes an individual look at the parameters
and proposes a measure for their individual influence.

Techniques for computing the functions associated to
PCTL specifications in pMCs has been subject to an exten-
sive amount of research. A first approach relied on state-
elimination (Daws 2005). Significant computational im-
provements were subsequently made (Hahn, Hermanns, and
Zhang 2011) and led to the implementation PARAM (Hahn
et al. 2010), as well as a reimplementation in the model
checker PRISM (Kwiatkowska, Norman, and Parker 2011).
Further technical insights on the efficient computation of
these functions (Jansen et al. 2014) resulted in the model
checker STORM (Dehnert et al. 2017). Recently, fraction-
free Gaussian elimination was employed to speed up the
calculation of value functions (Baier et al. 2020). Laplace
expansion has been applied to solve the linear equation
systems of PCTL specifications in sparse pMCs (Filieri,
Ghezzi, and Tamburrelli 2011).

Finally, responsibility as a quantitative measure of blame
has a rich history in the causality literature (Chockler
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and Halpern 2004; Aleksandrowicz et al. 2014; Chockler
2016; Alechina, Halpern, and Logan 2020; Friedenberg and
Halpern 2019). Although such models have been studied
for non-probabilistic Kripke structures (see, e.g., (Bulling
and Dastani 2013; Chockler 2016; Yazdanpanah and Dastani
2016; Yazdanpanah et al. 2019)), they had not been applied
to pMCs nor formulated as path-based attribution problems.
In philosophy (van de Poel 2011), one distinguishes between
forward responsibility, which is a global notion of respon-
sibility for the entire model, and backward responsibility,
which is assigned relative to a specific unfolding of events.
Our approach falls into the second category since we at-
tribute responsibility values after observing a change in the
parameter setting.

Preliminaries
We write N, Q, R, C for the naturals, rationals, reals, and
complex numbers, respectively. For a field K and variables
X = {x1, ..., xn}, we write K[X] for the polynomial ring
over X and K(X) for the field of rational functions over
X . Given elements f ∈ K[X] and c ∈ RX we denote by
f [c] ∈ R the value obtained by evaluating f at c. A par-
tial function f : RX 99K R is a function D → R on some
subset D ⊆ RX . A rational function f = g/h ∈ K(X) nat-
urally induces a partial function (written by the same letter)
f : RX 99K R defined on D = {c ∈ RX | h[c] 6= 0} by
evaluating numerator and denominator.

A function f(x1, ..., xn) : D → R is independent of the
ith variable if f(x) = f(x′) whenever xj = x′j for all j 6= i.
It is non-decreasing in the ith variable if f(x+ tδi) ≥ f(x)
is non-decreasing in t, where δi = (0, ..., 0, 1, 0, ..., 0) is
the vector containing the 1 in the ith position. An entrywise
affine map is a map of the form

h : RX → RX , (x1, ..., xn) 7→
(
x1 − b1
a1

, ...,
xn − bn
an

)
for some ai, bi ∈ R, ai 6= 0.
Definition 1 (Parametric Markov chain). A parametric
Markov chain (pMC) M = (S,AP, L, s0, X, P,R) consists
of a finite set of states S, atomic propositions AP, a labeling
L : S → 2AP, an initial state s0 ∈ S, a finite set X of
parameters, a parametric probabilistic transition function
P : S × S → Q(X), a parametric state reward function
R : S → Q(X).

A valuation c ∈ RX is admissible for a pMC M if eval-
uating all parametric inputs at c results in a Markov chain
with state rewards, i.e., we have 0 ≤ P (s, t)[c] ≤ 1 for all
s, t ∈ S,

∑
t∈S P (s, t)[c] = 1 for all s ∈ S and R(s)[c] is

defined. A set D ⊆ RX is admissible if all valuations in D
are admissible.

Reasoning about responsibility typically involves agents
that have control over certain actions. Agency in the pMC
models comes from the range of parameters: for each xi, we
assume an independent agent can perform a change in value
of the parameter xi independently from other parameters.
Definition 2 (Regular property). A property (over AP) is a
map that assigns to each pMCM = (S,AP, L, s0, X, P,R)

a partial function φM : Rn 99K R defined on the set of ad-
missible valuations for M . A property is regular if for all
pMCs M the function φM is induced by a rational function
in Q(X)

Our notion of a regular property is designed in such a
general way that virtually all properties of major interest
in classical Markov chain theory as well as in probabilistic
model checking fit into this framework. We now recall our
main examples. Let M = (S,AP, L, s0, P,R) be a Markov
chain, i.e., a pMC without parameters, where P and R map
to Q instead of Q(X). An infinite path in M is a sequence
s0s1s2 . . . such that P (si, si+1) > 0 for all i ≥ 0. The set
of infinite paths Paths(M) can be turned into a probabil-
ity space via a standard cylinder construction (cf. (Baier and
Katoen 2008, Section 10.1)). Given an ω-regular property
over AP, we write PrM (φ) short for the mass of those paths
in M starting in s0 satisfying φ. We also incorporate Prob-
abilistic Computation Tree Logic (PCTL). This branching-
time logic is formed according to the grammar

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | PJ(φ)

φ ::= ©Φ | Φ1 U Φ2

where a ∈ AP, and J is an interval in [0, 1]. A formula of the
form Φ is called state formula and a formula of the form φ
is called path formula. The operators© (next) and U (until)
denote the usual temporal modalities. A state s satisfies the
state formula PJ(φ) if the mass of those paths in M starting
in s satisfying φ belongs to the interval J .

Consider a target set T ⊆ S with PrM (♦T ) = 1. Then
the state reward function R induces together with a discount
factor 0 < t ≤ 1 a random variable on infinite paths defined
by mapping the path s0s1... to the value

∑n
i=0 ti · R(si),

where n is the smallest index such that sn ∈ T . The set
of paths for which such an n does not exists is a null
set since PrM (♦T ) = 1. The expected discounted reward
ERM,t(♦T ) is the expected value of this random variable,
and the variance of rewards VarRM,t(♦T ) is its variance.

Lemma 1. The following are regular properties on pMCs
M = (S,AP, L, s0, X, P,R):

1. ω-regular properties: φM (c) = PrM [c](φ), where φ is an
ω-regular property over AP;

2. PCTL path properties: φM (c) = PrM [c](φ), where φ is a
PCTL path property over AP;

3. Expected discounted reward: φM [c] = ERM [c],t(♦T ),
where T ⊆ S and 0 < t ≤ 1;

4. Variance of rewards: φM [c] = VarRM,t(♦T ), where
T ⊆ S and 0 < t ≤ 1.

Proof. The arguments rely on well-known non-parametric
constructions. For an ω-regular property, we follow (Baier
and Katoen 2008, Section 10.3): One takes a deterministic
Rabin automaton A for φ and builds the product of M ⊗A.
This is a pMC with the same parameter set as M and satis-
faction of φ in M translates into reachability of a subset of
the bottom strongly connected components ofM⊗A. These
resulting parametric reachability probabilities are the unique
solution of a linear equation system Ax = b over Q(X),
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where A and b contain essentially the probability function
P , cf. (Baier and Katoen 2008, Theorem 10.19). As the in-
verse of a matrix over Q(X) depends rationally upon its en-
tries, the solution x = A−1b depends rationally on P and
thus on X .

For PCTL we consider the two cases φ = ©Φ and
φ = Φ1 U Φ2 separately. In the first case, one obtains the
vector of probabilities (PrM [c],s(φ))s∈S by multiplying the
parametric probability transition function P with the vector
over RS containing a 1 for all states satisfying Φ and a 0 for
the remaining states. In the second case where φ = Φ1 UΦ2

one builds a fixed point linear equation system in the very
same fashion as for the reachability probabilities considered
above. Further details can, for example, be found in (Baier
and Katoen 2008, Section 10.2.1).

Similarly, one can describe a linear equation system
A′x = b′ over Q(X) whose only solution is the ex-
pected discounted reward ERM [c],t(♦T ), cf. (Baier and Ka-
toen 2008, Section 10.5). An analogous approach has been
identified for variances of rewards VarRM,t(♦T ) (Verhoeff
2004). In both cases the non-parametric approach naturally
extends to pMCs by solving the linear equation systems over
Q(X) instead of Q.

Nevertheless, an explicit computation of the rational func-
tion that belongs to a regular property is a non-trivial task
since solving linear equation systems over rational function
fields is much harder than over Q. Moreover, even for simple
examples the resulting function might require a monomial
representation of exponential size. More precisely, there are
sequences (Mk)k≥1 of acyclic pMCs with k parameters and
k + 3 states (one of which is a goal state g) such that P can
be described by linear functions and the reachability proba-
bility PrM [·](♦g) is a polynomial with 2k monomials (Baier
et al. 2020).
Example 1 (Parameterized Knuth’s Dice). Knuth’s dice is
a Markov chain, due to Knuth and Yao (Knuth and Yao
1976), which models a fair dice using only fair coins. We
consider a version of the program where we simulate a bi-
ased dice using three biased coins, whose probabilities of
heads are parameterized by x, y, and z (see Figure 1). Start-
ing at the initial state s0 of the pMC, we can write down
rational functions for the probability that the dice rolls a
specific number. In PCTL notation, the probability that the
dice rolls a specific number is written Prs0(♦1), Prs0(♦2),
etc. These probabilities can be calculated as follows. Note
that Prs′1,2,3(♦1) = (1 − z) + zy · Prs′1,2,3(♦1), and so
Prs′1,2,3(♦1) = 1−z

1−zy . Similarly, Prs′1,2,3(♦2) = z2(1−y)+

zy · Prs′1,2,3(♦2), and so Prs′1,2,3(♦2) = z2(1−y)
1−zy . Thus,

Prs0(♦1) =
xy(1− z)

1− zy

Prs0(♦2) =
xyz2(1− y)

1− zy
+ x(1− y)z

=
xyz2(1− y) + (1− zy)x(1− y)z

1− zy
=
x(1− y)z

1− zy

s0

s1,2,3 s4,5,6

s′1,2,3
s2,3 s4,5 s′4,5,6

1 2 3 4 5 6

x 1− x

y
1− y

y 1− y

1− z

z

z
1− z z

1− z
1− z

z

Figure 1: Knuth’s dice, manipulated

Attribution Schemes
Consider a pMC M = (S,AP, L, s0, X, P,R), a property
φ, and two admissible valuations x, x′ for M . In practice,
when the pMCM models an engineering artifact, a designer
or user has expectations on the behavior of φ. When dealing
with network protocols or scheduler optimization tasks, for
example, one typically imposes upper bounds on the fault
rate or the average time until completion of the task. Imag-
ine that, for two settings x and x′ of the parameters, we see
that φM (x) has the desired behavior but φM (x′) does not.
The responsibility attribution problem asks, how should the
change in each parameter from x to x′ be held responsible
for the change in φM?

We tackle this problem with insights from the cost-sharing
literature in economics (Mirman and Tauman 1982; Billera,
Heath, and Raanan 1978; Billera and Heath 1982; Friedman
and Moulin 1999), where the cost of jointly producing a
good needs to be distributed among the participating sup-
pliers. The resulting cost-sharing schemes have been gener-
alized to more abstract settings (Sun and Sundararajan 2011)
in the form of attribution schemes. We adapt this notion and
apply it to regular properties on pMCs. Intuitively, an attri-
bution scheme takes the property φ and divides the overall
change φM (x′) − φM (x) to each of the parameters. Thus,
the attribution measures the “responsibility” in producing
the value φM (x′) from the value φM (x).

We emphazise that our notion of responsibility is free
of any moral connotation and epistemic considerations in
that we focus on measuring the influence of the parameters
in changing potential outcomes. Moreover, our model as-
sumes perfect information, which is reflected by the fact that
one has explicit representations for the parametric transition
probabilities rather than just a representation of the rational
function associated to a regular property.

Definition 3 (Attribution scheme). Let C1(D) be the set of
continuously differentiable functions D → R. An attribution
scheme is a map

v : C1(D)×D×D → Rn, (f, x, x′) 7→ (vi(f, x, x
′))1≤i≤n

such that the following properties hold:
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Efficiency: For all x, x′ ∈ D we have
n∑
i=1

vi(f, x, x
′) = f(x′)− f(x);

Dummy: If f is independent of i, then vi(f, x, x′) = 0 for
all x, x′ ∈ D;

Symmetry: If σ : {1, ..., n} → {1, ..., n} is a permutation
of the indices and we define

fσ(x1, ..., xn) = f(xσ(1), ..., xσ(n)),

and likewise fσ−1 , then we have for all x, x′ ∈ D

vσ−1(i)(fσ−1 , fσ(x), fσ(x′)) = vi(f, x, x
′)

Linearity: If f = a1·f1+a2·f2 for ai ∈ R and fi ∈ C1(D),
then for all x, x′ ∈ D

vi(f, x, x
′) = a1 · vi(f1, x, x′) + a2 · vi(f2, x, x′)

Non-negativity: If f is non-decreasing in i and x′i ≥ xi,
then vi(f, x, x′) ≥ 0.

Affine Scale Invariance: Let h : RX → RX be an entry-
wise affine map, then for all x, x′ ∈ h−1(D)

vi(f ◦ h, x, x′) = vi(f, h(x), h(x′))

The first three axioms present the basic features of the
attribution problem. Efficiency states that the entire change
from f(x) to f(x′) is accounted for. Dummy demands that
parameters without effect on f should not be held responsi-
ble. Symmetry is a fairness condition among the parameters:
it states that the identity of a parameter should not matter
in an attribution. The final three axioms impose consistency
axioms on a higher level and are sometimes (partially) re-
moved in axiomatic approaches. Linearity demands that an
underlying additive structure on the functions be preserved
in the attributions, while non-negativity states that parame-
ters that cannot decrease the function in the direction from
x to x′ do not receive negative attributions. Affine scale in-
variance requires that rescaling the parameters individually
does not affect the attributions.
Example 2. 1. The Aumann-Shapley attribution (Aumann

and Shapley 1974) is a popular attribution method in the
cost-sharing literature. For x, x′ ∈ D and 1 ≤ i ≤ n it is
defined as

ASi(f, x, x
′) = (x′i − xi) ·

∫ 1

0

∂f

∂xi
(x+ α(x′ − x))dα

Intuitively, Aumann-Shapley breaks up the infinitesimal
change on f into the individual coordinates and then ac-
cumulates these values parameter-wise along the straight
line from x to x′. It is not hard to check that the axioms
of Definition 3 hold.

2. The Shapley-Shubik attribution (Shapley and Shubik
1954) builds on the classical Shapley value from coop-
erative games. It is defined for two parameters x, x′ ∈ D
as follows. For a set J ⊆ {1, ..., n}we denote by xJx′ the
vector in D which coincides with x′ on indices in J and
with x on indices in the complement of J . Thus the points

of the form xJx
′ are precisely the vertices of the hyper-

rectangle spanned by x and x′. We put c(J) = f(xJx
′),

so in particular c(∅) = f(x) and c({1, ..., n}) = f(x′).
Then the Shapley-Shubik attribution ShSi(f, x, x

′) is de-
fined as the value∑

J⊆I\{i}

|J |!(n− |J | − 1)!

n!
· (c(J ∪ {i})− c(J)) ,

i.e., by forming the classical Shapley value on the payoff
function c.
We have adapted the set of axioms of Definition 3 in order

to fit into our framework of regular properties on pMCs. The
first three axioms and non-negativity are rather natural and
prevent inconsistent or counterintuitive attributions.

As for linearity, imagine that we are interested in the prob-
ability PrM (♦(C1 ∪ C2)) to reach the disjoint union of two
bottom strongly connected components of the pMC. This
probability is the sum of the individual reachability prob-
abilities for the two components, i.e., PrM (♦(C1 ∪ C2)) =
PrM (♦C1) + PrM (♦C2). This inherent additive structure
in the target function should be respected by our (additive)
attribution scheme, meaning that the attributions for the indi-
vidual attributions for the PrM (♦Ci) should add up to their
overall attribution. A similar reasoning also works for more
complicated temporal logic formulae which can be decom-
posed into disjoint sets of paths, and for which the probabil-
ity of satisfaction is additive.

Affine scale invariance is particularly convincing in our
context. In formal modeling and in sharp contrast to the cost-
sharing literature in economics, the scale of parameters does
not represent real-world scales like the number of produced
goods. However, if the scale of parameters in pMCs is arbi-
trary from the start, rescaling them individually should not
affect a sensible attribution.

The cost-sharing literature also studies other axioms with
which one can (at least on the class of non-decreasing func-
tions, and for parameters x, x′ ≥ 0) uniquely character-
ize the attribution schems of Example 2. For the Aumann-
Shapley attribution one has to add a proportionality axiom
to the list of Definition 3, while for the Shapley-Shubik attri-
bution one has to additionally require a monotonicity axiom
(Friedman and Moulin 1999). We omit these axioms as they
do not capture natural requirements for pMCs.
Remark 1 (Group responsibilities). It is an interesting
question how attribution schemes can be used for the def-
inition of group responsibilities, i.e., the overall responsibil-
ity of a set of parameters {xi}i∈I for some I ⊆ {1, ..., n}.
To the best of our knowledge, the corresponding problem on
cooperative games and the classical Shapley value does not
have an immediate answer. The Owen value (Owen 1977)
provides an approach for individual responsibilities when
groups have already been formed. In our context, one could
define the responsibility of a set of parameters a posteriori as
the sum of the individual responsibilities. For the Aumann-
Shapley value one can see formally that this makes sense by
replacing each of the parameters xi, i ∈ I , with the multiple
(1− z) ·xi + z ·x′i of a new parameter z. Then the Aumann-
Shapley attribution of the new parameter z is the sum of the
attributions of all replaced parameters.
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Path Attribution Schemes
Both the Aumann-Shapley and the Shapley-Shubik attribu-
tion fall into the general class of path attribution schemes.

Definition 4 (Path attribution scheme). Let γ =
(γ1, ..., γn) : [0, 1] → [0, 1]n be a path from (0, ..., 0) to
(1, ..., 1) which is non-decreasing in every component. For
every x, x′ ∈ D, let

γx,x′(t) = x+ (γ1(t) · (x′1 − x1), ..., γn(t) · (x′n − xn))

Denote the components of γx,x′ by γx,x′,i. The attribution
scheme induced by γ is defined as

vγi (f, x, x′) =

∫ 1

0

∂f

∂xi
(γx,x′(t)) · γ′x,x′,i(t) dt

A path attribution scheme is a convex combination of finitely
many attributions schemes induced by paths.

What we term path attribution is sometimes called affine
path attribution in order to highlight that the paths γx,x′ are
affine images of a common path on the unit cube. One could
abandon this uniformity condition at the cost of giving up
affine scale invariance. Our decidability results in the next
section apply to that setting as well, but we maintain affine
scale invariance as that is a reasonable axiom for responsi-
bility attribution of pMCs.
Example 3. The Aumann-Shapley attribution is induced
from the straight path γ : [0, 1]→ [0, 1]n, t 7→ (t, ..., t). The
Shapley-Shubik attribution is the (uniform) convex combi-
nation of the n! many paths on the unit cube [0, 1]n that suc-
cessively switch the entries from 0 to 1. This can most eas-
ily be seen from the permutation-based formulation of the
Shapley value (Shapley 1953). More generally, any convex
combination of these n! many paths is called a probabilistic
value (Weber 1988) or random order value (Friedman and
Moulin 1999).

The following lemma follows easily from the basic prop-
erties of integration and differentiation, see also (Sun and
Sundararajan 2011).

Lemma 2. Any affine path attribution scheme is an attribu-
tion scheme, i.e., it satisfies the six axioms of Definition 3.

Example 4. For parameterized Knuth’s dice, we compute the
Aumann-Shapley value as follows. The partial derivatives
are

∂Prs0(♦1)

∂x
=
y(1− z)
1− zy

,

∂Prs0(♦1)

∂y
=

x(1− z)
(1− zy)2

,

∂Prs0(♦1)

∂z
=
xy(y − 1)

(1− zy)2
.

Let us consider p = ( 1
2 ,

1
2 ,

1
2 ) as the baseline valuation

and q = ( 3
4 ,

1
4 ,

1
2 ) as a second valuation. For the target func-

tion we then have Prps0(♦1) = 1/6 and Prqs0(♦1) = 3/28.

Computing the Aumann-Shapley attribution yields

ASx(Prs0(♦1), p, q)

=

(
3

4
− 1

2

)
·
∫ 1

0

1
4 + 1

4 t

2− ( 1
4 + 1

4 t)
dt

=
1

4
·
∫ 1

0

1 + t

7− t
dt = 0.0583

ASy(Prs0(♦1), p, q)

=

(
1

4
− 1

2

)
·
∫ 1

0

1
2 · (

3
4 −

1
4 t)

(1− 1
2 ( 1

4 + 1
4 t))

2
dt

= −
∫ 1

0

6− 2t

(7− t)2
dt = −0.1178

ASz(Prs0(♦1), p, q) = 0

Note that the parameters x and y have opposite influence on
Prs0(♦1): the change in x from 1/2 to 3/4 has a positive
influence on Prs0(♦1), while the change in y from 1/2 to
1/4 has a negative influence. Quantitatively, the change in y
carries roughly twice as much weight, resulting in an overall
decrease of the probability to reach 1.

We can also compute the Shapley-Shubik value from the
definition. We write c(S) = Prs0(♦1)(pSq) for the value
of the target function on points of the form pSq which as-
sign values from p to parameters in S and value from q
to the other parameters. We have c(∅) = 1

6 , c({x}) = 1
4 ,

c({x, y}) = 3
28 , c({x, z}) = 1

4 , c({y}) = 1
14 , c({z}) = 1

6 ,
c({y, z}) = 1

14 , and c({x, y, z}) = 3
28 . We omit the calcu-

lations, but obtain

ShSx =
5

84
= 0.0595, ShSy = − 5

42
= −0.1190,

and, of course, ShSz = 0. Qualitatively, one can explain the
attributions as for Aumann-Shapley values, but note that the
actual values are slightly different.

Lemma 2 ensures that there is a large number of attri-
bution schemes. However, in specific use cases particular
path-based schemes might be more suitable than others,
For example, in some situations it is unrealistic that all pa-
rameters can be changed simultaneously (as necessary for
the Aumann-Shapley attribution), and in other situations the
overall change of a parameter cannot be performed in one
step (as necessary for the Shapley-Shubik attribution). The
paths inducing the attribution schemes should reflect ‘admis-
sible’ real-world behavior. On the other hand, if no a priori
domain knowledge is given, using the Aumann-Shapley and
the Shapley-Shubik scheme gives theoretically sound attri-
butions that can serve as preliminary results.

Decision Problem
We associate a natural decision problem with path attribu-
tion schemes.
Definition 5 (Path attribution decision problem). Given a
function f : Rn → R, a path attribution scheme γ, two
parameter valuations x, x′ ∈ Qn, and a rational vec-
tor r ∈ Qn, the path attribution decision problem asks if
vγi (f, x, x′) ≥ ri for each i ∈ {1, . . . , n}.
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In order to make the decision problem more precise, we
focus on piecewise linear paths specified by rational end-
points. Both the Shapley-Shubik and the Aumann-Shapley
schemes are piecewise linear attribution schemes. From the
definition of the Shapley-Shubik scheme, it is obvious that it
is decidable when f is a rational function. In fact, comput-
ing the Shapley-Shubik scheme involves evaluating a ratio-
nal function in Q(X) at exponentially many different points.
However, the Aumann-Shapley value cannot be computed
exactly: the definite integral of a rational function can in-
volve transcendental functions. Therefore, it is not obvious
that the path attribution decision problem is decidable in a
more general case.

Decidability of Path Attributions
In this section we show:

Theorem 1. Given a pMC M over parameters X , a reg-
ular property ϕ, two admissible parameter valuations x, x′
for M , an index i, a rational number r ∈ Q, and a piece-
wise linear path attribution scheme v, it is decidable if
vi(ϕM , x, x

′) ≥ r.

Theorem 1 follows from the following general result.

Theorem 2. Let p, q ∈ Q[x] be univariate polynomials such
that q does not have a zero in [0, 1]. Given r ∈ Q, it is
decidable if ∫ 1

0

p(x)

q(x)
dx ≥ r (1)

The proof of the theorem is organized as follows. Us-
ing elementary calculus, we know that the integral can be
written as a linear form in logarithms of algebraic numbers
(Lemma 3). Then, using Baker’s theorem from transcenden-
tal number theory, we can show that the linear form is ei-
ther zero or transcendental and bounded away from zero.
Third, using tools from computational algebraic number the-
ory (Cohen 1993), we can compute arbitrary numerical ap-
proximations for the linear forms. Together, these steps al-
low us to check if the integral is above or below the rational
number. In the following, we write Q for the set of (possi-
bly complex) algebraic numbers. The proof of the following
lemma can be found in the appendix.

Lemma 3 (Integrals of rational functions). Let p, q ∈ Q[x]
be univariate polynomials. Assume q does not have a zero
in [0, 1]. Then

∫ 1

0
p(x)
q(x)dx can be written as a linear form

β0 + β1 logα1 + . . . βk logαk + βk+1 arctanαk+1 + . . .+
βm arctanαm, where αi, βi ∈ Q are real algebraic num-
bers. Equivalently, it can be written as β0+β1 log γ1+ . . .+
βm log γ1, for βi, γi ∈ Q.

Proof (Sketch). The proof is basic calculus. First, using the
fundamental theorem of algebra, q(x) can be written as:

K ·
k∏
i=1

(x+ αi)
si ·

l∏
i=1

((x+ γi)
2 + β2

i )ti

for positive integers k, l, sequences of positive integers
(si)

k
i=1, (ti)

l
i=1, algebraic numbers (αi)

k
i=1, (βi, γi)

l
i=1,

such that all αi are distinct and all pairs (βi, γi) are distinct.
The factors (x+αi)

si and ((x+γi)
2+β2

i )ti are mutually rel-
atively prime. So, by the Euclidean algorithm, we can write

p(x)

q(x)
= p(x)·

(
k∑
i=1

ui(x)

(x+ αi)si
+

l∑
i=1

vi(x)

((x+ γi)2 + β2
i )ti

)

Now, each p(x)ui(x)
(x+αi)si

can be written as a sum of a polynomial

and terms of the form di
(x+αi)si

. Each p(x)vi(x)
((x+γi)2+β2

i )
ti

can be
written as a sum of a polynomial and terms of the form
eix+fi

(x+αi)si
. The integral of a polynomial is again a polyno-

mial and the integral of the remaining fractional part can be
effectively written as a sum of rational functions, logarithms
of polynomials, and arctangents of polynomials over alge-
braic coefficients. Note that arctan(x) = i

2 (log(1 − ix) −
log(1 + ix)) is a logarithmic form.

Computations with Algebraic Numbers
In our algorithm, we have to compute with algebraic num-
bers. As irrational numbers such as

√
2 +
√

3 or 1 +
√

2i
are algebraic numbers, we cannot expect a finite represen-
tation for them. However, we can use tools from computa-
tional algebraic number theory to represent algebraic num-
bers and perform computations with them. We recall the ba-
sics (cf. (Cohen 1993)).

The height of a univariate polynomial p ∈ Z[x] with in-
teger coefficients is the maximum magnitude of its coeffi-
cients. A complex number α is algebraic if it is the root of
a univariate polynomial with integer coefficients. The defin-
ing polynomial of α, denoted pα, is the unique polynomial
of least degree, and whose coefficients do not have common
factors, which vanishes at α. The degree and height of α are
respectively those of pα.

A standard representation for algebraic numbers encodes
the number α as a tuple consisting of its defining polynomial
together with rational approximations of its real and imag-
inary parts of sufficient precision to distinguish α from the
other roots of pα. More precisely, α is represented (not nec-
essarily uniquely) by (pα, a, b, r) ∈ Z[x] × Q3 such that α
is the unique root of pα inside the circle in C of radius r
centred at a + bi. Given a polynomial p ∈ Z[x], it is well-
known how to compute standard representations of each of
its roots in time polynomial in ||p|| (Cohen 1993). From now
on, when referring to computations on algebraic numbers,
we implicitly refer to their standard representations.

Baker’s Theorem
We need the following quantitative version of Baker’s the-
orem from transcendental number theory (Ram Murty and
Rath 2014, Chapter 19).

Theorem 3 (Baker’s Theorem). Let α1, . . . , αm be non-zero
algebraic numbers with degrees at most d and heights at
mostA. Let β0, . . . , βm be non-zero algebraic numbers with
degrees at most d and heights at most B ≥ 2. Then either

Λ := β0 + β1 logα1 + . . . βm logαm
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equals zero or |Λ| > B−C where C is an effectively com-
putable number depending on m, d, A, and the values of the
logarithms.

A corollary of Baker’s theorem is that, for algebraic
numbers α1, . . . , αm, and β1, . . . , βm, the linear form
β1 logα1 + . . . βm logαm is either zero or transcendental.
In particular, if the linear form is nonzero, it is not rational.
In order to check if a linear form is greater than or equal to
a rational, we therefore need to compute it to sufficient bits
of precision—we know that after the bound given in Baker’s
theorem, we can distinguish the linear form from the rational
number.

Our last ingredient is to be able to compute logarithms
of algebraic numbers to arbitrary bits of precision. The fol-
lowing theorem of Brent provides this piece. Given a real
number r and a positive integer m, we say that q ∈ Q is an
m-bit approximation of r if |r − q| < 2−m.
Theorem 4. (Brent 1976) For any fixed real numbers
0 < a < b, there exists an algorithm which, given an
integer m ≥ 0, evaluates log x and arctanx in time
O(m log2m log logm), with relative error O(2−m), uni-
formly for all x ∈ [a, b].

Proofs of the Main Theorems
To check if the integral (1) is above a rational number,
we compute an d−C logBe-bit approximation of the linear
form in logarithms. If the approximation is less that B−C ,
we know that the linear form is zero. Then, we need to com-
pare 0 to an algebraic number, which is possible through
standard computations with algebraic numbers.

Suppose the linear form is not zero. From the conse-
quence of Baker’s theorem, we know that the linear form
is transcendental. Then, we can compare the sign of β0 +∑
i βi logαi− r by computing the number to sufficient pre-

cision.
We complete the proof of Theorem 1. As ϕ is a regular

property, it is characterized by a rational function ϕM , to-
gether with a set of semi-algebraic constraints to maintain
admissibility. In order to compute the attribution scheme,
we must make sure the two valuations are admissible and
the set of valuations along each piecewise linear path are all
admissible. Finally, we have to make sure that the rational
function is defined at all valuations along the paths. Each
of the above checks are decidable, as the theory of reals is
decidable.

After these checks, vi(ϕM , x, x′) is given as a convex
combination of finitely many integrals over rational func-
tions on the inveral [0, 1]. Using additivity, this value can be
written as one integral of a rational function on [0, 1]. We
then use Theorem 2 to compare this integral to the given ra-
tional.

A Remark on Complexity
In the above, we only show decidability of the problem.
One can get a complexity estimate by using sharper quan-
titative bounds in Baker’s theorem (Baker 1977; Baker
and Wustholz 1993). These quantitative bounds show that
log |Λ| can be exponentially small in the parameters of the

linear form, and thus, give an exponential algorithm to check
if a linear form is zero or non-zero. On the other hand, we
do not know any non-trivial complexity lower bounds for the
problem.

Conclusion
We have provided computability results for path attribution
schemes for rational cost functions. Our main technical re-
sult shows that one can decide if the Aumann-Shapley value
for rational cost functions is greater than or less than a ra-
tional number. As an application of attribution schemes to
pMCs, we obtain a formalization of responsibility in that do-
main. Moreover, since the value function is a rational func-
tion of parameters for a broad class of properties on Markov
chains, we immediately get a decidability result for such
properties as well. Our formalization can form the basis for
responsibility analysis for application domains modeled as
pMCs, such as fault trees. Finally, while the exact decision
procedure seems complex, we expect that an efficient nu-
merical evaluation of the integral will be sufficient to pro-
vide attribution values in practice.
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