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Abstract

Motivated by the Bike Angels Program in New York’s Citi
Bike and Boston’s Blue Bikes, we study the use of (regis-
tered) volunteers to re-position empty bikes for riders in a
bike sharing system. We propose a method that can be used
to deploy the volunteers in the system, based on the real
time distribution of the bikes in different stations. To account
for (random) route demand in the network, we solve a re-
lated transshipment network design model and construct a
sparse structure to restrict the re-balancing activities of the
volunteers (concentrating re-balancing activities on essential
routes). We also develop a comprehensive simulation model
using a threshold-based policy to deploy the volunteers in real
time, to test the effect of choice restriction on volunteers (suit-
ably deployed) to re-position bikes. We use the Hubway sys-
tem in Boston (with 60 stations) to demonstrate that using
a sparse structure to concentrate the re-balancing activities
of the volunteers, instead of allowing all admissible flows in
the system (as in current practice), can reduce the number of
re-balancing moves by a huge amount, losing only a small
proportion of demand satisfied.

Introduction
We study an innovative bike re-positioning scheme that
helps maintain the availability of bikes for regular riders in
the system. This is a volunteer-based re-balancing system
adopted by many bike sharing systems (BSS) such as New
York’s Citi Bike Program - one of the largest BSS in the
world. We are motivated by the following practical challenge
- When a volunteer arrives at a station, which destination do
we want the volunteer to move an empty bike to (and be re-
warded for making this move)?

In May 2016, Citi Bike launched a pilot program, called
Bike Angels, which pays registered members to redistribute
the bikes themselves. Some other players, such as GoBike
in San Francisco and Blue Bike in Boston have also started
to adopt the Bike Angels system (Lefkowitz 2018). For a
rigorous assessment of the impact of this program on bike
re-balancing and dock relocation, see (Freund, Henderson,
and Shmoys 2017; McGowen 2018; Freund et al. 2020). In
the early days of the program, Citi Bike provided two static
maps to the angels, one for the morning moves, and the other
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for the afternoon moves. They identified those stations in the
system that typically faced shortage of bikes and docks dur-
ing peak hours as drop-off stations and pick-up stations, re-
spectively. Members are encouraged to earn points by taking
a bike from a pick-up station and returning it to a neutral or
drop-off station; or by taking a bike from a neutral station
and returning it to a drop-off station. The neutral stations
here function more like transit stations, where bikes can be
brought in or out of the stations. We denote the above as the
“fixed pick-up/drop-off structure.” Note that the above es-
sentially restricts the origin-destination (OD) pairs that the
Angels can choose for re-balancing bikes - either between a
pick-up or neutral station and a drop-off station, or between
a pick-up and neutral station. The flows among other pairs
of stations are not rewarded. Citi Bike has recently changed
to a dynamic map, with the status of the stations determined
according to real time usage information. This allows angels
to re-balance bikes in any pair of stations depending on ac-
tual usage and forecast demands. As we will demonstrate
later, while this natural deployment scheme gives volunteers
the maximum flexibility to choose between pick-up/neutral
and neutral/drop-off stations (i.e., fully flexible system), the
system becomes less capable in directing the flow of empty
bikes since the moves are decided by volunteers, which can
lead to an excessive amount of redundant moves, without
improving the number of rides satisfied in any significant
manner.

Most of the earlier work in bike re-distribution focus on
the operational problem of moving bikes using special ve-
hicles deployed for this purpose. For related studies on the
static bike re-positioning problem (SBRP), see (Benchimol
et al. 2011; Angeloudis, Hu, and Bell 2014; Li et al. 2016;
Kloimüllner and Raidl 2017; Schuijbroek, Hampshire, and
Van Hoeve 2017). While these techniques are effective in re-
ducing the re-positioning cost to some extent, the solutions
could not incorporate the real-time demand of the users in
their approach. To tackle this problem, other scholars study
dynamic bike re-positioning problem (DBRP), which focus
on assessing the demand and re-positioning bikes dynami-
cally in search for better solution (Shu et al. 2013; Zhang
et al. 2017; O’Mahony and Shmoys 2015; Ghosh et al.
2017). However, (Bonnotte et al. 2015) point out that bike
re-positioning by vehicles could be costly and not effec-
tive. Different pricing schemes have been proposed to en-
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gage users to help reposition the bikes (Chemla et al. 2013;
Pfrommer et al. 2014; Fricker and Gast 2016). (Singla et al.
2015) present a crowd-sourcing mechanism that engages the
users using a smartphone application, and requests them to
change their intended journeys in exchange for rewards. The
incentive system is deployed in the bike sharing system:
MVGmeinRad for a period of 30 days. Some researches ar-
gue that the operator could redistribute bikes by using the
idle time of users who are willing to help, rather than by
hiring staffs or inducing users to change their travel destina-
tions (Aeschbach et al. 2015; Chung, Freund, and Shmoys
2018). In both operator-based and user-based BRP, the es-
sential step in re-positioning bikes is to estimate and forecast
which stations are critical stations in different time slots. The
critical station refers to station that has no available bikes
or docks for users to rent or return bikes. This is a well
solved demand forecasting problem in machine learning,
and has been actively studied in the Computer Science com-
munity (Liu et al. 2016; Cagliero et al. 2017). Different mod-
els for critical station detection have been proposed, for in-
stance, regression-based models (Froehlich, Neumann, and
Oliver 2008; Kaltenbrunner et al. 2010), classification mod-
els (Cagliero et al. 2017), statistical models (Alvarez-Valdes
et al. 2016) and other engineering methods (Shahsavaripour
2015). Some recent research have focused on capturing de-
mand uncertainty for better re-balancing decisions (Ghosh,
Trick, and Varakantham 2016; Lu 2016; Jian, Hugo, and Lu
2019; Ghosh, Jing, and Patrick 2019).

In this paper, we use standard machine learn-
ing/econometric technique to determine the status of
each station (as pick-up or drop-off station). We allow
the volunteer to move a bike from a pick-up station to
one of the adjacent drop-off stations (in the re-balancing
network) to earn reward. Interestingly, we find that the set
of OD pairs offered to the volunteers for re-positioning
has a distinct impact on the efficiency of the re-balancing
operations, and we propose a technique to construct the
re-balancing network to ensure that most of the moves made
by volunteers are valuable to the system.

In summary, the main contributions in this work are:

• We develop a practical scheme to deploy volunteers in a
real time fashion to re-balance bikes in the system, using
a combination of offline planning to deal with the uncer-
tainties in the operating environment, and an online algo-
rithm to guide the choices of the volunteers based on the
real time status of the system.

• More importantly, we develop new insights on the perfor-
mance of sparse structure in the bike re-balancing prob-
lem. We demonstrate that such structure can be used to
concentrate re-balancing flows in a bike sharing system
to reduce redundant moves (sometimes drastically), with
only a small impact on the ability of the system to meet
the demands of the riders.

Model
In this section, we formulate the problem of bike re-
balancing using volunteers. We first describe a dynamic sys-
tem of bike-sharing network with two streams of flows for

riders and volunteers. We then embed the design of arc set
for volunteer activities into decision making. Through model
analysis, we show the impact of bike re-balancing structure,
which leads us to focus on a tractable model. Then, we de-
rive the moment model containing valuable sensitivity anal-
ysis information on arc selection and follow a recently pro-
posed approach to construct the re-balancing structure.

We assume a bike-sharing network with N bikes, and
each station (indexed by I = {1, 2, . . . ,M}, where M is
the total station number) is positioned with a certain number
of bikes at the start of each day. For each station i ∈ I, let
Ãi(t) (resp. L̃i(t)) denote the number of regular riders ar-
riving to drop-off (resp. pick up) a bike at station i in time t.
Ãi(t) and L̃i(t) are random but the distribution functions are
known. The demand for regular riders here are the intrinsic
demand in the market, and only some of these demands will
be converted to rides, depending on the (empty) bike inven-
tory distributions among different stations. i.e., there may be
lost sales. For a typical station located in the central business
district (CBD), in the early morning, more bikes will be re-
turned to the station than picked up, and hence the system
requires only a small number of target inventory (denoted as
TDi(t) at station i, a.k.a., target demand level) initially. This
target increases at the later part of the day, when the pick-up
rate of bikes increases and dominates the return rate. In fact,
the pioneering works in (Freund, Henderson, and Shmoys
2017; Freund et al. 2020) focus on finding the best target
level of bikes at each station across time, through an innova-
tive model measuring user dissatisfaction function.

We use the above information to develop the volunteer
deployment scheme in the system. Consider the case when
a volunteer arrives at time t. Let Ni(t + T ) denote the “net
number of bikes” in station i at the time t+T , after account-
ing for the total number of bikes that flow in and out of the
station (assuming all demands can be satisfied) during the
interval [t, t + T ), and incorporating the final target inven-
tory level TDi(t + T ). Station i will be a pick-up station if
Ni(t + T ) > 0, and a drop-off station if Ni(t + T ) < 01.
We define these terms formally later.

At the same time, we assume that there is a separate
stream of volunteers arriving into the system, attracted by
the incentive schemes offered by the system to move bikes
from pick-up to drop-off stations. For ease of model anal-
ysis and without loss of generality, we assume that any re-
balancing move by the volunteers at time t can be completed
by time t + T . Note that in reality, the pool of the regular
riders and volunteers may not be distinct, since some regu-
lar riders may decide to perform a re-balancing move (as a
registered volunteer) if they are traveling from a pick-up sta-
tion to a drop-off station anyway. We designate these rides
as re-balancing moves in these cases. Also, unlike many
other re-balancing studies, the re-balancing moves here are
choices made by the volunteers and not dictated by the sys-
tem. Hence some volunteers may arrive and leave without
performing any re-balancing moves, if they could not find
suitable moves. Besides, we do not consider the substitution

1For ease of exposition, we do not model neutral station in this
paper.
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effect directly, i.e., we assume regular riders will not look
for bikes in nearby stations if they arrive at an empty station,
and these demands will be lost sales to the system2.

Instead of relying on station’s status as pick-up or drop-off
to decide whether to reward a move, suppose in addition we
allow moves only on a (pre-selected) set of arcs in E . This is
in line with the observation by (He et al. 2020) that “ treat-
ing bike stations as individual products is far from sufficient.
The structure of the network – that is, where the connect-
ing nodes are and what the weight is on each link—plays
a significant role in determining the demand on each node.”
Assume that the volunteer arrival process to each station fol-
lows a Poisson process, and they choose to rebalance bikes
for the system with a (thinned) Poisson process at a rate of
γij(E) that may depend on the structure E 3. Let t̃ij denote
the amount of time s in the interval (t, t + T ] where a re-
balancing move from station i to j will be rewarded by the
system, based on the net number of bikes in the pair of sta-
tions. The number of (volunteer) moves along the arc (i, j)
is therefore Poisson with mean

ẽij(E) ∼ Poi(γij(E)× t̃ij).
Let ÃEi (s) (resp. L̃Ei (s)) denote the induced number of vol-
unteers arriving to drop-off (resp. pick up) a bike at station
i in time s. We assume that the volunteer re-balancing ac-
tivities will not lead to bike stock-out at the stations and
change the usage statistics of the regular riders, since such
re-balancing moves are controlled by the net number of
bikes in the system. Incorporating the re-balancing moves
by volunteers, the net number of bikes in each station i can
be formally defined as follows:

Ni(t+ T ) =

Xi(t+T )︷ ︸︸ ︷
TDi(t)− TDi(t+ T ) +

∫ t+T

t

(
Ãi(s)− L̃i(s)

)
ds

+
∫ t+T
t

(
ÃEi (s)− L̃Ei (s)

)
ds.

(1)
A re-balancing move from station i to station j in the in-

terval (t, t+T ] is valuable ifXi(t+T ) > 0 andXj(t+T ) <
0. Let

c̃i := X+
i (t+ T ), d̃j := X−j (t+ T )

denote the original imbalances in the system at time t + T
(without any re-balancing move by the volunteers). Let r̃ =
(c̃, d̃). Suppose the cost of a redundant move is λ and the
saving from a valuable move is 1, then the aggregate value
of restricting re-balancing moves in E is given by

ZE(r̃, ẽ(E)) = max

( ∑
(i,j)∈E

{
min(ẽi,j(E), xij)− λ

(
ẽij(E)− xij

)+})
s.t.

∑
i∈I,(i,j)∈E

xij ≤ d̃j j ∈ I∑
j∈I,(i,j)∈E

xij ≤ c̃i i ∈ I

xij ≥ 0 (i, j) ∈ E
(2)

2Trying to deploy volunteers to anticipate this substitution be-
havior will be quite challenging.

3Rate of volunteer arrival is independent of network structure.
But the number of volunteers choosing to move bikes may be
lower, due to network structure (i.e., choice restriction), and if there
are outside options.

In this formulation, xi,j denotes the number of re-
balancing moves from station i to j that are valuable for the
system, when station i has surplus bikes at time t+ T (with
c̃i > 0) and station j has insufficient bikes (with d̃j > 0).
The constraints in (2) bound the total inflows for each de-
mand node and the total outflows for each supply node under
each specific realization. The above model could be used to
capture the economical profitability of the bike-sharing sys-
tem as follows: Suppose incentives for volunteer per move is
λ, and value obtained from a regular ride is 1+λ. So if a vol-
unteer makes a valuable move, the value is 1(= 1 + λ− λ),
and otherwise the move incurs a deployment cost of λ. By
doing so, the objective of the current model setup could be
directly used to measure the profitability of the system and
guide the selection of arcs.

Using the fact that

min(ẽi,j(E), xij)− λ
(
ẽij(E)− xij

)+
= (1 + λ) min

{
xij , ẽij(E)

}
− λẽij(E)

(3)

the above, with a slight abuse of notation, can be reformu-
lated as:

ZE(r̃, ẽ) = (1 + λ) max

( ∑
(i,j)∈E

xij

)
− λ

∑
(i,j)∈E

ẽij(E)

s.t.
∑

i∈I,(i,j)∈E
xij ≤ d̃j j ∈ I∑

j∈I,(i,j)∈E
xij ≤ c̃i i ∈ I

0 ≤ xij ≤ ẽij(E) (i, j) ∈ E
(4)

Our problem reduces to finding the optimal solution E∗ such
that

E∗ := argmaxEE
[
ZE(r̃, ẽ)

]
Let

Z0
E(r̃, ẽ) = max

( ∑
(i,j)∈E

xij

)
s.t.

∑
i∈I,(i,j)∈E

xij ≤ d̃j j ∈ I∑
j∈I,(i,j)∈E

xij ≤ c̃i i ∈ I

0 ≤ xij ≤ ẽij(E) (i, j) ∈ E

(5)

LetN(E) denote the total number of moves by volunteers in
the interval [t, t+ T ). Note that

E

[
ZE(r̃, ẽ)

]
= (1 + λ)E

[
Z0
E(r̃, ẽ)

]
− λE

[
N(E)

]
The analysis of (4) is complicated because the random

variable ẽij(E) depends on E and the net number of bikes in
each station. It is in general intractable.

At the same time, denote α and β as Lagrange multiplier
vectors, by taking Lagrangian dual of the first two sets of
constraints in (5), we have

ZE(r̃, ẽ) = (1 + λ) minαi,βj≥0

{∑
i∈I αic̃i +

∑
j∈I βj d̃j + Z(α, β)

}
−λ
∑

(i,j)∈E ẽij(E)

(6)
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where

Z(α, β) = max

( ∑
(i,j)∈E

{
(1− αi − βj)xij

})
0 ≤ xij ≤ ẽij(E) (i, j) ∈ E

(7)

Note that in the optimal solution, xi,j = ẽij or 0 depending
on the sign of 1− αi − βj . Hence

ZE(r̃, ẽ) = (1 + λ) min

(∑
i∈I αic̃i +

∑
j∈I βj d̃j +

∑
(i,j)∈E

{
(1− αi − βj)+ẽij(E)

})
−λ
∑

(i,j)∈E ẽij(E)
αi, βj ≥ 0 i, j ∈ I

(8)
Note that in the optimal solution, αi, βj ≤ 1. We can there-
fore add this upperbound to the formulation (8) without af-
fecting the optimal solution. We use this formulation to ar-
gue that a sparse structure may performs better than a fully
flexible system.

Lower Bound. Using the fact that (1 − αi − βj)
+ ≥

1− αi − βj , we have

ZE(r̃, ẽ) ≥∑
(i,j)∈E ẽij(E) + (1 + λ) minαi,βj≥0

( ∑
i∈I αi

(
c̃i −

∑
j:(i,j)∈E ẽij(E)

)
+
∑
j∈I βj

(
d̃j −

∑
i:(i,j)∈E

ẽij(E)

) )

=
∑

(i,j)∈E ẽij(E)− (1 + λ)

( ∑
i∈I

(∑
j:(i,j)∈E ẽij(E)− c̃i

)+

+
∑
j∈I

(∑
i:(i,j)∈E ẽij(E)− d̃j

)+
)
.

(9)
Now, in cases where ẽij(E) is allowed only between sta-

tion i and j with c̃i and d̃j are both large with high proba-
bility, we can ensure that the re-balancing moves will not be
redundant and hence ZE(r̃, ẽ) > 0 almost surely. This en-
sures that choice restriction on some structure E will do as
well as one without using volunteers. Thus crowd sourcing
using volunteers will add value to the system in this environ-
ment.

Upper Bound. At the same time, let Z1
E(r̃) denote

Z0
E(r̃, ẽ) when ẽ is replaced by∞, i.e., by removing the up-

perbound on xij in (5). This is the classical max-flow prob-
lem on the structure E . In this case, it is easy to see that

ZE(r̃, ẽ) ≤ (1 + λ)Z1
E(r̃)− λN(E)

However, because

Z1
E(r̃) ≤ min

(∑
i∈I

c̃i,
∑
j∈I

d̃j

)
,

increasing the density of the structure E by adding arcs may
not help increase Z1

E(r̃) as fast as increasing N(E). In that
case, using a dense structure may not perform as well as
using a sparse structure!

In the rest of the paper, we focus on the problem by de-
signing the right structure E to support the re-balancing op-
erations in the crowd-sourced system. In particular, we an-

alyze the impact of the structure E on the value E

[
Z1
E(r̃)

]
instead, and use this upperbound to guide us to the design of
a good structure for our problem.

Distributionally Robust Model
The main uncertainties stem from the time-varying net num-
ber of bikes in each station as well as the complicated inter-
action patterns among different stations. Hence we will use
the first two moments information on c̃ and d̃ to characterize
uncertainties and develop the moment model.

Recall that r̃ = (c̃, d̃), and

Z1
E(r̃) = max

xij

( ∑
(i,j)∈A0

xij

)
s.t.

∑
i∈I,(i,j)∈E

xij ≤ d̃j j ∈ I∑
j∈J ,(i,j)∈E

xij ≤ c̃i i ∈ I

xij ≥ 0 (i, j) ∈ E

(10)

The support of r̃ is non-negative, with c̃i = X+
i and d̃i =

X−i for some random variable Xi. This is a variant of the
random maximum flow problem on the structure E , with r̃
not necessarily independent. By introducing dual variables
y, z for the two sets of constraints in (10), the dual of Prob-
lem (10) is

Z1
E(r̃) = min

y,z

∑
j∈I

d̃jyj +
∑
i∈I

c̃izi

s.t. yj + zi ≥ 1 (i, j) ∈ E
z ≥ 0
y ≥ 0

(11)

When c̃ represents fixed capacity and d̃ represents random
demand in a supply chain system, the above problem has
been thoroughly analyzed in (Yan, Gao, and Teo 2018) using
a distributionally robust reformulation of the problem with
only the first two moments information. Moreover, when the
system is balanced, i.e. c̃i = µ = E[d̃j ], they show that
the distributionally robust model under a 2-chain has almost
the same expected value as the fully flexible system, con-
firming a well-known observation in the Process Flexibility
literature and the references therein for details). We extend
their technique to analyze (11), and show that similar obser-
vation holds even in a transshipment model when c̃ and d̃
may not be independent. Meanwhile, we would like to high-
light the key differences of the model used in our bike re-
balancing setting as follows: The model by (Yan, Gao, and
Teo 2018) solves a bipartite matching problem, with uncer-
tainty on only one side. We borrow this technique to solve
a variant of the transshipment problem, with uncertainty on
both sides. In doing so, several features of the transshipment
model can be incorporated to the basic approach to improve
the performance and obtain a better structure. We also em-
bed the feature that no node can be supply and demand node
at the same time in our moment model (16).

We discuss next how Model (11) can be reformulated as a
quadratic constrained problem based on the totally unimod-
ular (TU) property of the constraint matrix. Note that the
optimal dual solution is 0-1 in our model, so we can replace
yj + zi ≥ 1 by the following quadratic terms:

(1− yj)(1− zi) = 0 (i, j) ∈ E (12)
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We obtain an equivalent reformulation of (11) as follows:

Z1(r̃) = min
y,z,α

∑
j∈J

d̃jyj +
∑
i∈I

c̃izi

s.t. (1− yj)(1− zi) = 0 (i, j) ∈ E
y ∈ {0, 1}n , z ∈ {0, 1}n

(13)
Following (Yan, Gao, and Teo 2018), this can be written in
a more general quadratic program, with r̃ = (c̃, d̃) and x =
{xij , ∀i ∈ I, j ∈ I}:

Z(r̃) = min
x

r̃Tx

s.t. aTi x = bi, ∀i
(hT
i x + fi)(ĥ

T
j x + f̂j) = 0, ∀(i, j) ∈ H

xi ∈ {0, 1} , ∀i ∈ B
(14)

where B is the set of indices for the binary variables. H is
the subset associated with linking arcs in the network, i.e.,
H ⊆ E . We assume the dimension of decision vector is N ,
i.e. x ∈ RN , and the number of linear constraints in (14) is
M.

Assuming only the first-two moments information of r̃ are
available, i.e., finite first moment µr and finite second mo-
ment Σr, the problem of interest is shown as follows:

(P ) ZP = inf
r̃∼(µr,Σr)

E
[
Z [̃r]

]
(15)

Using the lifted variables p, X , and Y as the decision vari-
ables, we obtained the following completely positive pro-
gram to (15):

(C) ZC = min I • Y
s.t. aTi p = bi, ∀i = 1, ...,M

aTi Xai = b2i , ∀i = 1, ...,M
Xii = pi, ∀i ∈ B

hT
i Xĥj + (fiĥ

T
j + f̂jh

T
i )p + fif̂j = 0, ∀(i, j) ∈ H 1 µT

r pT

µr Σr Y T

p Y X

 �cp 0

(16)
From the construction of this completely positive program
(16), which is named the moment model in this paper, it is
clear that ZC ≥ ZP since it is a relaxation of problem (15).
Proposition 1 Under appropriate technical conditions, the
completely positive program ZC and the worst-case model
ZP are equivalent, i.e. ZC = ZP .

We used the above conic program to design sparse struc-
ture for the transshipment problem. The main idea can be
briefly demonstrated as follows: Starting from a full graph
EF with all possible arcs, the heuristic incrementally deletes
the arc with the smallest absolute value in the optimal dual
solution. At iteration k, the network is denoted as Ek. The
dual-variable-based heuristic is detailed in (Yan, Gao, and
Teo 2018) as well as the technical appendix. As our model
fits into this general framework, we use the same deletion
heuristic to construct our network.

Deploying Volunteers via Sparse Network
Note that the real time re-positioning of empty bikes is a
notoriously difficult problem. Earlier work has focused on
state-independent control policy using fluid approximation
models (Banerjee, Freund, and Lykouris 2016; Braverman

et al. 2019). However, this method requires stringent as-
sumptions on the dynamics of the stochastic systems and
produces control policies that are static and could not fully
capitalize on the dynamic real time information available in
the system. Integrating the two streams of arrival processes
(one for riders, another for volunteers) appear to be techni-
cally challenging using these methods. We use here instead
a state-dependent control policy to re-position bikes to make
them available to riders, and use the sparse network to con-
centrate the flows on “relevant” OD pairs.

The deployment policy we proposed is motivated by the
practice in Citi Bike, through the identification of pick-up
and drop-off stations. However, we allow only moves along
arcs in the sparse structure identified, to concentrate the
re-balancing moves on essential arcs only. We use a tar-
get inventory level at each station, and use the (random)
arrival and departure at each station, over the designated
time interval, to construct our structure. We envisage that
a structure will be used for each of the time intervals -
[0, T ], [T, 2T ], [2T, 3T ] . . . til the end of the day. For sim-
plicity, we assume that the demand is stationary across pe-
riods, and hence the structure remains unchanged across pe-
riods. For dynamic problem, the structure of each time seg-
ment can vary based on the change in the arrival and depar-
ture processes.

Basic Setting
We consider a bike sharing system with M stations
and N bikes. The set of stations is denoted by S =
{s1, s2, · · · , sM}. We distinguish the bike flow by regular
riders (i.e., users) and volunteers. At t = 0, all stations
started with certain number of (empty) bikes. The riders ar-
rive to each station i following a Poisson process with ex-
ogenous rate λi. For a rider arriving at station i, she will
pick up an empty bike and ride to station j with probability
Pij . If no empty bike is available, the rider will leave the
system and the system experiences a lost sale. Note that we
allow Pii > 0 to incorporate the trips starting and ending
at the same station i. We assume that travel times from sta-
tion i to j are i.i.d. exponential random variables with mean
1/µij . When the rider finishes her trip at station j, the bike is
parked and becomes available to the next rider. The goal of
the bike sharing platform is to re-position the empty bikes
properly across all the stations to minimize lost sales (i.e.,
maximize number of usage or demand fulfilled).

Formally, let τ denote the simulation horizon (i.e., sim-
ulation for day d ∈ D = {1, 2, · · · , τ} ), and the data in
each day is aggregated over κ disjoint periods (i.e., period
t′ ∈ T = {1, 2, · · · , κ}). It is assumed all time periods are
the aggregation of time t within period t′. The number of
riders arriving at station i in period t′ on day d is denoted by
Dd
i (t′).

• The “Target Demand Level” in station i at period t′ is
denoted by

TDi(t
′) := D̄i(t

′), where D̄i(t
′) =

τ∑
d=1

Dd
i (t′)/τ. (17)

We suppress the dependence of TDi on the period t′ if
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demand is homogeneous across time, but we allow them
to be heterogeneous across stations.

• We monitor the number of bikes in each station in real
time (denoted by X̃i(t)), and the target demand level
TDi(t) at time t is simply TDi(t

′) if t is in the time pe-
riod t′. In this way, we define the real-time “net number
of bikes” Ñi(t) as follows:

Ñi(t) = X̃i(t)− TDi(t). (18)

where TDi(t) = TDi(t
′), ∀t in t′, t′ ∈ T =

{1, 2, . . . , κ}.
Remark. When a volunteer arrives at time t into the system,
station i is a pick-up station if Ñi(t) > 0, a drop-off station
if Ñi(t) < 0, a neutral station if Ñi(t) = 0.

Volunteer Deployment
We assume that the volunteers arrive into each station i fol-
lowing a Poisson process with rate λ(v)i . For simplicity, we
assume λ(v)1 = λ

(v)
2 = · · · = λ

(v)
M = λ(v) in our simula-

tion. Denote volunteer arrival time in the ascending order as
v1 ≤ v2 ≤ v3 ≤ · · · ≤ vL, where L is the index of last
volunteer. Let σ(vl) denote the station in which the lth vol-
unteer shows up at time vl. Each time a volunteer arrives, if
the station has surplus bikes (i.e., a pick-up station), the plat-
form will next detect a set of drop-off stations based on the
current distribution of empty bikes (excluding those in tran-
sit). Our online volunteer deployment scheme, elaborated in
Algorithm 1, will further restrict the drop-off options based
on the network structure E constructed earlier, and reward
the volunteers only for moves sanctioned by the algorithm.
We assume the trip duration for the volunteers are identi-
cal to that of the riders. Let S(r)

t denote the set of drop-off
stations available for bike repositioning at time t and O de-
note the attractiveness of the outside option4. The volunteer
will move an empty bike to a drop-off station with proba-
bility 1

|S(r)
t |+O

when S(r)
t 6= ∅. The number of “effective”

volunteers to each station will depend on the choice sets of
available drop-off stations dynamically offered by the algo-
rithm.

Performance Measure
At time t, let Eij(t) denote the number of empty bikes en
route from station i to station j (j 6= i) (i.e., re-balancing
moves by volunteers), and letEii(t) be the number of empty
bikes located at station i. Let E(t) be the M × M ma-
trices whose (i, j)th entries are Eij(t). We use the total
fulfilled demand P1 and the total re-balancing moves P2

as the performance measures for this study. Formally, let
V ′ = {v′1, v′2, v′3, · · · , v′L′} denote the set of arrival times
for the riders, with v′1 ≤ v′2 ≤ v′3 ≤ · · · ≤ v′L′ , where
L′ denotes the index for last rider. Let σ(v′l) denote the sta-
tion in which the lth rider shows up at time v′l, so we have

4Note that the random behavior of the volunteers could be mod-
eled more accurately by using Multinomial Logit (MNL) choice
framework, based on the rewards and other important features.

Algorithm 1: State-dependent Empty Bike Re-balancing Policy
Step 1. Set the bike re-positioning network to be a

predetermined graph, i.e. E = EF or E = ER∗ ,
where ER∗ denotes the optimal sparse structure
obtained by our method. Set l = 1.

Step 2. For the lth volunteer showing up at station
σ(vl) ∈ S, check the station status Ñσ(vl)
(i.e., the net number of bikes accounting for
the target number of bikes for this station).
Stop if no volunteer comes.

Step 3. If Ñσ(vl)(vl) ≤ 0, station σ(vl) is a drop-off station
or neutral station, set S(r)

vl = ∅, l = l + 1, go to Step 2.
If Ñσ(vl)(vl) > 0, station σ(vl) is a pick-up station, set
S
(r)
vl = {i|Ñi(vl) < 0, i ∈ S \ {σ(vl)}, (σ(vl), i) ∈ E},

and go to Step 4.
Step 4. If S(r)

vl = ∅, set l = l + 1, go to Step 2. If S(r)
vl 6= ∅,

we assume the lth volunteer will randomly pick one
station k ∈ S(r)

vl to re-position the empty bike
with probability 1

|S(r)
vl
|+O

, set l = l + 1, then

go to Step 2.

σ(v′l) ∈ S. We define:

P1 ,
L′∑
l=1

I{Eσ(v′l)σ(v′l)(v
′
l) > 0} (19)

Here (19) reflects the availability of empty bikes for demand
fulfillment when a rider arrives. Similarly, by monitoring the
arrival process of the volunteers, we have

P2 ,
L∑
l=1

I{S(r)
vl
6= ∅, Ñσ(vl)(vl) ≥ 0} (20)

Here (20) counts the number of re-balancing moves made by
the volunteers.

Case Study: Boston Hubway System
In the rest of the paper, we evaluate the performance of our
technique for the bike sharing system in Boston. The data
for the Boston Hubway system spans around three months
from May 1, 2012 to July 9, 2012, with approximately 60
base stations in operations. First, we use the 50-weekday us-
age data from the Boston Hubway System to estimate the
parameters in our model, based on the morning commutes
(i.e., 7:00-13:00) (c.f., technical appendix). Then we used
these parameters to generate simulation data including rider
trip commuting pattern, over a 6-hour time window (i.e.,
36 ten-minute time slots/36 periods). We use 10 minutes
to denote one period. We also assume N = 300 bikes and
N = 600 bikes in our simulation. We first run the simulation
when no volunteer is available over 50 days and 100 days re-
spectively, after which we use the 50-day output as training
data (i.e., in-sample) to design the sparse network, and test
our online re-balancing algorithm over another new 100-day
simulation.

Hubway Network Design: Offline Problem
In the technical appendix, we describe how we prepare the
input to our distributionally robust model, based on the train-
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EF (3540) ER(720) ER(480) ER(240) ER(120)

113.9737 113.4153 112.9123 111.8150 109.4021

Table 1: Worst-case Expected Maximum Flow under Differ-
ent Structures Using Network Design Model

In-Sample Performance Out-Sample Performance

E Gap E Gap

130.46 (120-arc) 2.71 % 126.36 (120-arc) 4.45%

132.38 (240-arc) 1.28% 129.50 (240-arc) 2.08%

133.10 (480-arc) 0.75% 130.53 (480-arc) 1.30%

133.54 (720-arc) 0.42% 131.15 (720-arc) 0.83%

134.10 (3540-arc) - 132.25 (3540-arc) -

Table 2: Simulation Performance for Hubway BSS

ing data available. In the rest of this section, we apply the
dual-variable-based heuristic to construct different network
structure. Note that for larger problems, we can divide the
city into zones. We solve semidefinite programming with
moderate size in each iteration of this heuristic using the
state-of-the-art SDPNAL+ solver developed by (Yang, Sun,
and Toh 2015). We evaluate the performance of the network
using simulation results based on the training and testing
data set, to demonstrate that the sparse network structure ob-
tained using our methodology performs well in practice.

We obtained four specific sparse structures (i.e., 120-arc,
240-arc, 480-arc, and 720-arc) to demonstrate how dramatic
change in performance might occur. Table 1 compares the
worst-case expected maximum flow value under the fully
flexible structure EF (3540) and these sparse structures. The
performance of the sparse structure with 480 arcs is already
very close to the performance under the fully flexible struc-
ture (gap of only 0.93%). To further evaluate the perfor-
mance of the sparse structures, we compare in Table 2 the
maximum flow for fully and sparse structure by solving the
linear program (11) for each structure. Table 2 shows the
performance of the in-sample and out-sample expected max-
imum flow, in which the gap is defined as |E

F−ER|
EF ∗ 100%.

The results suggest that the sparse structure with 480 arcs
can perform almost as well as the fully flexible structure.

Online Deployment in Hubway
The previous section evaluates the performance of the struc-
ture in the offline model. In what follows, we demonstrate
that these structures make a difference in the performance
of the online deployment algorithm, using the 100-day test-
ing set in the online setting. Without volunteer participation
when N = 600, we observe that the usage of volunteers
will not increase the demand fulfilled by too much in this
case, since there is already very few lost sales. However,
when we have only N = 300 bikes in the system, it turns
out that the volunteer-based bike re-balancing scheme has a

(a) Volunteer Poisson Arrival Parameter c = 0.05

(b) Volunteer Poisson Arrival Parameter c = 0.1

Figure 1: Performance Comparison between Sparsity Solu-
tion and Fully Solution in Hubway BSS (480arc)

huge impact. Note that there were around 580 requests for
bikes each day, and without volunteers, the 300 bikes can
support around 495 rides while the 600 bikes can support
around 570 rides. In the following, we will focus on the 300-
bike system and reveal how volunteer participation improves
the rider demand fulfillment.

Using a similar setup, we model the arrival of volunteers
to the system using a separate Poisson process. We set the
homogeneous volunteer arrival rate for each station to be
c × max{λ(v)i , ∀i ∈ S}, where c is 0.05 (around 175 vol-
unteers) or 0.1 (around 349 volunteers). The outside option
O varies from 0 to 10 with step size 1. The performance is
as shown in Fig 1. As observed, when no outside option ex-
ists, the on-line deployment algorithm using the sparse sys-
tem is able to reduce re-balancing moves with a drastic drop
against fully flexible system for essentially nearly the same
level of demand fulfilled. The same conclusion holds even
when the outside option O increases from 0 to 10.

Concluding Remark
Motivated by the Bike Angels program in New York’s Citi
Bikes, we study the crowd-sourced bike re-balancing prob-
lem. We solved this problem using a recent method proposed
by (Yan, Gao, and Teo 2018) to construct the backbone for
the bike re-balancing problem. We use the sparse network to
guide the re-balancing move of the volunteers. Our numeri-
cal studies show that this can be a very effective and low cost
solution for the re-balancing operation in these systems.
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