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Abstract
We propose an approach to learn an extensional represen-
tation of a discrete deterministic planning domain from ob-
servations in a continuous space navigated by the agent ac-
tions. This is achieved through the use of a perception func-
tion providing the likelihood of a real-value observation be-
ing in a given state of the planning domain after executing
an action. The agent learns an extensional representation of
the domain (the set of states, the transitions from states to
states caused by actions) and the perception function on-line,
while it acts for accomplishing its task. In order to provide
a practical approach that can scale up to large state spaces, a
“draft” intensional (PDDL-based) model of the planning do-
main is used to guide the exploration of the environment and
learn the states and state transitions. The proposed approach
uses a novel algorithm to (i) construct the extensional repre-
sentation of the domain by interleaving symbolic planning in
the PDDL intensional representation and search in the state-
transition graph of the extensional representation; (ii) incre-
mentally refine the intensional representation taking into ac-
count information about the actions that the agent cannot exe-
cute. An experimental analysis shows that the novel approach
can scale up to large state spaces, thus overcoming the limits
in scalability of current approaches.

Introduction
Symbolic planning techniques are based on abstract and
most often discrete representations of the world, where the
agents perform their actions, usually called planning do-
mains. A discrete planning domain is a finite state transition
system, i.e., a finite set of states, a finite set of actions, and a
transition relation representing how actions lead from states
to new states (Ghallab, Nau, and Traverso 2004, 2016). A
planning domain can be specified either “extensionally”, by
explicitly describing each state and each transition (e.g., by a
transition matrix), or ”intensionally” by means of a planning
language, e.g., STRIPS (Fikes and Nilsson 1971) and PDDL
(McDermott et al. 1998), whose semantics is given in terms
of transition systems. In both cases, the specification of plan-
ning domains is a challenging task. A good planning domain
should abstract away the details of the world state which are
irrelevant for the achievement of the agents’ goals, keeping
only the relevant details.
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In many real applications, it may happen that agents do
not have a good planning domain in advance. For instance, a
robot moving packages in a building could have a model of
the map of the building with a number of flaws or relevant
missing details. In these cases, agents should be able to learn
and update their models (planning domains) while acting in
the world and observing the consequences of their actions.

This is the main purpose of the PAL algorithm (Acting
and Learning Planning) proposed in (Serafini and Traverso
2019), which learns, incrementally and on-line, a discrete
deterministic planning domain from real-value observations
of the world. Each domain state is linked to observations by
the so called perception function, which provides the likeli-
hood of the observations when the agent is at that specific
state. At each iteration, PAL updates the set of states of the
extensional representation of a planning domain, possibly
by introducing new states for unexpected observations, and
it adjusts the transition relation and the perception function.

In order to overcome the scalability limitations of PAL,
the agent is provided with an initial “draft” planning domain
specified in PDDL (McDermott et al. 1998). This domain is
not required to be neither complete nor correct. This plan-
ning domain is used to guide the agent in the discovery of
the world. We propose a new algorithm, that learns the ex-
tensional planning domain and incrementally updates and
corrects the initial PDDL domain with additional informa-
tion collected during the execution of actions.

In the proposed approach, the presence of both the exten-
sional and the PDDL planning domain is exploited to effi-
ciently achieve the agent’s goals through two alternative and
complementary planning algorithms: (i) a shortest-path al-
gorithm for planning in the space of the states of the exten-
sional model (i.e. the states already discovered by the agent),
and (ii) a PDDL planning algorithm for generating plans that
allows to discover new states, if the goal is not achievable in
the extensional model.

Experimental analysis shows that the proposed method:

• scales up to planning domains with large state spaces;

• significantly reduces the flaws in the draft PDDL plan-
ning domain, which asymptotically converges to a correct
model;

• by exploiting the combined extensional and PDDL mod-
els, it allows the agent to efficiently accomplish its tasks.
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In the reminder of the paper, first we formalize the inves-
tigated problem, then we propose the new method to address
it, provide an experimental evaluation of it, discuss related
work, and finally give conclusions.

The Plan-Act-Learn Problem
A PAL-problem instance consists in learning an abstract
model of the environment that can be exploited by an agent
to achieve a set of goals. In the PAL problem, agents per-
ceive the environment through a series of perceptions, where
a perception is a vector x = 〈x1, x2, ..., xn〉 of continuous
real value variables, called perception variables. We define
the environment where agents operate as a non-deterministic
infinite-state transition system, called perceptible environ-
ment.

Definition 1 (Perceptible environment) A perceptible en-
vironment E is a tuple (Q,A, τ), where Q ⊆ Rn is a (possi-
bly infinite) set of perceptions,A is a finite set of actions, and
τ : Q×A→ 2Q is a non-deterministic transition function.

Function τ returns the set of possible perceptions after the
execution of an action a ∈ A in a state q ∈ Q (and before
executing other successive actions). We adopt the notation
τ(a,X) =

⋃
x∈X τ(a,x) for X ⊆ Q.

Specifying the components of a perceptible environment
is typically extremely complicated, and it cannot be done
by hand. In the field of planning, a common assumption is
that agents act at an abstract level. For instance, the behav-
ior of a robot moving packages among rooms of a building
can be conveniently determined by a planning domain where
each state corresponds to the fact that the robot and pack-
ages are at a certain room, and each transition correspond to
an abstract action, such as moving the robot among rooms,
picking up packages, and putting down them. We define the
search space for planning as a deterministic finite-state tran-
sition system.

Definition 2 (Extensional model) An extensional model
M of an environment E = (Q,A, τ) is a tuple (S,A, γ)
where S is a finite set of (abstract) states, and γ : S×A→ S
is a deterministic transition function.

Given a state s ∈ S and an action a ∈ A, the function γ
outputs the resulting state reached after the execution of a in
s. The action space A of the extensional model is the same
as of the perceptible environment, which consists of the set
of actions agents can perform. The relation between abstract
states and perceptions on the environment is represented by
a statistical model. The following definition states this rela-
tion.

Definition 3 (Perception function) Given an extensional
model M = (S,A, γ) of an environment (Q,A, τ), a per-
ception function ρ forM is a function ρ : Q×S → R+ such
that for every s ∈ S, ρ(x, s) = p(x | s), where p(x | s) is a
probability density function on Q.

The extensional model M and the perception function ρ
shares the same set of states S. Given a perception func-
tion ρ and a perception x ∈ Q, we define the function
ρ∗ : Q → S as ρ∗(x) = argmaxs∈S ρ(x, s), and similarly
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Figure 1: PAL architecture. The square boxes represent mod-
ules; the circle ones represent data.

ρ∗(X) = {ρ∗(x) | x ∈ X}. Intuitively, ρ∗ is the function
that discretizes the infinite set of states Q into the finite set
of states S.
Definition 4 (Plan) A plan in an extensional model M =
(S,A, γ) from state s ∈ S to state s′ ∈ S is a se-
quence (a1, . . . , am) of m actions in A such that s′ =
γ(am, γ(am−1, . . . , γ(a1, s))).

A perception goal is a perception x ∈ Q that, when per-
ceived by the agent, makes it consider the assigned task ac-
complished.
Definition 5 (PAL-problem) Given an environment E , the
PAL-problem consists in learning an extensional modelM
and a perception function ρ from E , such that, for every per-
ception x0 ∈ Q and (non-empty) perception goal set Xg ⊆
Q,M has a plan (a1, . . . , am) from ρ?(x0) to some state in
ρ?(Xg) and τ(am, τ(am−1, . . . , τ (a1,x0))) ∩Xg 6= ∅.

Note that the agent does not know the environment E . The
only knowledge about the environment that it has is the one
observed through the perception variables when executing
actions, as the agent can only perceive the environment and
observe the action effects after their execution.

Solving the PAL Problem
We introduce an approach to solving the PAL problem that
interleaves planning, acting, and learning using a limited
amount of prior knowledge for the agent. Our approach
is named as the problem it solves, Plan-Act-Learn (PAL).
To learn the extensional model, the agent can apply differ-
ent strategies: a random exploration strategy is not feasible,
since, as shown in (Serafini and Traverso 2019), it does not
scale to large state spaces. Alternatively, the agent can use
some prior belief about the environment to decide a plan
that will lead to its current goal. Following this idea, we sup-
pose that such a belief is expressed through an exploration
planning domain De that is specified by a planning lan-
guage such as PDDL (McDermott et al. 1998). Intuitively,
the agent will decide the next action to perform by comput-
ing a plan that reaches a state among those in an input set of
goal states Ge from the PDDL state se representing the be-
lief of the agent about the current status of the environment
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(the e index indicates that these are the initial state and set
of goal states of the exploration model). We assume that the
set of action names of the exploration (PDDL) model coin-
cides with the actions executable by the agent in the percep-
tible environment. Note that we make no assumption about
the correctness of De; we only need that the transformation
used to derive se from the current status of the environment
is such that the inverse transformation applied to a goal state
among those in Ge derives a status of the environment cor-
responding to a perception in Xg .

The architecture of the proposed solution is shown in Fig-
ure 1. The top box of the picture shows the architecture
of the PAL agent. It consists of three components: (i) the
learner module, (ii) the modeling component, formed by
three models, and (iii) the planning component using two
kinds of planners. The learner updates the perception model
using the perceptions from the environment, incrementally
constructs the extensional model and revises the exploration
model. We call the perception function, together with the
history of sensed perceptions, the perception model. The ex-
ploration model is refined when a failure occurs in the at-
tempt of executing an action. The extensional model and the
exploration one are respectively taken as input by the ex-
tensional and exploration planner. Firstly, a plan is searched
in the extensional model. The search of such a plan may
fail because the transition function γ known by the agent at
planning time could be incomplete. If no plan is found, the
goal-driven exploration strategy is applied by means of an
exploration planner. The PAL agent interacts with a simula-
tor (bottom box in the picture), the purpose of which is to
simulate the perceptible environment E where the agent op-
erates, i.e., it simulates the execution of a given action and
the sensing of the environment immediately after the action
execution. We assume that the simulator knows the compre-
hensive definition of the transition function τ of E .

The pseudocode of PAL is shown in Algorithm 1. The al-
gorithm takes as input: a perception goal set Xg , a thresh-
old t ∈ R, an initial perception function ρinit, an initial
extensional modelMinit, and an initial exploration model.
The input initial extensional modelMinit is composed by a
(possibly empty) set of states Sinit, a (possibly empty) tran-
sition function γinit, and a set of actions A that agents can
perform; the input initial exploration model is composed by
De

init, s
e, and Ge. Initially, the agent perceives the environ-

ment by sensing perception x (step 3). Afterwards, it verifies
whether there exists at least a state among those in Sinit such
that the likelihood of sensing x being in this state is greater
than a threshold. If it does exist the current state s is set
to ρ∗(x), otherwise a new state is created (steps 5–11). The
perception history is initialized with the perception x and the
current state s (step 12). If the perception x belongs to the set
Xg , then s is a goal state and the algorithm returns success
(steps 14–16). Otherwise, if the plan π is empty, the set of
goal states Sg is defined as the states in S which correspond
to a goal perception xg ∈ Xg (steps 17–18). A state s corre-
sponds to a goal perception xg if ρ(xg, s) ≥ t. If the set Sg

is not empty, the extensional planner is exploited to search a
plan π from s to a state in Sg (steps 19–21). The extensional
planner runs the Dijkstra algorithm on the graph induced by

Algorithm 1: PAL algorithm.
1 Procedure PAL(Xg, t, ρinit ,Minit ,De

init , s
e, Ge)

2 ρ, S, γ,De, π ← ρinit, Sinit, γinit,De
init, 〈〉;

3 x← SENSE();
4 S′ ← {s ∈ S | ρ(x, s) ≥ t};
5 if S′ = ∅ then
6 s← CREATESTATE(x);
7 S ← S ∪ {s};
8 end
9 else

10 s← ρ?(x);
11 end
12 P ← 〈x, s〉; /* The initial history of perceptions*/
13 while the CPU time limit is not exceeded do
14 if x ∈ Xg then
15 return Success; /* s is a goal state */
16 end
17 if π = 〈〉 then
18 Sg ← {s ∈ S | ρ(xg, s) ≥ t and xg ∈ Xg};
19 if Sg 6= ∅ then
20 π ← EXTENSIONALPLAN-

NER(γ, s, Sg);
21 end
22 if π = 〈〉 then
23 /* EXTENSIONALPLANNER has failed */
24 π ← EXPLORATIONPLAN-

NER(De, se, Ge);
25 end
26 end
27 if π 6=〈〉 then
28 a←HEAD(π);
29 π ←TAIL(π);
30 end
31 else
32 Select an action a ∈ A randomly;
33 end
34 EXECUTE(a);
35 x←SENSE();
36 S′ ← {s ∈ S | ρ(x, s) ≥ t};
37 if S′ = ∅ then
38 s′ ← CREATESTATE(x);
39 S ← S ∪ {s′};
40 γ ← γ ∪ {(s, a, s′)};
41 se ←UPDATEPDDLSTATE(De, se, a);
42 end
43 else
44 s′ ← ρ?(x);
45 if s′ = s then /* Execution failure */
46 D ←UPDATEPDDLDOMAIN(De, se, a);
47 π ← 〈〉;
48 end
49 else
50 se ←UPDATEPDDLSTATE(De, se, a);
51 end
52 end
53 s← s′;
54 P ←APPEND(P, 〈x, s〉); /* Update perception

history */
55 ρ←UPDATEPERCEPTIONFUNC(ρ, P );
56 end
57 return Failure;
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the state transition function γ, to find the shortest-path from
the current state s to a goal state in Sg defined in line 18.

If the extensional planner does not find a plan, the agent
searches a plan using the exploration model, i.e., it runs a
PDDL planner to achieve goalsGe from se, using the PDDL
domain De (steps 22–25). Note that, since the exploration
model is an approximation of the agent behavior in the real
world, it could happen that also this plan does not exist or,
if it does exist, an action in the plan is not executable in the
real world. If the plan does not exist, an action in A is ran-
domly selected (step 32). Otherwise, the first action of the
plan is selected (steps 28-29) and executed (step 34). After
the execution of the action (and before executing the next
one), the agent perceives the current environment state (step
35). Notice that different sensing can correspond to the same
abstract state. This can happen for several reasons. For in-
stance two very closed GPS perceptions (of a robot being in
the same room) correspond to the same abstract state. Fur-
thermore, noisy perceptions done by the agent while being
idle should be mapped in a unique abstract state.

Given the last executed action a and the last perception
x, the learner updates the perception model, the extensional
model and the exploration model. Specifically, if the prob-
ability of observing x from each state in S is lower than
threshold t, then the agent creates a new state s′, adds s′
to S, adds transition 〈s, a, s′〉 to γ and updates the PDDL
state se (steps 37–42). The state se is updated according to
De, i.e., adding the positive effects and deleting the nega-
tive effects of action a. Otherwise, the agent selects the state
s′ that maximizes the likelihood of observing x as the next
state (step 44). If the states in S that maximize the likelihood
of observing x are more than one, one of them is randomly
selected. If s = s′, i.e., the execution of action a fails, then
the agent makes plan π empty and updates the PDDL do-
main De in such a way that action a cannot be executed
in state se (steps 45–48). In PDDL, we do this by adding
auxiliary predicates and action preconditions that constraint
the grounding of an operator to generate only actions that
did not fail. If the action has been successfully executed, the
PDDL state is updated by applying the action effects (step
50). Finally, the current state s is set to the next state s′, the
pair (x, s) is added to the perception history P , and the per-
ception function ρ is updated according to P (steps 53–55).
The loop 13–56 is repeated until the CPU-time limit is ex-
ceeded. If the loop terminates without having reached a goal
state, the algorithm returns failure (step 57).

Learning the Perception Function
The perception function ρ allows the agent to map a value
x = (x1, . . . , xn) of n perception variables to the state
s∗ according to the maximum likelihood criteria s∗ =
argmaxsi∈S ρ(si,x). When the number of perception vari-
ables and number of states in the extensional model is
high, modelling ρ(si,x) with an n-dimensional distribution
p(x | s), as proposed by (Serafini and Traverso 2019)), is ex-
tremely expensive from the computational point of view and
results infeasible. A practical simplifying hypothesis can be
obtained by assuming that ρ factorizes in n perception func-

tions, one for each perception variable. This means that

ρ(si,x) =
n∏

j=1

ρj(si, xj)

where each ρj(si, x) is an unidimensional probability den-
sity function. The additional advantage of this factorization
is that it allows to associate different thresholds to each per-
ception variable for the same state, instead of a single thresh-
old. We therefore replace the single threshold t in Algorithm
PAL with a vector t = (t1, . . . , tn) where ti ∈ R+ is the
threshold associated to the i-th perception variable. The set
of abstract states on which we have to maximize the likeli-
hood in order to find the next state is thereby defined as

S′ = {si ∈ S | ρ(si,x) ≥ t}

where condition ρ(si,x) ≥ t stands for
∧n

j=1 ρj(si, xj) ≥
tj (steps 4, 18, 36 of Algorithm PAL). A concrete, but still
very general, model for a single variable perception function
which we decided to adopt is the normal distribution. We
therefore suppose that, for every state si and perception vari-
able j, ρj(si, xj) is the normal distributionN (xj | µij , σij)
with mean µij and variance σij .

The parameters µij and σij can be learned online (step
55 of Algorithm PAL). Given a sequence of m observations
(x(k))mk=1 associated to the same state si, the mean µij of
the j-th perception variable is updated as follows:

µij =
2

m(m+ 1)

m−1∑
k=0

(m− k)x(m−k)j

For each perception variable, its mean in the state si is set to
the normalized weighted sum of all perception observations
associated to the state si. The first observation x(1) is the
one associated to the state when it is created; x(m) is the
last perception associated to the state by procedure PAL. The
oldest the observation, the less weight is given. We assume
that the standard deviation σij keeps unchanged since given
by the sensors, although in principle our approach could can
learn it from the data.

The choice of the sequence t is important since it strongly
affects the agent capability to correctly build the extensional
model. The higher the thresholds the more states are cre-
ated. With a very low threshold redundant states can be in-
troduced, i.e., states that corresponds to very similar percep-
tions; from these states agents have to take the same decision
to reach a goal state, and hence they should be clustered
in the same state. On the other hand, if the thresholds are
too low, then more than one abstract state is collapsed in a
unique extensional state. A reasonable setting for ti can be
obtained by defining ti = N (2σnoise,i|0, σnoise,i), where
σnoise,i is the maximum measurement noise of the sensor
associated to the i-th perception variable.

Experimental Analysis
In our experimental analysis we evaluate the effectiveness
of the proposed approach and, in particular, the usefulness
of using the exploration planner for guiding the search.
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As exploration planner we used the well-known planner
FastDownward (Helmert 2006). All experimental tests were
conducted on an Intel Xeon Skylake 2.3 GHz with 8 cores
and 128 GB of RAM. The time limit for each run of PAL
was 60 minutes, after which termination was forced.

Benchmarks and simulators Our benchmarks derive
from three well-known planning domains: Logistics, Grid,
and Rovers. We assume that these domains are approxima-
tions of the world where agents act. For instance, Logistics
concerns moving packages among cities by airplanes and
trucks; in the real world only a number of air routes are per-
mitted, while in the standard PDDL Logistics domain air-
planes can move between any pair of airports. This simplifi-
cation could be adopted because, e.g., the exact network of
the air routes is unknown to the domain model engineer.

For each of the considered domains we developed a sim-
ulator that simulates the physics of the domain with some
discrepancies w.r.t. the available PDDL model. Differently
from the Logistics domain model, a number of air and road
routes are forbidden in the simulator. Specifically, all the air-
ports but one are partitioned into two sets, each airplane can
visit airports in only one of the two sets, plus a special air-
port that is not in either set. Similarly, all the locations within
each city are divided into two overlapping sets, each truck
can visit locations in only one of the two sets. We assume
that GPS trackers are installed on board of both trucks and
airplanes, RFID readers are installed on board of trucks as
well as in storage areas, and that there are RFID tags stuck
on packages. The simulation of an action of the Logistics
domain outputs a perception consisting of readings made by
GPS trackers and RFID readers.

Domain Grid concerns moving a robot among a grid
of rooms, some of which are closed by doors that can be
opened by keys located in different rooms. A robot can move
from room x to room y only if the two rooms are adjacent
in the grid. Differently from the (standard PDDL) Grid do-
main, in the simulator x and y need to be connected in order
for the robot to move between the two adjacent rooms, and
only 3 over 4 adjacent rooms are connected. We assume that
a GPS tracker and a RFID reader are installed on board of
the robot, keys have GPS trackers and RFID tags, and there
are sensors mounted on doors which detect whether doors
are open or closed. The simulation of an action of the Grid
domain outputs a perception consisting of readings made by
GPS trackers, RFID readers, and door sensors.

Domain Rovers concerns moving rovers on the surface of

Domain S A PV LS

Logistics [e+21, e+219] [650, 151400] [269, 18152] [856, 4864]
Grid [e+07, e+35] [726, 26135] [47, 147] [204, 1983]
Rovers [e+10, e+68] [362, 33732] [165, 3961] [114, 1286]

Table 1: Minimum and maximum number of domain states
(1st column), actions (2nd column), perception variables
(3rd column), and number of states learned by PAL with the
CONTINUE setting (4th column) over the instances of our
benchmark domains solved by PAL.

a planet, taking images, collecting samples, and communi-
cating images back to a lander. A rover at a waypoint can
take an image of an objective only if the objective is visi-
ble from the waypoint. Similarly, a rover at a waypoint can
communicate back data to the lander only if the lander is
visible from the waypoint. Differently from the PDDL do-
main model, the simulator does not allow to take image at
a half of the waypoints from which an objectives is visible,
and it does not allow to communicate back data to the lander
at a half of the waypoints from which the lander is visible.
We assume that rovers have GPS trackers on board, and that
there are sensors which output real numbers on the basis of
the truth values of facts of the domain. The simulation of an
action of domain Rovers outputs a perception consisting of
readings made by GPS trackers and sensors.

We generated and tested the following PAL problems: 37
problems derived from the largest instances of Logistics
used in the first two International Planning Competitions
(IPCs) (Bacchus 2001; McDermott 2000); the 5 problems
derived from the instances of Grid used in the first IPC
(McDermott 2000) plus 30 problems derived from randomly
generated instances; and 40 problems derived from the in-
stances of Rovers used in the third IPC (Fox and Long
2011). The initial and goal perceptions of the PAL problems
were derived from the initial states and sets of goals of the
relative IPC problems.

Experimental results The first experiment we conducted
is running PAL with the IPC version of the planning domain
for the input exploration model, and empty models for the
input extensional and perception models. Algorithm 1 up-
dates the exploration model when the execution of an action
a in a state fails. For simplicity, in the current implementa-
tion of the (automatic) revision of the exploration model, if
the execution of an action fails in a state, the model is mod-
ified in a way that such an action is never executable. Even
if the physics of the world encoded in the exploration model
and in the simulator have discrepancies (as previously de-
scribed), PAL using FastDownward can solve 30 over 37
instances of Logistics, and all the instances of Grid and
Rovers. Table 1 shows that PAL using the exploration model
is able to solve quite large problems.

Then, we tested PAL with non-empty input extensional
and perception models. For each PAL problem, we repeat-
edly ran PAL with two different settings. In the first set-
tings, PAL is run with the same initial and goal perceptions
as those of the PAL problem. We call each of these run an
episode. In the second setting, for each PAL problem we
constructed a set Xg of goal perceptions derived from ran-
domly generated sets of PDDL goals. For the first episode,
PAL is run with the same initial and goal perceptions as
those of the PAL problem; for each other episode, PAL is
run with the last perception sensed in the previous episode
as initial perception and a perception among those in Xg

as goal perception. Essentially, for this second setting PAL
continues to plan for incoming goals. In the following, the
first and second settings are called REPEAT and CONTINUE,
respectively. We considered ten episodes and two versions
of PAL. For both versions the input knowledge is the same
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Figure 2: Average number of action-execution failures of PAL-NoUpdateEM and PAL-UpdateEM with settings REPEAT and
CONTINUE for 10 episodes of domains Logistics, Grid, and Rovers.

Figure 3: Average CPU-time of PAL using the REPEAT setting with/without the exploration model (EM) for up to 10 episodes
of domains Logistics, Grid, and Rovers.

Figure 4: Average CPU-time for planning, determining the next search state, and total time required by PAL with the CONTINUE
setting for each episode among 10 episodes of domains Logistics, Grid, and Rovers.

but the exploration models are different. For every episode
except the first one, the extensional and perception models
are those derived at the end of the previous episode; for the
first episode they are empty. One of the two versions of PAL
has in input the IPC domain model as exploration model, the
other version has in input the exploration model derived at
the end of the previous episode. We denote these two ver-
sions of PAL with PAL-NoUpdateEM and PAL-UpdateEM,
respectively.

Figure 2 shows the number of action-execution failures
of PAL-NoUpdateEM and PAL-UpdateEM for settings RE-
PEAT and CONTINUE. Since the exploration model is an ap-
proximation of the real world, the execution (through the
simulator) of an action in the plan computed by the explo-
ration planner can fail. The results in Figure 2 shows that for
both settings REPEAT and CONTINUE the number of failures
when the exploration model is updated is significantly lower
than when no update is done among the episodes. For the
REPEAT setting and every considered domain the number of
failures reduces nearly to zero at the fifth episode. Remark-

ably, even for the CONTINUE setting the number of failures
tends to decrease and is close to zero after few episodes,
showing the usefulness of the learned knowledge.

When the agent’s goals are satisfied in a state previously
reached (and learned) by the agent, using the extensional
planner can provide great computational benefits. This is be-
cause, typically, the (learned) state space searched by the
extensional planner is much smaller than the state space in-
duced by the exploration model searched by the exploration
planner. To evaluate these benefits, we conducted an exper-
iment using the REPEAT setting. First, we run PAL using
the exploration planner; then, we run PAL without using
the exploration planner but having the extensional and per-
ception models learned by PAL in the first run (that used
the exploration planner). Figure 3 shows the average CPU
time of PAL with/without the exploration planner for up
to ten episodes. For all the instances and episodes greater
than 8 in Logistics, and greater than 5 in Grid, we have no
action-execution failure for PAL using the exploration plan-
ner; hence the performance gap is the same as for the last
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episode shown in the figure. As expected, the CPU time of
PAL using only the extensional planner is lower than when
using the exploration planner. However, achieving the goal
by the extensional planner is still, somewhat surprisingly,
quite expensive. This is because determining the next current
state of the agent from the sensed perception can be compu-
tationally much expensive when the number of perception
variables and (learned) states in the extensional model is
high. Figure 4 shows, for the CONTINUE setting, the average
CPU time required by PAL for planning and for determining
the next state w.r.t. the average total CPU time. For the last
episodes, determining the next state is more time consum-
ing that using the exploration planner. This is because, for
the last episodes, (i) the number of action-execution failures
is low or zero, and hence the number of times the explo-
ration planner is run is also low; (ii) the computational cost
required to determine the next states increases with the num-
ber of visited states, which progressively increases with the
episodes.

Related Work
A large amount of work on learning planning domains fo-
cuses on learning action schema from data. (Gregory and
Cresswell 2016; McCluskey et al. 2009; Cresswell, Mc-
Cluskey, and West 2013) propose learning general action
schema in a structured language starting from plans contain-
ing grounded application instances of actions. (Mourão et al.
2012) learn action schemata from noisy and incomplete ob-
servations. Each observation is a sequence of alternating ac-
tions and set of fluent expressions. (Zhuo and Yang 2014)
learn an action schema on a target domain by transfer learn-
ing from a set of source domains and by observing partial
plan traces. (Aineto, Jiménez, and Onaindia 2018) propose
a method for learning action models from observations of
plan executions that compiles the learning task into a clas-
sical planning task. In all these approaches, learning is per-
formed at the symbolic level, and mappings to perceptions
in a continuous environment are not considered. This is also
the case of the work by (Bonet and Geffner 2019) , which
provides a framework for learning first-order symbolic rep-
resentations from plain graphs. Indeed, plain graphs are state
transition systems, and there is no mapping to perceptions in
a continuous space, which is what sensors actually provide.
All the above mentioned works do not tackle the problem of
finding an abstraction of the continuous environment (with
continuous states) into a finite set of states. Building this ab-
straction (encoded in the perception function) is one of the
key contributions of the PAL framework.

There are however a set of approaches that learn a discrete
planning domain from a continous environment. Causal In-
foGAN learns discrete or continuous models from high di-
mensional sequential observations (Kurutach et al. 2018).
This approach fixes a priori the size of the discrete domain
model. Differently from our approach, their goal is to gener-
ate an execution trace in the high dimensional space. LatPlan
takes in input pairs of high dimensional raw data (e.g., im-
ages) corresponding to transitions (Asai and Fukunaga 2018;
Asai 2019). LatPlan is an offline approach, while our ap-
proach is online and works also in dynamic environments.

(Konidaris, Kaelbling, and Lozano-Pérez 2018) construct a
STRIPS model by learning the Boolean atoms of the precon-
ditions and effects of actions. However, their basic assump-
tion is that a continuous model of the world is available, and
that it is possible to know a fixed mapping from the contin-
uous model to the deterministic classical planning domain.
We do not rely on such assumptions. Moreover, in our ap-
proach, the mapping through perception functions is learned
dynamically. Finally, in the work by (Konidaris, Kaelbling,
and Lozano-Pérez 2018) , the mapping is set-theoretic, while
we allow for a probabilistic mapping through a probability
density function.

Most of the work on learning and planning in Partially
Observable Markov Decision Processes (POMDP) – see,
e.g., (Ross et al. 2011; Katt, Oliehoek, and Amato 2017)
– focuses on learning transitions and policies by assuming
a fixed and given set of states and a given reward function.
Some of them drop the assumption of a bounded state space,
e.g. (Doshi-Velez 2009). However, none of these works uses
an intensional representation to guide the search for learning
an extensional representation of the planning domain.

Our approach shares some similarities with the work on
planning by reinforcement learning (Kaelbling, Littman, and
Moore 1996; Sutton and Barto 1998; Geffner and Bonet
2013; Yang et al. 2018; Parr and Russell 1997; Ryan 2002;
Leonetti, Iocchi, and Stone 2016; Garnelo, Arulkumaran,
and Shanahan 2016), since we learn by acting in the envi-
ronment. However, these works focus on learning policies
and assume the set of states and the correspondence between
continuous data from sensors and states are fixed.

A complementary approach is pursued in works that plan
and learn directly in a continuous space, see e.g., (Abbeel,
Quigley, and Ng 2006; Mnih et al. 2015; Co-Reyes et al.
2018). These approaches do not require a perception func-
tion, since there is no abstract discrete model of the world.
Such approaches are very suited to address some tasks, e.g.,
moving a robot arm to a desired position or performing some
manipulations. However, we believe that, in several situa-
tions, it is conceptually appropriate and practically efficient
to learn an abstract discrete and deterministic model where
planning is much easier and efficient to perform.

We share the idea of a planning domain at the abstract
level with all the work on abstraction on MDP models, see,
e.g., (Abel et al. 2018; Li, Walsh, and Littman 2006). How-
ever, our problem and approach is substantially different,
since in the work about abstraction on MDP models, the
mapping between original MDP states and abstract states is
given, while we learn it.

Conclusions
We have introduced a novel algorithm that (i) learn an ex-
tensional model of the environment; (i) interleaves sym-
bolic planning in the intensional representation and search-
ing in the extensional representation; (ii) incrementally up-
dates the intensional representation by collecting informa-
tion about not executable actions. Finally, we have experi-
mentally shown that the novel approach can scale up to large
state spaces.
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