
Improved POMDP Tree Search Planning with Prioritized Action Branching

John Mern,1 Anil Yildiz, 1 Larry Bush, 2 Tapan Mukerji, 3 and Mykel J. Kochenderfer 1

1Stanford University, Department of Aeronautics and Astronautics, 496 Lomita Mall, Stanford, CA 94305
2General Motors, Research and Development, Warren, MI

3Stanford University, Department of Energy Resources Engineering, 367 Panama Street, Stanford, CA 94305
{jmern91, yildiz, mukerji, mykel}@stanford.edu, bushL2@alum.mit.edu

Abstract

Online solvers for partially observable Markov decision pro-
cesses have difficulty scaling to problems with large action
spaces. This paper proposes a method called PA-POMCPOW
to sample a subset of the action space for inclusion in a search
tree. The proposed method first evaluates the action space ac-
cording to a score function that is a linear combination of
expected reward and expected information gain. The actions
with the highest score are then added to the search tree dur-
ing tree expansion. Using this score function, actions pro-
viding the highest expected mixture of exploration and ex-
ploitation are included in the tree. Experiments show that
PA-POMCPOW is able to outperform existing state-of-the-
art solvers on problems with large discrete action spaces.

Introduction
Sequential decision making problems under uncertainty
are often modeled as partially observable Markov decision
processes (POMDPs) (Littman, Cassandra, and Kaelbling
1995). A solution to a POMDP is a policy that maps a be-
lief over the state of the environment to an optimal action
that maximizes the sum of discounted rewards over a series
of steps. Solving POMDPs exactly is generally intractable
and has been shown to be PSPACE-complete for finite hori-
zons (Papadimitriou and Tsitsiklis 1987). Therefore, a vari-
ety of offline and online approximate solution methods have
been proposed (Kochenderfer 2015).

Offline solvers compute the full policy before any ac-
tion is taken, and they are typically effective at small to
moderately sized POMDPs (Ross et al. 2008). Monte-Carlo
methods using point-based belief space interpolation were
initially explored (Thrun 1999). Many advanced solvers
now use point-based value iteration to learn an approxima-
tion to the belief value function from a finite-set of belief
points (Kurniawati, Hsu, and Lee 2008). However, because
offline solvers compute policies over the entire belief space,
they are typically not viable for large problems.

Several online planners have been developed by adapting
Monte-Carlo Tree Search (MCTS) for partially observable
environments. Because online planners only reason about
beliefs reachable from the current belief, they can typically

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

...

(a) (b)

Figure 1: MCTS trees. (a) A deep search tree with a small
action space. Action nodes (squares) are sampled frequently.
(b) A shallow search tree with a large action space.

be applied to much larger problems (Silver and Veness 2010;
Somani et al. 2013; Sunberg and Kochenderfer 2018).

The POMCP algorithm (Silver and Veness 2010) adapted
UCT search (Kocsis and Szepesvári 2006) by using gener-
ative models and sampling states from an unweighted par-
ticle set to search over action-observation trajectories. The
DESPOT algorithm (Somani et al. 2013) takes a similar ap-
proach, using a deterministic generative model to reduce the
tree search variance. The ABT algorithm (Kurniawati and
Yadav 2013) was proposed to improve planning speed by
reusing part of the previous belief step search tree.

Existing online methods may still fail when the action
space of the problem is very large, such as in large-scale
route planning or robotic control. During tree search, the
probability of sampling a given action from a large space
is very low, resulting in wide, shallow search trees (Sunberg
and Kochenderfer 2018), as shown in Figure 1. In MCTS
methods, shallow trees provide poor estimates of the action
values (Silver and Veness 2010).

To scale to problems with larger action and observation
spaces, the POMCPOW and PFT-DPW algorithms (Sun-
berg and Kochenderfer 2018) introduce double progres-
sive widening (DPW) to POMCP. Progressive Widen-
ing (Couëtoux et al. 2011) was introduced to scale MCTS
methods to large discrete and continuous spaces by dynam-
ically limiting the number of action nodes added during tree
expansion. Double progressive widening applies the pro-
gressive widening to both the action and observation spaces.
DPW has been shown to be sensitive to the order nodes are
selected for addition (Browne et al. 2012) and has limited

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11888

effect on scaling to large or multidimensional action spaces.
We propose a method to select a subset of the most

promising actions from the full action space. Exploration in
the tree is then limited to this smaller subset. We select this
subset according to a score function that evaluates each ac-
tion’s expected one-step reward and information gain. We
provide formulations of this score for various reward func-
tions and belief distributions. The method is implemented
as an extension to POMCPOW. Experiments show that the
proposed algorithm is able to outperform existing solvers on
tasks with very large action spaces.

Background
POMDPs represent sequential decision problems with state
uncertainty (Kochenderfer 2015). A POMDP is defined by
the tuple (S,A,O, Z, T,R, γ), where S , A, and O are the
state, action, and observation spaces, respectively. The tran-
sition model T (s′ | s, a) gives the probability of transi-
tioning from state s to state s′ after taking action a. The
reward function R(s, a) specifies the immediate reward ob-
tained after taking action a at state s. The observation model
Z(o | s, a, s′) gives the probability of receiving observation
o in state s′ given that action a had been taken in state s. The
discount factor is γ ∈ [0, 1].

Because the state is unknown in a POMDP, it is common
to maintain a probability distribution over the state, called
the belief b. The belief is updated each time the agent takes
an action a and receives an observation o, typically using a
Bayesian update.

The action-value function Q(b, a) is the expected sum of
discounted future rewards when taking action a at belief
state b and acting optimally for every following step. Many
POMDP solvers and planners operate by developing esti-
mates of the action-value function over the action space and
returning the action with the highest value.

Monte-Carlo Tree Search (MCTS) is often used for solv-
ing POMDPs. MCTS incrementally builds a tree of alter-
nating layers of observation and action nodes by running
many random simulations over the tree. Simulations pro-
ceed from the root by selecting actions according to a given
search policy and receiving observations from a generative
model. When a new observation is encountered, the observa-
tion node and its action node children are added to the tree.
This process is referred to as tree expansion.

An estimate ofQ(b, a) is maintained for each action node.
Each time a node is visited, the value estimate is updated.
More visits to a node generally improves the accuracy of
the value function estimate (Auer, Cesa-Bianchi, and Fischer
2002). POMDPs with large action or observation spaces typ-
ically result in wide, shallow trees. In these cases, the value
function estimates may be poor.

Proposed Method
The objective of this work is to improve the ability of on-
line POMDP tree search planners to scale to very large ac-
tion spaces. The challenge to tree search methods posed by
large action spaces is the high branching factor they intro-
duce in search tree expansion. To overcome this, we pro-

pose a method to select a small, informed subset of the ac-
tion space for node expansion. Our method uses the belief
and reward function to select a subset of actions that balance
exploration and reward.

Action Score Function
In order to limit the branching factor for problems with large
action spaces, only a subset of actions may necessarily be
added to the search tree at each node. To select this subset,
we propose ranking the actions according to a score func-
tion and including the actions with the highest scores in the
subset. We propose the action score function that evaluates
both the expected reward and expected information gain of
an action

k(a, b;λ) = Es∼b [r(s, a)] + λI(b, a) (1)

where a is the action, b is the state belief distribution, I(b, a)
is an information gain term, and λ is a weighting parameter.
Including expected information gain is important to allow
the planner to explore non-myopic trajectories.

Information gain cannot be efficiently computed for gen-
eral distributions (Frazier 2018). Assuming the belief is un-
biased at each time-step, we approximate the information
gain by the entropy reduction as

IG(b′, b) = H(b)−H(b′) (2)

≈ 1

2
log((2πe)d|Σb|)−

1

2
log((2πe)d|Σb′ |)

(3)

=
1

2

(
log(|Σb|)− log(|Σb′ |)

)
(4)

=
1

2

(
Tr(log(Σb))− Tr(log(Σb′))

)
(5)

where H is the information entropy, Σb is the covariance of
the belief distribution b, Σb′ is the covariance of the updated
belief b′, and Tr is the matrix trace. The updated belief b′ is
a function of the current belief, action, and observation as

b′ = ρ(b, a, o) (6)

where a is the action taken under belief b and o is the re-
ceived observation.

Equation (3) follows from the upper bound on differential
entropy for continuous variables (Cover and Thomas 2006),
and eq. (5) follows from the definition of the determinant of
a matrix as |X| = exp[Tr(log(X))].

The proposed information gain score component is then

I(a, b) = Tr(log(Σb))− Tr(log(Eb′ [Σb′])) (7)

where the expectation is taken over the b′ term because the
observation received upon taking action a in belief b is not
necessarily known.

Because the score will be evaluated for each action node,
its evaluation needs to be fast. The terms of the action score
can be calculated exactly for some special cases, which are
defined in the remainder of this section. In cases where ana-
lytical solutions are unavailable, approximations, for exam-
ple by local linearization, may be used.

11889

Expected Reward Term The expected reward term is
generally defined as

Es∼b [r(s, a)] =

∫
r(s, a)b(s)ds (8)

where r(s, a) is the known reward function.
The expected reward can be exactly calculated for finite

discrete state spaces by weighted summation over the belief.
For continuous cases, analytical solutions to the integral ex-
ist for special combinations of reward function and belief
distribution. For instance, reward functions that are linear
with respect to the state allow an analytical solution to be
found for any distribution with a known first moment. That
is, given a reward function of the form

r(s, a) = sTa(a) + c(a) (9)
where s is a vector representation of the state, and the vector
a and scalar c are functions of the action a, the expected
reward can be calculated as

Es∼b [r(s, a)] = µTs a(a) + c(a) (10)
where µs is the mean of the state belief distribution. Given a
Gaussian distribution belief, reward functions that are linear,
quadratic, cubic, and quartic have known solutions (Petersen
and Pedersen 2008).

Expected Information Gain Term For the information
gain term, we can define the expectation as

Eb′ [Σb′] =

∫
o

Σρ(b,a,o)

∫
s

P (o | s, a)b(s)ds do (11)

=

∫
o

Σρ(b,a,o)Es∼b[P (o | s, a)]do (12)

where b′ is the updated belief after taking action a and re-
ceiving observation o. For the special case of finite discrete
state and observation spaces, the information gain term can
be calculated exactly as a summation over the distributions.
In the continuous domain, analytical solutions can be de-
rived for special cases.

For the common choice of a linear-Gaussian observation
model and Gaussian belief b, ρ(b, a, o) is Gaussian. The
mean of the resulting distribution is Bs + d and the covari-
ance is BΣsB

T + Σo (Kalman 1960), where Σs is the be-
lief covariance and Σo is the observation noise covariance,
which may be a function of the action. The B matrix and
d vector are the the affine transition matrix and bias vector,
respectively.

Given the Gaussian ρ(b, a, o), the remainder of the solu-
tion of Eb′ [Σb′] depends upon the function relating Σo and
the action a. As with the reward, up to quartic relationships
have known solutions.

Modeling the belief with a Gaussian Process (GP) (Ras-
mussen and Williams 2006) also gives an analytical solution.
Given a Gaussian Process, the belief distribution is a Gaus-
sian distribution whose parameters are calculated from the
posterior of the GP. If we limit the observable points of the
GP to elements of the state, the variance reduction is pro-
portional to the marginal variance of the observed element.
Information gain then reduces to

I(a, b) ∝ Σb[ox]− σo (13)

where ox is the index into the covariance matrix of the ob-
served point, and σo is the marginal observation noise.

Action Selection

The score function is used to select the best actions to add
to the search tree at expansion steps. We propose two meth-
ods for selecting actions using the score. The subset method
is proposed for planners, such as POMCP, that add all action
nodes in a single step. The prioritization method is proposed
as an option for planners that use action progressive widen-
ing, such as POMCPOW. For progressive widening solvers,
either of the presented approaches may be used.

In the subset method, we propose only adding a subset of
the total action space containing the highest scoring actions
Ã. To select the subset, we can define a set of non-negative
numbers Λ such that |Λ| � |A|. We then define our subset
to be Ã← {ai, ..., aN} where

ai ← arg max
a∈A

k(a, b;λi) (14)

and λi ∈ Λ. Selecting actions in this way will result in
a subset that exists along the Pareto frontier of the multi-
objective action score, balancing reward gain and explo-
ration.

In the prioritization method, a single value of λ is set and
the action with the highest score is added each time the tree
is expanded. No upper limit on the total number of added
nodes is imposed with the aim of preserving the asymp-
totic convergence of behavior of the planner (Kocsis and
Szepesvári 2006; Silver and Veness 2010).

These selection methods can be applied to any tree-search
method which explicitly branches on the actions. The only
additional information required is the score function, which
only requires the explicit reward function to formulate. The
methods will only be effective on tasks with non-sparse re-
wards however, as the reward function is directly used to
select actions for branching. For tasks in which this is not
the case, a shaped reward function may be used in place of
the task reward in evaluating the action score.

The action score is only used in selecting actions to
branch, not in choosing trajectories to explore or in node
evaluation during rollout. As a result, the asymptotic opti-
mality guarantees provided by UCT (Couëtoux et al. 2011)
remain valid for the prioritization method.

Algorithm
We implement the proposed method in an extension of
the POMCPOW online solver (Sunberg and Kochenderfer
2018) that can scale to very large problems. We call this al-
gorithm Prioritized Action POMCPOW (PA-POMCPOW).
The same notation as in the original work is used. Only the
additions and modified functions are presented here due to
space constraints.

The main modification is to the ACTIONPROGWIDEN
function presented in Algorithm 1, which defines the pro-
gressive widening procedure for the action space. The action
selection procedure is defined in Algorithm 2. Additionally,
the PA-POMCPOW search tree is augmented with a set E,

11890

Algorithm 1 ACTIONPROGWIDEN Function

1: function ACTIONPROGWIDEN(h, k, λ,Λ)
2: if h /∈ E
3: Ã ← SELECTACTIONS(h,A, k,Λ)

4: E(h)← Ã
5: if ‖C(h)‖ ≤ kaN(h)αa and E(h) 6= ∅
6: Ã ← E(h)

7: a← NEXT(Ã) . Get next element from set
8: C(h)← C(h) ∪ a
9: E(h)← Ã \ {a}

10: return arg maxa∈C(h)Q(h, a) + c
√

logN(h)
N(ha)

Algorithm 2 SELECTACTIONS Function

1: function SELECTACTIONS(b, k,Λ)
2: Ã ← ∅
3: A′ ← A
4: if |Λ| = 1
5: λ← Λ0

6: while |A′| > 0
7: a← arg maxa∈A′ k(a, b;λ)

8: Ã ← Ã ∪ {a}
9: A′ ← A′ \ {a}

10: else
11: for λ ∈ Λ
12: a← arg maxa∈A′ k(a, b;λ)

13: Ã ← Ã ∪ {a}
14: A′ ← A′ \ {a}
15: return Ã

which stores the ordered action subset for each observation
node. This set is maintained in order to minimize the number
of calls required to SELECTACTIONS, as scoring the entire
action space can be computationally expensive.

The new progressive widening step is defined such that
only actions from the action subspace Ã are added to the
tree. In addition to the history h, ACTIONPROGWIDEN also
takes the action-score function k, and Λ as arguments. The
Ã set can be selected using either the subset method or the
prioritization method. To use the subset method, a set of in-
formation gain weights is passed in for Λ. To use the prior-
itization method, a set with a single weight {λ} is passed.

Different selections of Λ lead to different solver behav-
ior. In general, larger sets require a higher number of simu-
late calls to effectively search. Problems for which actions
strongly influence state transition tend to require a larger
Λ. Normalizing the reward and variance trace to be within
the range [−1, 1] was found to improve search efficiency.
Problems in which information gathering is important tend
to benefit from including higher λ values.

Experiments
We tested the performance of PA-POMCPOW on two tasks
involving sensor placement and wildfire containment. The
sensor placement task has a static environment state and a
dense reward. The wildfire containment task has a dynamic
environment state and a sparse reward. All experiments were
implemented using POMDPs.jl (Egorov et al. 2017). The
solver source code is available at https://github.com/sisl/PA-
POMCPOW.jl.

Sensor Placement
The sensor placement task requires an agent to sequen-
tially pick the location to install sensors in a large 2D grid
world in order to maximize information gathered. Each lo-
cation in the world has a different concentration of informa-
tion. The information densities are generated by sampling
from a Gaussian Process prior with zero mean and a linear-
exponential covariance kernel (Kochenderfer and Wheeler
2019) at each coordinate.

The state space is S = (Sg,Ss), where Sg is the infor-
mation grid map and Ss is a list of the coordinates of the
placed sensors. The information field is static throughout
each episode, and sensor placement is deterministic. The
field is initialized with a set of sensors placed at random
points on the grid, and the values at these points are known.

At each step, the agent chooses the location to place a sen-
sor or to observe. The agent can choose a point on the grid
that are at least δ cells away from a previously placed sen-
sor. If a sensor is placed, the agent receives a reward equal
to the value of information at that cell minus one. No reward
is given for observing without placing a sensor. Because the
agent may either observe or place a sensor at each grid cell,
the size of the action space is equal to twice the number of
grid cells minus the number of prohibited spaces. We con-
sidered grids of size (25× 25), (50× 50), (100× 100), cor-
responding to maximum action space sizes of 1250, 5000,
and 20000, respectively.

Each time the agent takes an action, it directly observes
the value of the cell on which the sensor is placed. The
episode terminates after T sensors have been placed. To
solve this task, we used a Gaussian Process to model the
belief. At each step, the belief is updated by appending the
observed location and values to the GP parameters.

We tested PA-POMCPOW by solving the problem for the
three different grid sizes with 100 different initializations for
each. The Λ vector was set to linearly spaced values between
0 and 2 with a step size of 0.1 for a total of 20 considered
actions. Because our belief was Gaussian, we used the exact
linear-Gaussian forms of the action-score function.

We ran each test with limits of 100, 500, and 1000 simu-
lator calls per step. For each run, we recorded the total accu-
mulated reward and the average planner run time. For com-
parison, we ran each test for the POMCP and POMCPOW
algorithms as well, using the same belief distribution and
number of solver calls. We also defined a simple greedy pol-
icy in which the agent takes the action with the maximum
expected score as defined by the Gaussian Process posterior.
This was included to test whether limiting the actions of PA-
POMCPOW limited the learned policy to a myopic one.

11891

t = 25

t = 75

t = 125

Burn Map Fuel Map

Figure 2: Wildfire containment task. The left figures show
burn maps, where dark areas are currently burning and light
are un-ignited. The right figures show fuel maps, where
lighter values correspond to higher fuel levels. A southwest
wind biases fire propagation.

To test our hypothesis that PA-POMCPOW builds deeper
search trees, we measured the maximum tree depth produced
by each algorithm. For each solver, we constructed the initial
action step tree using 500 simulations over 100 state and
initial belief realizations.

Wildfire Containment
In the wildfire containment task, a fire is spreading over a
grid world. An agent must select areas in the grid to clear of
fuel in order to contain the spread of the wildfire. Fire prop-
agation is probabilistic, according to dynamics defined in
a previous work (Julian and Kochenderfer 2019). This task
was designed to test the performance of PA-POMCPOW on
a task with non-stationary dynamics and a sparse reward.

In this model, fire starts at some points in the grid and
burns at those points until the fuel is exhausted. A fuel-
containing cell that is currently not burning ignites with
probability proportional to the number of its neighbors cur-
rently burning. The fire is able to spread beyond immedi-
ately adjacent cells, up to two cells away. Wind biases the
fire propagation direction and changes randomly each step.

The state is represented by a burn map, a fuel map, and a
wind vector, as shown in Figure 2. The burn map is an array
of which cells in the grid world are on fire. The fuel map is
an array of how much fuel is contained in each cell and is
generated by sampling each cell from a truncated Gaussian
distribution. Wind is uniform over the grid and the vector is

sampled from a 2D uniform distribution between [−1, 1].
Areas in each corner of the grid are designated to be keep-

out areas. Associated with each area is a counter ci which
decreases at each time step until it reaches zero. The objec-
tive of the task is to keep the fire from reaching any keep out
zone until the zone counter is zero. If fire reaches a keep-out
zone, that zone’s counter is set directly to zero and a reward
equal to the remaining counter value, −ci. The episode ter-
minates when all zones have a zero count.

At each step, the agent selects a non-burning grid cell to
clear of fuel. The fuel level in the selected cell and eight
surrounding cells are then set to zero. The wind vector is
updated by addition of zero-mean Gaussian noise.

The agent has full knowledge of the burn map, fuel map,
and keep-out counters. The agent also makes noisy measure-
ments of the wind. The noise on the wind measurement is
proportional to the distance between the action location and
the fire. Fire reaching any keep-out zone has a cost equal to
ten times the counter value of the keep-out zone.

To solve this task, we used a Gaussian distribution to
model the wind belief, and updated it using a Kalman fil-
ter (Kalman 1960). The Λ set was composed of linearly
spaced values between 0.5 and 1.5 with a step size of 0.1 for
a total of 16 values. The linear-Gaussian forms of the score
function were used, however, because the reward was sparse,
a dense, shaped reward was implemented. The shaped re-
ward function was defined as r(a, s) = θdf (a) + βdk(a),
where df measures the distance of the cleared cell to the
closest burning cell and dk(a) is the distance to the nearest
keep-out zone. The θ and β terms are weighting factors.

We ran each test with limits of 100, 250, and 500 sim-
ulator calls per solver step for a grid size of 40 × 40. For
each run, we recorded the total accumulated reward and the
average planner run time per step. As with the sensor place-
ment task, we ran each test for the POMCP and POMCPOW
baseline algorithms as well, using the same belief distribu-
tion and number of solver calls.

We additionally implemented a myopic expert policy
baseline that clears all the fuel bordering each keep-out
zone. At each step, the policy clears the cells immediately
bordering a keep-out zones in order to create a barrier around
the zone. The policy chooses to clear cells of the keep-out
zone that is closest to the fire, until all the bordering cells
have been cleared. It then moves to the next closest zone.

Results
Sensor Placement
The performance of each algorithm on the sensor placement
task is reported in Table 1. The mean score and standard
error over the 100 trials are reported for each test point.

PA-POMCPOW outperformed the baseline algorithms for
all test points. It also outperformed the Greedy policy in all
but one test point, showing that with action subsets, the tree
search is still able to find non-myopic policies. Neither base-
line outperformed the greedy policy in any case.

The relative gap between POMCPOW and Greedy re-
mained at approximately 30% for 1000 queries at all grid
sizes. This seems to suggest that the shallow trees generated

11892

(a) (b) (c)

Sensor Placement Field

- 3

- 2

- 1

0

1

2

3

Observation
Action

(d)

Figure 3: Example sensor placement action branching. The first three figures show the Gaussian process mean values with
root node actions overlaid. The squares mark sensor placement actions and the circles mark observation only actions. (a) The
algorithm prefers actions with high known reward early in the episode. (b) As the rewarding actions are depleted, the algorithm
considers more exploration. (c) The algorithm once again prefers high-reward actions once a new high-value area is found. (d)
The actual information state for the episode and selected actions at episode completion.

Grid Size Calls PA-POMCPOW POMCPOW POMCP Greedy

20× 20
100 3.35± 0.22 0.77± 0.22 1.31± 0.24

2.55± 0.21500 3.66± 0.21 1.45± 0.23 1.26± 0.20
1000 4.04± 0.21 1.70± 0.26 1.18± 0.23

50× 50
100 5.79± 0.29 0.42± 0.24 1.40± 0.25

5.10± 0.32500 5.64± 0.28 2.90± 0.28 0.96± 0.23
1000 5.46± 0.29 3.80± 0.38 0.48± 0.26

100× 100
100 6.45± 0.44 3.99± 0.41 3.36± 0.44

6.69± 0.40500 7.68± 0.41 5.64± 0.43 3.10± 0.41
1000 7.77± 0.44 5.57± 0.43 3.10± 0.39

Table 1: Sensor Placement Task Scores

Calls Algorithm Loss

100
PA-POMCPOW 460± 46
POMCPOW 937± 24
POMCP 1021± 30

250
PA-POMCPOW 434± 46
POMCPOW 897± 33
POMCP 1000± 28

500
PA-POMCPOW 430± 43
POMCPOW 798± 29
POMCP 1011± 28

– Expert 722± 18

Table 2: Wildfire Task Loss

by POMCPOW resulted in selection of the approximately
greedy action. This also suggests why PA-POMCPOW, with
deeper search trees, was able to outperform it.

On average, PA-POMCPOW required 4.2 ms, 8.3 ms, and
43.5 ms per simulation call for the 20×20 grid, 50×50 grid,
and 100×100 grid respectively. This was significantly more
expensive than the most efficient baseline, POMCPOW,
which required 0.7 ms, 2.4 ms, 10.1 ms for the three respec-
tive grids. This is likely due to the added cost of computing
the action scores at each observation node.

A partial episode is shown in Figure 3. The location and
type of each root node action of the search tree is shown
overlaid on the Gaussian process belief mean values. A bal-
ance of exploration and exploitation is seen over the episode,
however, when high expected reward actions are available,
the actions tend to form tight clusters, which may not be de-
sirable in some tasks.

From the tree measurement experiment, the average max-
imum node depth and standard error was 8.13 ± 0.23,
3.61 ± 0.06, and 3.05 ± 0.05 for PA-POMCPOW, POM-
CPOW, and POMCP, respectively. The average maximum
depth was significantly higher for PA-POMCPOW than ei-
ther baseline. These results suggest that improved tree depth
contributed to PA-POMCPOW’s improved performance on
the task.

Wildfire Containment
The performance results from the wildfire containment task
are shown in Table 2. As with the sensor placement task,
PA-POMCPOW was able to outperform both of the baseline
algorithms and the expert policy in all three test scenarios.
The expert policy outperformed both baselines.

The computational cost of the wildfire task was slightly
higher than that of the sensor placement task. The time per-
query was 11.6 ms for PA-POMCPOW, 8.5 ms for POM-
CPOW, and 8.2 ms for POMCP. As before, PA-POMCPOW
was more expensive than POMCPOW and POMCP.

Despite the more complex environment and sparse reward
function, PA-POMCPOW was still able to solve the problem
better than the existing state-of-the-art and an expert policy.

Conclusions
We presented a general method to extend online POMDP
solvers to problems with very large action spaces by prior-
itizing actions for tree expansion. Specific formulations of
the method for various reward functions and belief distri-
butions were presented. We implemented this method as a
new algorithm called Prioritized Action POMCPOW (PA-
POMCPOW) which can scale to very large problems.

The current work is limited to problems in which the score
function terms can be analytically formed or easily and accu-
rately approximated. Future work will investigate more gen-

11893

erally extensible functions for the exploration and exploita-
tion terms of the action score.

This work presented a static method of selecting the ac-
tion subset. That is, once selected, the action space subset
was never updated. Future work will explore dynamically
adjusting the subset based on the action-value estimates.

This work also only directly considered large, discrete ac-
tion spaces. While the proposed methods can be applied to
continuous spaces in principle, evaluating the action score
in a continuous domain would likely be intractable for many
problems. Because of this, future work will investigate us-
ing the volume coverage metrics for action clustering (Kur-
niawati, Hsu, and Lee 2008).

Despite these limitations, experimental results showed
that PA-POMCPOW was effective on very large problems.
Using the proposed method with DPW improved the perfor-
mance over existing state-of-the-art methods.

Acknowledgements
The research reported in this work was supported by The
ExxonMobil Research and Engineering Company through
the Stanford Strategic Energy Alliance.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
Analysis of the Multiarmed Bandit Problem. Journal of Ma-
chine Learning Research 47(2-3): 235–256.

Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Liebana, D. P.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Compu-
tational Intelligence and AI in Games 4(1): 1–43.

Couëtoux, A.; Hoock, J.; Sokolovska, N.; Teytaud, O.; and
Bonnard, N. 2011. Continuous Upper Confidence Trees. In
Learning and Intelligent Optimization (LION).

Cover, T. M.; and Thomas, J. A. 2006. Elements of informa-
tion theory (2. ed.). Wiley.

Egorov, M.; Sunberg, Z. N.; Balaban, E.; Wheeler, T. A.;
Gupta, J. K.; and Kochenderfer, M. J. 2017. POMDPs.jl:
A Framework for Sequential Decision Making under Un-
certainty. Journal of Machine Learning Research 18: 26:1–
26:5.

Frazier, P. I. 2018. A Tutorial on Bayesian Optimization.
Computing Research Repository .

Julian, K. D.; and Kochenderfer, M. J. 2019. Distributed
Wildfire Surveillance with Autonomous Aircraft Using
Deep Reinforcement Learning. AIAA Journal of Guidance,
Control, and Dynamics 42(8): 1768–1778.

Kalman, R. E. 1960. A New Approach to Linear Filtering
and Prediction Problems. ASME Journal of Basic Engineer-
ing 82: 35–45.

Kochenderfer, M. 2015. Decision Making Under Uncer-
tainty: Theory and Application. MIT Press.

Kochenderfer, M.; and Wheeler, T. 2019. Algorithms for
Optimization. MIT Press.

Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In European Conference on Machine Learn-
ing (ECML).
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP:
Efficient Point-Based POMDP Planning by Approximating
Optimally Reachable Belief Spaces. In Robotics: Science
and Systems IV.
Kurniawati, H.; and Yadav, V. 2013. An Online POMDP
Solver for Uncertainty Planning in Dynamic Environment.
In International Symposium on Robotics Research.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995.
Learning Policies for Partially Observable Environments:
Scaling Up. In International Conference on Machine Learn-
ing (ICML).
Papadimitriou, C. H.; and Tsitsiklis, J. N. 1987. The com-
plexity of Markov decision processes. Mathematics of Op-
erations Research 12(3): 441–450.
Petersen, K. B.; and Pedersen, M. S. 2008. The Matrix Cook-
book. Technical University of Denmark.
Rasmussen, C. E.; and Williams, C. K. I. 2006. Gaussian
Processes for Machine Learning. MIT Press.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online Planning Algorithms for POMDPs. Journal of Arti-
ficial Intelligence Research 32: 663–704.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Advances in Neural Information Pro-
cessing Systems (NIPS).
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. DESPOT:
Online POMDP Planning with Regularization. In Advances
in Neural Information Processing Systems (NIPS).
Sunberg, Z. N.; and Kochenderfer, M. J. 2018. Online Al-
gorithms for POMDPs with Continuous State, Action, and
Observation Spaces. In International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Thrun, S. 1999. Monte Carlo POMDPs. In Advances in
Neural Information Processing Systems (NIPS).

11894

