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Abstract

An unbiased low-variance gradient estimator, termed GO gra-
dient, was proposed recently for expectation-based objectives
Eqγ (y)[f(y)], where the random variable (RV) y may be
drawn from a stochastic computation graph (SCG) with con-
tinuous (non-reparameterizable) internal nodes and continu-
ous/discrete leaves. Based on the GO gradient, we present
for Eqγ (y)[f(y)] an unbiased low-variance Hessian estimator,
named GO Hessian, which contains the deterministic Hessian
as a special case. Considering practical implementation, we
reveal that the GO Hessian in expectation obeys the chain
rule and is therefore easy-to-use with auto-differentiation and
Hessian-vector products, enabling efficient cheap exploitation
of curvature information over deep SCGs. As representative ex-
amples, we present the GO Hessian for non-reparameterizable
gamma and negative binomial RVs/nodes. Leveraging the
GO Hessian, we develop a new second-order method for
Eqγ (y)[f(y)], with challenging experiments conducted to ver-
ify its effectiveness and efficiency.

1 Introduction
Many machine learning problems can be formulated as an
optimization problem involving an expectation. A classic
such setup (Robbins and Monro 1951) is of the form

Framework I: minϑ J (ϑ) , Eq(x)[h(x,ϑ)], (1)

where the random variable (RV) x obeys a distribution q(x)
unrelated to the parameters ϑ of interest, and h(x,ϑ) is
a continuous function wrt ϑ. General assumptions mak-
ing J (ϑ) (and the following L(γ)) a valid loss function
are omitted for simplicity. In practice one often encoun-
ters its finite-sum form minϑ

1
N

∑N
i=1 h(xi,ϑ) with q(x) =

1
N

∑N
i=1 δ(x − xi), where δ(·) is the Dirac delta function

(this discrete form is typically an approximation, based on N
observed samples drawn from the true underlying data dis-
tribution). A popular example of Framework I is maximum-
likelihood learning with the data distribution q(x) and the
negative log-likelihood h(x,ϑ) = − log p(x;ϑ), where
p(x;ϑ) represents the model.
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An alternative framework, attracting increasing attention
recently, considers the form

Framework II: minγ L(γ) , Eqγ(y)[f(y)], (2)

where parameters γ of interest determine the distribution
qγ(y) that, for example, models a stochastic computation
graph (SCG) (Schulman et al. 2015a; Parmas 2018; Weber
et al. 2019).1 Note in general the function f(·) may also be re-
lated to γ; however, as the generalization is straight-forward,
we focus on the setup in (2) for simpler derivations. Popular
examples of Framework II include the ELBO in variational
inference (Bishop 2006; Kingma and Welling 2014), the gen-
erator training objective of generative adversarial networks
(Goodfellow et al. 2014), and many objectives associated
with reinforcement learning (RL) (Schulman et al. 2015b;
Finn, Abbeel, and Levine 2017; Foerster et al. 2018).

Many optimization methods have been proposed for
Framework I, utilizing the first-order gradient information
(Allen-Zhu 2018; Jin et al. 2019) or exploiting the second-
order Hessian information (Tripuraneni et al. 2018; Zhou and
Gu 2020). Compared with first-order methods, second-order
ones are often characterized by convergence in fewer training
iterations to a second-order stationary point, requiring less
tweaking of meta-parameters (like learning rate), invariance
to linear parameter rescaling, and navigating better when fac-
ing pathological curvature in deep learning (Martens 2010;
Tripuraneni et al. 2018). For computation and memory effi-
ciency in high-dimensions (like for deep neural networks),
recent second-order methods often resort to Hessian-free
techniques, i.e., Hessian-vector products (HVP), which can
be computed as efficiently as gradients (Pearlmutter 1994)
and remove the need to construct the full Hessian (Martens
2010; Kohler and Lucchi 2017; Kasai and Mishra 2018).

In contrast to the classic Framework I, few optimization
methods have been proposed for Framework II with general
SCG qγ(y), partially because of the significant challenge in
even estimating its gradient with low variance without bias in
general/non-reparameterizable (subsequently abbreviated as
“non-rep”) situations (Cong et al. 2019; Weber et al. 2019).

1When the RV y is reparameterizable (rep) (Salimans, Knowles
et al. 2013; Rezende, Mohamed, and Wierstra 2014), Framework II
can be rewritten as Framework I for optimization. To distinguish,
we focus on the challenging non-rep setup for Framework II by
default, despite the proposed GO Hessian also applies to rep RVs.
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For second-order optimization of Framework II, most exist-
ing works resort to the log-trick,2 often suffering from high
variance and poor sample efficiency, and therefore seeking
help from variance reduction control variates with a poten-
tial variance-bias trade-off (Heess et al. 2015; Rothfuss et al.
2019). Moreover, to facilitate the implementation via auto-
differentiation (AD), cumbersome designs of surrogate losses
and control variates are often necessary (Foerster et al. 2018;
Mao et al. 2019), which are challenging when derivatives of
different orders are used simultaneously (Farquhar, White-
son, and Foerster 2019), like in meta reinforcement learning
(Finn, Abbeel, and Levine 2017). Therefore, an easy-to-use
unbiased (gradient and) Hessian estimator for Framework
II, with low variance and high sample efficiency, is highly
appealing (Liu, Socher, and Xiong 2019).

Different from existing methods that leverage the log-trick,
we follow a different research path (Figurnov, Mohamed,
and Mnih 2018; Jankowiak and Obermeyer 2018; Cong
et al. 2019) that tries to generalize the classic deterministic
derivatives/back-propagation to Framework II. Specifically,
based on the GO gradient (Cong et al. 2019), we show that
its double application delivers an unbiased low-variance Hes-
sian estimator, termed GO Hessian, for Framework II in (2),
where y may be drawn from a SCG consisting of continuous
rep/non-rep internal nodes3 and continuous/discrete leaves,
with neural networks as links. Besides proposing the GO
Hessian, our other contributions include:
• we reveal that the GO Hessian contains the deterministic

Hessian as a special case; they both show intuitively simple
patterns obeying the chain rule, except the GO Hessian
exhibits slight differences due to SCG randomness;

• we reveal the GO Hessian is easy to use with existing AD
software and HVP, enabling computationally and memory
efficient exploitation of curvature information over SCGs;
specifically, one can simulate one sample per SCG node
in the forward pass through that SCG, followed by dou-
bly backward passes to form a one-sample-based Hessian
estimate, which is the same as the deterministic Hessian;

• we derive the GO Hessian for non-rep gamma and neg-
ative binomial RVs; we also propose a simple yet effec-
tive method to make optimization over gamma RVs more
friendly to gradient-based methods;

• we empirically show that the GO Hessian often works well
with one sample without variance reduction techniques;
combining the GO Hessian with an existing method for
Framework I (Tripuraneni et al. 2018), we present a novel
second-order method for Framework II, theoretically ana-
lyze its convergence, and empirically verify its effective-
ness and efficiency with challenging experiments.

2 Preliminary
2.1 General and One-sample (GO) Gradient
Containing as special cases the low-variance reparameteriza-
tion gradient (Salimans, Knowles et al. 2013; Rezende, Mo-

2Also named the likelihood ratio, score function, or REIN-
FORCE (Williams 1992) estimator. See Section 3.1 for details.

3Note discrete internal nodes are not supported.

hamed, and Wierstra 2014) and the pathwise derivative (Fig-
urnov, Mohamed, and Mnih 2018; Jankowiak and Obermeyer
2018)4, the GO gradient (Cong et al. 2019) serves as a gen-
eral framework of unbiased low-variance gradient estimates
for Framework II in (2), where RV y may be drawn from a
SCG with continuous rep/non-rep internal nodes and contin-
uous/discrete leaves. With the GO gradient, one can forward
pass through the SCG with one sample activated per node to
estimate the objective, followed by backward-propagating an
unbiased low-variance gradient estimate through each node
again to the parameters for updating (see Theorem 3 of Cong
et al. (2019)). The low-variance and one-sample properties
make the GO gradient easy-to-use in practice, e.g., in varia-
tional inference with a complicated inference distribution.

To introduce the approach, the simplest setup, i.e., a single-
layer RV y satisfying conditional independence qγ(y) =∏
v qγ(yv), is employed to demonstrate the GO gradient, i.e.,

∇γL(γ) = ∇γEqγ(y)[f(y)] = Eqγ(y)
[
Gqγ(y)
γ Dyf(y)

]
, (3)

where Dyf(y) =
[
· · · ,Dyvf(y), · · ·

]T
with Dyvf(y) ,

∇yvf(y) for continuous yv while Dyvf(y) , f(yv+) −
f(y) for discrete yv. yv+ , [· · · , yv−1, yv + 1, yv+1, · · · ]T .
G
qγ(y)
γ =

[
· · · , gqγ(yv)γ , · · ·

]
gathers the variable-nabla

g
qγ(yv)
γ , −1

qγ(yv)
∇γQγ(yv),5 which has the intuitive mean-

ing of the “derivative” of a RV yv wrt its parameters γ.
Qγ(yv) is the CDF of qγ(yv).

With the variable-nabla, one can informally interpret
G
qγ(y)
γ as the “gradient” of the RV y wrt the parameters

γ. Similar intuitive patterns hold for deep SCGs with con-
tinuous internal nodes. As an informal summarization, the
GO gradient in expectation obeys the chain rule and acts like
its special case of the classic back-propagation algorithm
(Rumelhart and Hinton 1986; Cong et al. 2019).

2.2 Hessian-free Techniques
Developed for efficient implementation of second-order opti-
mization in high-dimensions (like for deep neural networks,
where the explicit construction of the full Hessian is pro-
hibitive), Hessian-free techniques (Martens 2010; Byrd et al.
2011) exploit HVP for implicit usage of the Hessian informa-
tion. An example technique to calculate HVP leverages

[∇2
ϑJ (ϑ)]p = ∇ϑ

[
[∇ϑJ (ϑ)]Tp

]
, (4)

where p is a vector uncorrelated with the parameters ϑ of
interest. For better efficiency than the above 2-backward tech-
nique, Pearlmutter (1994) proposed a faster HVP calculation
that takes about the same amount of computation as a gradient
evaluation. The low-cost HVP is essential because common
subsolvers used to search for second-order directions merely
exploit Hessian information via HVP (Agarwal et al. 2017;
Tripuraneni et al. 2018; Zhou and Gu 2020).

4See Appendix A for the detailed comparisons among these
reparameterization-like gradient estimators.

5The notations for the variable-nabla and the variable-hess below
are optimized to improve the clarity when deep SCGs are of interest;
refer to the derivations in Appendix C.3 and Cong et al. (2019).
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2.3 Stochastic Cubic Regularization (SCR)
As a second-order method for Framework I in (1), the SCR
(Tripuraneni et al. 2018) searches for a second-order station-
ary point via iteratively minimizing a local third-order Taylor
expansion of the objective J (ϑ), i.e.,

ϑt+1 = argminϑ



J (ϑt) + g̃Tt (ϑ− ϑt)+
1

2
(ϑ− ϑt)T H̃t(ϑ− ϑt) +

ρ

6
‖ϑ− ϑt‖3


 (5)

where g̃t=∇̃ϑJ (ϑt) and H̃t=∇̃2
ϑJ (ϑt) are the stochastic

gradient and Hessian at ϑt, respectively (often estimated with
sub-sampled data batches), ρ is the cubic penalty coefficient,
and (5) can be solved efficiently with gradient decent (Car-
mon and Duchi 2016). Since Newton-like methods are much
more tolerant to the Hessian estimation error than that of the
gradient (Byrd et al. 2011), one can often use significantly
less data samples to calculate the stochastic Hessian for better
efficiency (Tripuraneni et al. 2018).

3 GO Hessian for Framework II
Targeting efficient second-order optimization of Framework
II in (2), we first propose for it an unbiased low-variance
Hessian estimator, termed General and One-sample (GO)
Hessian, that is based on the GO gradient (Cong et al. 2019)
and is easy-to-use in practice. We then combine the proposed
GO Hessian with the SCR (Tripuraneni et al. 2018) to pro-
pose a novel second-order method for Framework II.

3.1 GO Hessian
A straight-forward way to estimate the Hessian of Frame-
work II lies in exploiting the log-trick ∇γqγ(y) =
qγ(y)∇γ log qγ(y), that is,

∇2
γL(γ) = Eqγ(y)

[
f(y)[∇γ log qγ(y)][∇γ log qγ(y)]T

+ f(y)∇2
γ log qγ(y)

]
. (6)

However, such a log-trick estimation shows high Monte Carlo
(MC) variance in both theory and practice (Rezende, Mo-
hamed, and Wierstra 2014; Ruiz, Titsias, and Blei 2016), of-
ten seeking help from variance-reduction techniques (Grath-
wohl et al. 2017; Mao et al. 2019). Besides, for practical
implementation with AD, cumbersome designs of surrogate
losses and control variates are often necessary (Foerster et al.
2018; Farquhar, Whiteson, and Foerster 2019).

Different from the above method based on the log-trick,
our GO Hessian doesn’t require additional designs of surro-
gate losses and it estimates the curvature of Framework II
in a pathwise manner, like the classic deterministic Hessian
(as detailed below); moreover, it empirically shows low vari-
ance, often working well in practice with one-sample-based
estimation without variance reduction techniques (see Figure
1 and the experiments).6 For simplified notations, we first
employ the single-layer setup with qγ(y) =

∏
v qγ(yv) to

demonstrate our main results, which are then generalized to
deep SCGs with continuous rep/non-rep internal nodes and
continuous/discrete leaves. Proofs are given in Appendix C.

6Discussions on the lower variance of the GO Hessian than the
log-trick estimation are provided in Appendix E.4.
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Figure 1: One-sample-based variance comparisons
of the log-trick estimation and the GO Hessian
on (left) ∇2

{α,β}EGam(α,β)[log
Gam(α,β)
Gam(10,10)

] and (right)
∇2

{r,p}ENB(r,p)[log
NB(r,p)

NB(10,0.5)
]. See Appendix E for details.

Motivated by the GO gradient that leverages the integra-
tion-by-parts to form a gradient estimate of Framework II in a
pathwise manner, one may try to naively apply the integration-
by-parts twice to form a Hessian estimate; however, as shown
in Appendix B, such naive derivations lead to complex calcu-
lation terms that are difficult to interpret or implement.

Fortunately, we find that (i) the variable-nabla, e.g.,
g
qγ(yv)
γ that constitutes G

qγ(y)
γ in (3), is often differentiable

with a simple expression (see Table 3 of Cong et al. (2019));
and (ii) the GO gradient has a similar expectation-based ex-
pression as the objective L(γ). Accordingly, we propose to
view the GO gradient of L(γ) as another expectation-based
vector objective, followed by calculating the GO gradient for
that vector objective to form our GO Hessian of L(γ). Note
this pattern of double applications of a GO gradient resulting
in the GO Hessian is the same as that of the deterministic
Hessian, which actually is a special case of our GO Hessian
as proved below.

Assuming a single-layer continuous setup with qγ(y) =∏
v qγ(yv), the GO Hessian is defined as

∇2
γL(γ) = ∇γEqγ(y)

[
G
qγ(y)
γ ∇yf(y)

]

= Eqγ(y)
[
G
qγ(y)
γ [∇2

yf(y)]G
qγ(y)
γ

T + Hqγ(y)
γγ ∇yf(y)

]
,

(7)

where Hqγ(y)
γγ is a three-dimensional tensor with its element

[Hqγ(y)
γγ ]b,a,v = g

qγ(yv)
γb ∇yvg

qγ(yv)
γa +∇γbg

qγ(yv)
γa , h

qγ(yv)
γbγa (8)

and the tensor-vector product Ha outputs a matrix whose ele-
ment [Ha]b,a=

∑
v Hb,a,vav . We name hqγ(yv)γbγa the variable-

hess, because of its intuitive meaning of the second-order
“derivative” of a RV yv wrt parameters {γa, γb} (see below).
Note three components are necessary for employing the GO
Hessian, i.e., accessible variable-nabla gqγ(yv)γb and its two
gradients∇yvg

qγ(yv)
γa and ∇γbg

qγ(yv)
γa , for each node yv .7

For better understanding, we draw parallel comparisons to
deterministic optimization with objective L̂(γ) = f [ŷ(γ)],
which is a special case of Framework II with qγ(y) = δ(y−
ŷ(γ)) and where

∇2
γL̂(γ) = ∇γ

[
[∇γ ŷ(γ)][∇ŷf(ŷ)]

]

= [∇γ ŷ(γ)][∇2
ŷf(ŷ)][∇γ ŷ(γ)]T + [∇2

γ ŷ(γ)]∇ŷf(ŷ).
(9)

7This roughly means analytical PDF/CDF for yv is accessible.
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By comparing (7) and (9), interesting patterns arise: (i) the
interpretation of G

qγ(y)
γ as the “gradient” of RV y wrt param-

eters γ (informally G
qγ(y)
γ ↔ ∇γy) also holds in second-

order settings; (ii) the newly-introduced Hqγ(y)
γγ can be intu-

itively interpreted as the “Hessian” of RV y wrt parameters
γ (informally Hqγ(y)

γγ ↔ ∇2
γy). In fact, the GO Hessian con-

tains the deterministic Hessian as a special case, as detailed
in Theorem 1 (see Appendix C.4 for the proof). Note in gen-
eral the GO Hessian has an additional term due to the RV
randomness (i.e., the first item of the variable-hess in (8)).

On Discrete RVs. For a single-layer/leaf discrete RV y
with PDF qγ(y)=

∏
v qγ(yv), the GO Hessian is of the form

∇2
γL(γ) = ∇γEqγ(y)

[
G
qγ(y)
γ Dyf(y)

]

= Eqγ(y)
[
G
qγ(y)
γ [D2

yf(y)]G
qγ(y)
γ

T + Hqγ(y)
γγ Dyf(y)

]
,

(10)

where H
qγ (y)
γγ Dyf(y) represents a matrix with its elements

[
H
qγ (y)
γγ Dyf(y)

]
b,a

=
∑
v

[
[gqγ(yv)γb

Dyvgqγ(yv)γa ]Dyvf(yv+)

+ [∇γbgqγ(yv)γa ]Dyvf(y)

]
. (11)

It is clear that (7) for continuous RVs and (10) for discrete
RVs show similar patterns but with slight differences, like the
gradient/difference of f(y) and the definition of the variable-
hess. We leave discrete situations as future research and focus
mainly on continuous non-rep cases in this paper.

On Deep SCGs. Based on the above derivations for the
single-layer continuous/discrete setup, we prove in Appendix
C.3 that similar patterns also hold for deep SCGs with contin-
uous internal nodes and continuous/discrete leaves. The main
results are summarized in Theorem 1, with the corresponding
complexity analysis given in Appendix D.

Theorem 1 (GO Hessian). For an expectation-based ob-
jective Eqγ(y)[f(y)], where qγ(y) =

∏
i qγi(yi|pa(yi))

models a SCG with continuous internal nodes and continu-
ous/discrete leaves (possibly with neural networks as links),
y = {y1,y2, · · · }, γ = {γ1,γ2, · · · }, and each component
satisfies conditional independence, i.e.,

qγi(yi|pa(yi)) =
∏

v
qγi(yi,v|pa(yi)) (12)

with yi,v being the v-th element of yi, pa(yi) the parent RVs
of node yi, and qγi(yi,v|pa(yi)) having accessible variable-
nabla/variable-hess, double application of the GO gradient
(Cong et al. 2019) to that objective delivers an unbiased
low-variance Hessian estimator, i.e., the GO Hessian.

The GO Hessian in expectation obeys the chain rule,
exhibiting an expression similar to the deterministic Hes-
sian (e.g., see (7) versus (9)), except with the variable-
nabla/variable-hess serving as the first-order/second-order

“derivative” of a RV. Moreover, when limiting each component
qγi(yi|pa(yi)) as a Dirac delta function, the GO Hessian
degrades into the deterministic Hessian.

The similarity between the GO Hessian and its special
case of the deterministic Hessian is exploited in Section 3.2
to reveal the easy-to-use property of the GO Hessian during
practical implementations.

On the Applicability of the GO Hessian. The condi-
tional independence assumption in (12) may be falsely con-
sidered limited at first glance. It’s worth noting that the GO
Hessian also applies to correlated multivariant qγ(y) if (i) the
factorization qγ(y) = qγ(y1)qγ(y2|y1) · · · is accessible, as
qγ(y) is now a deep SCG; (ii) qγ(y) can be reparametrized
to some extent (such as a MVN or a Dirichlet). Multivari-
ate RVs beyond these two cases are rarely used in practice.
From an alternative perspective, our setup generalizes deter-
ministic deep learning with RVs, by leveraging sampling to
replace/reinforce traditional nonlinear activation functions.
Accordingly, the GO Hessian is deemed widely applicable
for most statistical deep learning problems.

On Limited f(·)-information. For challenging situations
where only zero-order f(y)-information is available at the
current sample y (like in many RL applications (Baxter and
Bartlett 2001; Shen et al. 2019)), we reveal that our GO Hes-
sian can be combined with the LAX technique (Grathwohl
et al. 2017) to facilitate that issue. Specifically, with a surro-
gate function cω(y) (often a neural network) to approximate
f(y), we unify the zero-order f -evaluation from the log-trick
estimation and the low-variance of our GO Hessian via

HLAX[f ] = Hlog-trick[f ]−Hlog-trick[cω] + HGO[cω],

where Hmethod[func] denotes the Hessian estimator of ob-
jective Eqγ(y)[func(y)] based on the method. The surro-
gate parameters ω can be optimized by minimizing the MC
variance of HLAX[f ] (Grathwohl et al. 2017). Note when
cω(y) = f(y), HLAX[f ] delivers the same low variance as
our GO Hessian.

3.2 GO Hessian Is Easy-to-use
In practice, to explicitly construct/store the GO Hessian may
be prohibitively expensive, especially for SCGs with neural-
network-based links. Fortunately, we find the GO Hessian is
easy to use in practice with AD and HVP. The key observa-
tions include (i) the Framework II objective, its GO gradient,
and its GO Hessian are all expectations over the same qγ(y);
and (ii) when estimated with one shared sample, they all act
the same as their counterpart/special-case in deterministic
optimization, except with the variable-nabla/variable-hess
serving as the first-order/second-order “derivative” at each
RV node. Therefore, based on one shared sample, one can
simply manipulate well-developed AD software (like Py-
Torch (Paszke et al. 2017) or TensorFlow (Abadi et al. 2015))
to guarantee correct variable-nabla/variable-hess for each
node, which in turn delivers an easy-to-use exploitation of
the one-sample-estimated GO Hessian via existing AD and
HVP techniques. Multi-sample-based estimation can be im-
plemented with parallel computations.

Figure 2(a) shows a demonstrative example, where, thanks
to conditional independence, we zoom in on a scalar RV
node y of the SCG for illustration, α denotes the distribution
parameters of that node (e.g., the shape and rate of a gamma
RV), and one sample is stochastically activated for subse-
quent forward pass. To exploit the one-sample-estimated GO
Hessian over the SCG with AD/HVP, one may employ the
general approach in Figure 2(b) to guarantee correct variable-
nabla/variable-hess for each node, which then delivers seam-
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(a) Forward/backward pass

class GOActivation(Function):
def forward(ctx, α):
y ∼ qα(y)
ctx.save_for_backward(α, y)
return y

def backward(ctx, grad_y):
α, y = ctx.saved_tensors
grad_α = grad_y ×

[
S[gqα(y)

α ]

+yS[∇yg
qα(y)
α ]−S[y∇yg

qα(y)
α ]

+αS[∇αg
qα(y)
α ]−S[α∇αg

qα(y)
α ]

]
return grad_α

(b) PyTorch-like pseudo code

Figure 2: Illustration of the simplicity in jointly implementing
the GO gradient and Hessian. A red circle is a RV node. Black
solid arrows indicate both the forward pass and parameters
γ of the SCG. Red dashed arrows show the backward pass
through the current node. S[·] is the stop-gradient operator.

less (double) back-propagation through that SCG (as the rest
computations are deterministic and well-defined in existing
AD software). Note simpler approaches than the one in Fig-
ure 2(b) potentially exist, e.g., one associated with the method
in Pearlmutter (1994) or one designed for a specific RV.

3.3 Second-order Optimization of Framework II
Benefiting from the low-variance and easy-to-use proper-
ties of the GO Hessian, one can readily combine it with
existing second-order methods for Framework I to develop
novel variants for Framework II in (2). Considering practical
applications like variational inference, we employ a more
common objective here for presentation, i.e., minγ L(γ) ,
Eq(x)qγ(y|x)[f(x,y)], where q(x) is the data distribution.

We employ the stochastic cubic regularization (SCR)
(Tripuraneni et al. 2018)8 that exploits stochastic gradi-
ent/Hessian information within its subroutine (see (5)). By
leveraging the GO gradient and our GO Hessian in place of
the classic gradient/Hessian, we present in Algorithm 1 a
new second-order method for Framework II, termed SCR-
GO. The Cubic-Subsolver and Cubic-Finalsolver (given in
Appendix F) minimize the local third-order Taylor approxi-
mation of Framework II, mimicking (5). The detailed conver-
gence analysis is provided in Appendix G, where a gamma-
related special case is discussed.

4 GO Hessian for Common RVs
Based on the variable-nablas summarized in Table 3 of Cong
et al. (2019) and the definitions in (8) and (11), one can de-
rive the variable-hess (or its components) for many kinds of
RVs,9 which are essential for easy-to-use curvature exploita-
tion over SCGs that are flexibly constructed by those RVs.
Although the derivations for most RVs are straight-forward,
we highlight two challenging but interesting RVs for demon-
stration following Cong et al. (2019), i.e., continuous non-rep
gamma and discrete negative binomial RVs.

8One may consider the SRVRCfree from Zhou and Gu (2020).
9Note for each RV type, one need only derive the variable-

hess/components for once, whose expressions are then reusable.

Algorithm 1 SCR-GO for minγ Eq(x)qγ(y|x)[f(x,y)]

Input: Batch sizesNg, NH , initialization γ0, total iterations
T , and final tolerance ε.

Output: ε-second-order stationary point γ∗ or γT+1.
for t = 0, 1, · · · , T do

Sample {xi}Ngi=1 and {x′j}NHj=1 from q(x)

Sample yi ∼ qγt(y|xi) and y′j ∼ qγt(y|x′j)
Estimate GO gradient g̃t with {xi,yi}

Ng
i=1

Estimate GO Hessian H̃t[·] with {x′j ,y′j}NHj=1

∆,∆← Cubic-Subsolver(g̃t, H̃t[·], ε)
γt+1 = γt + ∆

if ∆ > −
√
ε3/ρ/100 then

∆← Cubic-Finalsolver(g̃t, H̃t[·], ε)
γ∗ = γt + ∆ and break

4.1 GO Hessian for Non-rep Gamma RVs
To demonstrate the effectiveness of the proposed techniques,
we focus on situations with non-rep gamma RVs in our exper-
iments. Such a concentration is motivated by their broad prac-
tical applications (Boland 2007; Mendoza-Parra et al. 2013;
Al-Ahmadi 2014; Wright et al. 2014; Belikov 2017) and by
their fundamental utility in statistics and machine learning.
For example, many popular distributions can be reparame-
terized as gamma (Leemis and McQueston 2008), such as
exponential, chi-squared, inverse-gamma, log-gamma, beta,
and Dirichlet; other ones can be mixed via gamma (Zhou
et al. 2012; Zhou and Carin 2015), like gamma-normal-mixed
student-t and gamma-Poisson-mixed negative binomial. Ac-
cordingly, the presented techniques for gamma can be readily
extended to those gamma-related cases of Framework II.

As discussed following (8) and shown in Figure 2(b), three
components are crucial in constructing a GO Hessian for a
continuous RV y with PDF qα(y), that is,

gqα(y)α ,∇ygqα(y)α , and∇αgqα(y)α . (13)

For a gamma RV ŷ ∼ Gam(α, β), the distribution param-
eters α in general contain both the shape α and the rate β.
However, we notice the reparameterization of ŷ = y/β, y ∼
Gam(α, 1), with which one can leave the derivatives wrt β
to AD for simplicity and focus solely on the non-rep part
associated with α. Accordingly, we only need to calculate the
three components in (13) for qα(y) = Gam(y;α, 1). Moving
detailed derivations to Appendix H for clarity, we yield

gqα(y)α =− [log y − ψ(α)]γ(α, y)y1−αey

+ yeyα−22F2(α, α;α+ 1, α+ 1;−y)

∇ygqα(y)α =[ψ(α)− log y] + gqα(y)α (y − α+ 1)/y

∇αgqα(y)α =ψ(1)(α)γ(α, y)y1−αey

+[log y−ψ(α)]yeyα−22F2(α, α;α+1, α+1;−y)

−2yeyα−33F3(α, α, α;α+ 1, α+ 1, α+ 1;−y)

(14)

where ψ(α) is the digamma function, ψ(m)(x) the
polygamma function of order m, γ(α, y) the lower incom-
plete gamma function, and pFq(a1, · · · , ap; b1, · · · , bq;x) is
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Figure 3: (a-b) Demonstration of reverse KL divergences and SGD trajectories in α-β and µ-σ parameter spaces for Section
4.1. The subscript indicates the parameter space. SGDα,β leverages a learning rate of 10, while the more efficient SGDµ,σ only
uses 10−3. The red star denotes the optimum. 2,000 iterations are used to generate both trajectories, which are adapted to the
other side for clear comparisons. (c-d) Training objectives versus the number of oracle calls for Section 5.1. The same curve of
SGDµ,σ is shown in both plots for clear comparisons.

the generalized hypergeometric function. Reparameterizing
the rate β first, followed by substituting the components in
(14) into the approach in Figure 2(b), one enables easy-to-use
exploitation of GO Hessian with AD over a non-rep gamma
node. Figure 1 illustrates the low variance of our GO Hessian.

A Gradient-friendly Reparameterization. To model a
gamma node within a SCG, a naive method would parameter-
ize shape α=softplus(γα) and rate β=softplus(γβ), where
without loss of generality γ={γα, γβ} is considered as the
parameters of interest. However, we find empirically that
such a naive modeling may not be friendly to gradient-based
methods, especially when target shape and/or rate are large.
Figure 3(a) shows an example with the reverse KL objective
KL[Gam(y;α, β)||Gam(y; 200, 200)]; with that modeling,
SGD (labeled as SGDα,β) bounces between two slopes at the
bottom of the “valley” and advances slowly. Alternatively,
noticing that the valley bottom is approximately located in a
line where Gam(y;α, β) shares the same mean as the target,
we propose to reparameterize via mean µ and standard devia-
tion σ, i.e., qγ(y) = Gam(y; µ

2

σ2 ,
µ
σ2 ) with µ = softplus(γµ)

and σ = softplus(γσ). With this reparameterization, we ob-
tain an approximately decorrelated objective surface (see
Figure 3(b)) that is more friendly to gradient-based meth-
ods; it’s apparent SGD in the µ-σ space, termed SGDµ,σ,
converges to the optimum much faster.

4.2 GO Hessian for Discrete NB RVs
For a NB RV y ∼ qα(y)=NB(r, p), the distribution param-
eters α= {r, p} contain both the number of failures r and
the success probability p. From the definition in (11), three
components are necessary to calculate the GO Hessian, i.e.,
g
qα(y)
α , Dygqα(y)α , and ∇αgqα(y)α . Due to space constraints,

analytic expressions and detailed derivations are given in Ap-
pendix I. The low variance of the GO Hessian is demonstrated
in Figure 1.

5 Experiments
The proposed techniques are verified with challenging exper-
iments where non-rep gamma RVs are of interest. Generaliz-
ing Section 4.1, we first test our SCR-GO on minimizing the
reverse KL divergence between two gamma RVs. Next, we

consider mean-field variational inference for Poisson factor
analysis (PFA; which is closely related to the LDA (Blei, Ng,
and Jordan 2003)) (Zhou and Carin 2015; Zhou, Cong, and
Chen 2015). Finally concerning deep neural networks, the
SCR-GO is tested on training variational encoders, mimick-
ing the VAE (Kingma and Welling 2014), for PFA and its
deep generalization of the Poisson gamma belief network
(PGBN) (Zhou, Cong, and Chen 2016; Cong et al. 2017).

Experimental Settings. We follow (Xu, Roosta-
Khorasani, and Mahoney 2017; Tripuraneni et al. 2018;
Yu, Xu, and Gu 2018; Roosta et al. 2018; Kasai and
Mishra 2018) to show training objectives versus the number
of oracle calls (calculations of gradients and/or HVPs);
this is deemed a fair metric because it’s independent of
implementation-details/system-configurations and ideally an
HVP can “take about the same amount of computation as
a gradient” (Pearlmutter 1994).10 We compare SCR-GO to
standard SGD and the popular Adam (Kingma and Ba 2014)
that leverage the GO gradient. For both SGD and Adam,
learning rates from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}
are tested with the best-tuned results shown. Other set-
tings are given in Appendix J. Code will be available at
github.com/YulaiCong/GOHessian.

5.1 Minimizing the Reverse KL Divergence
Between Gamma RVs

To demonstrate the effectiveness of the µ-σ reparameteriza-
tion introduced in Section 4.1 and the efficiency achieved
from exploiting the curvature information via the GO Hes-
sian, we first consider a simplified example, with the objective
KL[Gam(y;α, β)||Gam(y; 200, 1)], for better introduction.
SGD, Adam, and our SCR-GO are compared within both
α-β and µ-σ parameter spaces.

10This is the ideal/theoretical situation for evaluation. However,
it may not hold for our current implementation, which uses the less
efficient 2-backward technique in (4) (due to the missing forward-
mode AD) and calculates special functions with a surrogate lib
(see Appendix H). The implementation also makes it impossible
for fair comparisons wrt wall-clock time. With our implementa-
tion/computer, a GO-HVP in gamma-related experiments is about 3
times more expensive than a GO gradient.
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Figure 4: Training curves of mean-field variational inference (a) and variational encoder (b-c) for PFA on MNIST. Variances are
estimated based on 5 random seeds. See Appendix J.2 and J.3 for more results.

The training curves of the compared methods are given in
Figures 3(c)-3(d). By comparing SGDα,β with SGDµ,σ in
Figure 3(c), it’s clear that the µ-σ reparameterization method
leads to a much faster convergence with smoother train-
ing curves, similar to those from deterministic optimization.
By contrast, SGDα,β visits both high and low KL values
frequently (bouncing within a valley bottom as shown in
Figure 3(a)), with a much slower convergence to the opti-
mum. Thanks to the exploited curvature information, our
SCR-GOα,β shows a clearly improved convergence rela-
tive to SGDα,β . When moving to the µ-σ space (see Figure
3(d)), our SCR-GOµ,σ delivers an even faster and more stabi-
lized convergence than its counterpart SCR-GOα,β and also
SGDµ,σ and Adamµ,σ, demonstrating the effectiveness of
both the µ-σ reparameterization and the curvature exploita-
tion via the GO Hessian.

5.2 Mean-field Variational Inference for PFA
For practical applications, we leverage the proposed tech-
niques to develop efficient mean-field variational inference
for the PFA, whose generative process is

pθ(x, z) : x ∼ Pois(x|Wz), z ∼ Gam(z|α0,β0),

where x is the count data variable, W the topic matrix with
each column/topic wk located in the simplex, i.e., wvk >
0,
∑
v wvk=1, z the latent code, and θ={W,α0,β0}. For

mean-field variational inference, we assume variational ap-
proximation distribution qφ(z)=Gam(z; µ

2

σ2 ,
µ
σ2 ) with φ=

{µ,σ}. Accordingly given training dataset {x1, · · · ,xN},
the objective is to maximize

ELBO(θ, {φi}) =
1

N

∑N

i=1
Eqφi (zi)

[
log

pθ(xi, zi)

qφi(zi)

]
.

The training curves from a well-tuned Adam optimizer and
our SCR-GO are shown in Figure 4(a) (see Appendix J.2
for more results). It’s clear that with the additional curvature
information exploited via GO-HVP, our SCR-GO exhibits a
faster convergence to a better local optimum, with a lower
variance than the well-tuned Adam optimizer.

5.3 Variational Encoders for PFA and PGBN
To test the effectiveness of the presented techniques when
combined with deep neural networks, we consider developing

a variational encoder for PFA mimicking the VAE, that is,

qφ(z|x)=Gam(z; µ
2

σ2 ,
µ
σ2 ),µ=NNµ(x),σ=NNσ(x), (15)

where NN(·) denotes a neural network and φ contains all the
parameters of NNµ(·) and NNσ(·). The objective is to maxi-
mize ELBO(θ,φ)=Eqφ(z|x)

[
log pθ(x, z)− log qφ(z|x)

]
.

Figures 4(b)-4(c) show the training objectives versus the
number of oracle calls and processed observations. It’s clear
that the proposed SCR-GO performs better than a well-tuned
Adam optimizer in terms of oracle calls and data efficiency,
when applied to a model with deep neural networks. The
better performance of SCR-GO is attributed to its exploita-
tion of the curvature information via the GO Hessian, which
takes into consideration the correlation among parameters
within pθ(x, z) and qφ(z|x) and utilizes an (implicit) adap-
tive learning rate mimicking the classical Newton’s method.

For further testing under more challenging settings with
a hierarchically-structured qγ(y) for Framework II in (2),
we consider developing a variational encoder for a 2-layer
PGBN. Specifically, with z = {z1, z2},

pθ(x, z) :

{
x ∼ Pois(x|W1z1), z1 ∼ Gam(z1|W2z2, c2),

z2 ∼ Gam(z2|α0,β0)

qφ(z|x) : z2 ∼ qφ2
(z2|z1), z1 ∼ qφ1

(z1|x),

where θ= {W1,W2, c2,α0,β0}, φ= {φ1,φ2}, and both
qφ2

(z2|z1) and qφ1
(z1|x) are constructed as in (15). Due

to space constraints, the experimental details and results are
moved to Appendix J.3, where one observes similar plots as
those in Figure 4, confirming the effectiveness and efficiency
of the presented techniques.

6 Conclusions
An unbiased low-variance Hessian estimator, termed GO Hes-
sian, is proposed to efficiently exploit curvature information
for an expectation-based objective over a SCG, with con-
tinuous rep/non-rep internal nodes and continuous/discrete
leaves. Containing the deterministic Hessian as a special case,
the GO Hessian is easy-to-use with AD and HVP, enabling a
low cost second-order optimization over deep SCGs. Based
on the proposed GO Hessian, a new second-order optimiza-
tion method is proposed for the expectation-based objective,
which empirically performs better than a well-tuned Adam
optimizer in challenging situations with non-rep gamma RVs.

12066



Acknowledgments
We thank the anonymous reviewers for their constructive
comments that helped improve the paper. The research was
supported in part by DARPA, DOE, NIH, NSF and ONR. The
Titan Xp GPU used was donated by the NVIDIA Corporation.

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro,
C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.;
Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz,
R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.; Monga, R.;
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