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Abstract
Level Set Estimation (LSE) is an important problem with ap-
plications in various fields such as material design, biotech-
nology, machine operational testing, etc. Existing techniques
suffer from the scalability issue, that is, these methods do not
work well with high dimensional inputs. This paper proposes
novel methods to solve the high dimensional LSE problems
using Bayesian Neural Networks. In particular, we consider
two types of LSE problems: (1) explicit LSE problem where
the threshold level is a fixed user-specified value, and, (2)
implicit LSE problem where the threshold level is defined
as a percentage of the (unknown) maximum of the objec-
tive function. For each problem, we derive the correspond-
ing theoretic information based acquisition function to sam-
ple the data points so as to maximally increase the level set
accuracy. Furthermore, we also analyse the theoretical time
complexity of our proposed acquisition functions, and sug-
gest a practical methodology to efficiently tune the network
hyper-parameters to achieve high model accuracy. Numerical
experiments on both synthetic and real-world datasets show
that our proposed method can achieve better results compared
to existing state-of-the-art approaches.

Introduction
In engineering practice, there are numerous problems which
require accurately identifying the regions where the value
of a black-box expensive function is higher or lower than
a given threshold level. A specific example is alloy design
where the task is to determine the regions of alloy compo-
sitions that have a desired property (e.g. tensile strength)
above a certain level. To solve this, the desired property
of a number of alloy compositions are measured and the
compositions of interest can be estimated from these mea-
surements. As the measurement process is expensive, thus it
is required to minimize the total number of measurements
while still maintaining accurate identification for the region
of interest. Another example is the algorithmic assurance
problem, with the goal being to identify the range of in-
puts where a machine learning model performs as expected.
Specifically, before deploying a machine learning model, it
is of interest to identify the range of inputs where the devi-
ation between the machine learning model and the ground

*Correspondence to: huong.ha@rmit.edu.au
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

truth is lower than a user-specified threshold. A traditional
approach is to label the data in the applied domain and es-
timate the region of interest. As the data labelling process
is costly, it is desired to accurately identify this region with
a minimal number of sampled data. Other applications of
the level set estimation problem can be found in the field
of environmental monitoring, manufacturing quality control
process, biotechnology, etc (Bryan et al. 2005; Gotovos et al.
2013; Bogunovic et al. 2016; Zanette, Zhang, and Kochen-
derfer 2019; Iwazaki, Inatsu, and Takeuchi 2019).

In the statistics and machine learning literature, this prob-
lem is called the Level Set Estimation (LSE) problem. To
solve an LSE problem, the general idea is to formulate it as
an active learning problem. First, a small number of mea-
surements of the black-box function are taken to construct a
training dataset, and a surrogate model is learned from this
training dataset to predict the measurements of all the un-
measured points in the domain. Second, an acquisition func-
tion is constructed based on the surrogate model to decide
which data point in the domain should be next measured.
The black-box function is then evaluated at the chosen data
point, and the training dataset is updated with the new mea-
surement. This iterative process continues until the measur-
ing budget is depleted. The regions of interest are then esti-
mated using the learned surrogate model.

There have been a number of research works proposing
new methods to tackle the LSE problem, however, all of
these approaches are limited due to the use of Gaussian
process (Rasmussen and Williams 2006) as the surrogate
model. In particular, it is widely known that standard Gaus-
sian process (GP) (i) does not scale well with high dimen-
sional inputs due to its cubic time complexity, and, (ii) has
low representational power because of the limited choices
of kernels (Krauth and E. Bonilla 2017). In this work, we
address this issue by suggesting the use of Bayesian Neu-
ral Network (BNN) as the surrogate model. Bayesian neural
network is a special type of neural network that can pro-
duce a probability distribution over the weight parameters
(MacKay 1992; Neal 1995), thus, it can provide both the
prediction and prediction uncertainty for any new data point.

We first consider the explicit LSE problem where the
threshold level is a fixed user-specified value. Using the un-
certainty estimates from the BNN, we derive a theoretic in-
formation based acquisition function which can sample the
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data points that help to most accurately classify the data
points in the domain into two sets with outputs below and
above the threshold level. We next address the implicit LSE
problem where the threshold level is defined as a percentage
of the (unknown) maximum of the objective function. As
the threshold level is unknown, the challenge with the im-
plicit LSE problem is that we need to sample the data points
that help to most accurately (1) learn the implicit threshold
level (or the objective function maximum), and, (2) classify
the data points with respect to this estimated threshold level.
To solve this problem, we unify the two goals into one goal
which is to sample the data point for which if its function
value is known, the estimated super- and sub-level set are
most accurate. We then construct a novel theoretic informa-
tion based acquisition function that aims to reduce the un-
certainty of the estimated super(sub)-level set, thus, helps to
maximally increase the classification accuracy. Finally, we
analyse the theoretical time complexity of our proposed ac-
quisition functions, and suggest a practical methodology to
efficiently tune the BNN hyper-parameters.

Contributions The main contributions of our paper can be
summarized as follows:

• Proposing for the first time the use of BNN to tackle the
LSE problems for high dimensional inputs,

• Deriving two novel sampling methodologies to address
the explicit and implicit LSE problems,

• Demonstrating the effectiveness of our proposed methods
on both synthetic and real-world problems and comparing
with state-of-the-art approaches.

Related Work There are various research works aiming
to tackle the LSE problem. The work in (Bryan et al. 2005)
addresses the explicit LSE problem by suggesting the Strad-
dle heuristic that aims to select the data point that is both
predicted to be near the threshold level and also uncertain
in terms of its predicted function value. The work was then
extended in (Bryan and Schneider 2008) to handle the case
when the black-box objective function is a composite func-
tion. Later, the work in (Gotovos et al. 2013) proposed an
algorithm that can solve both the explicit and implicit LSE
problems. Recently, the work in (Shekhar and Javidi 2019)
proposed a new method for the explicit LSE problem that
achieves better theoretical guarantee compared to state-of-
the-art methods whilst maintaining a reasonable computa-
tional complexity. There are also various works aiming to
address some compplex settings of the explicit LSE prob-
lem such as finding the regions when the probability of
the function values larger than a threshold (Zanette, Zhang,
and Kochenderfer 2019), or when the inputs are uncertain
(Iwazaki, Inatsu, and Takeuchi 2019) or cost dependent
(Inatsu et al. 2019). All of these works rely on Gaussian
Process as the surrogate model, and therefore, suffer from
the problem of scalability. In the experimental results, we
will demonstrate that our proposed approaches outperform
these works especially on high dimensional problems.

In a closely related context, there are research works in
the field of Bayesian Optimization (BO) with the goal of ob-

taining the argmax of the black-box objective function using
a minimal numbers of sampled data (Snoek, Larochelle, and
Adams 2012; Shahriari et al. 2016). The algorithm TRUVAR
(Bogunovic et al. 2016) was developed to unify the explicit
LSE and BO problem. There are also works that use the
ideas behind the LSE problem to develop safe BO method-
ologies (Sui et al. 2015, 2018). Finally, there is the work
in (Garnett et al. 2012) considering the problem of active
search, with the goal to sample as many points as possible
from one of the level set domains.

Problem Statement and Background
Let us consider an expensive black-box function f : X →
R, where X is a discrete compact subset of Rd. We assume
that we only have noisy measurements of f(x), i.e. querying
f at the data point x ∈ X results in the noisy function value
f(x) + ε where the noise ε follows the normal distribution
N (0, σ2

ε ) and is independent from x or f(x). We consider
two types of LSE problems: explicit LSE and implicit LSE:
• The explicit LSE problem is to classify all the data points

in X into two subsets based on a user-specified threshold
level h (h ∈ R), i.e. to classify ∀x ∈ X into a super-
level set H = {x ∈ X | f(x) > h} and a sub-level set
L = {x ∈ X | f(x) ≤ h}.

• The implicit LSE problem is to classify all the data points
in X into two subsets based on the relation with the func-
tion maximum, i.e. to classify ∀x ∈ X into a super-level
set H = {x ∈ X | f(x) > lmaxx∈X f(x)} and a sub-
level set L = {x ∈ X | f(x) ≤ lmaxx∈X f(x)} where
l (0 ≤ l ≤ 1) is a user-specified threshold.

Given a budget of T function evaluations, our goal is to de-
sign sequential query point selection strategies to achieve the
highest classification accuracies for the two LSE problems.

Bayesian Neural Networks Bayesian neural networks
(BNN) provide a probabilistic interpretation of neural net-
works by inferring probability distribution of the networks’
weights (MacKay 1992; Neal 1995). Given a training data
Dtr = {xi, yi}Ni=1, a BNN can provide the posterior distri-
bution p(ω|Dtr) with ω being the neural network weights.
This special property of BNNs offers a way to compute
the uncertainty of the network’s prediction. In particular, for
each data point x, the predicted distribution p(y|x,Dtr) can
be inferred from the posterior distribution p(ω|Dtr) using
the formula p(y|x,Dtr) =

∫
p(y|x, ω)p(ω|Dtr) dω.

In practice, performing exact inference to obtain p(ω|Dtr)
is generally intractable, hence we use a variational approxi-
mation technique to approximate this posterior. Specifically,
we employ the MC-dropout method (Gal and Ghahramani
2016). There are two main reasons for this choice. First, it
is both scalable and theoretically guaranteed, i.e. it is shown
to be equivalent to performing approximate variational in-
ference to find a distribution q∗θ(ω) in a tractable family
that minimizes the Kullback-Leibler divergence to the true
model posterior p(ω|Dtr) (Gal and Ghahramani 2016). Sec-
ond, the method can directly provide a reasonable amount of
samples ω̂j from the approximate posterior q∗θ(ω), which is
a key ingredient of our proposed sampling strategy.
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Level Set Estimation with Bayesian Neural
Network

The Explicit LSE Problem
One simple solution is to formulate the explicit LSE prob-
lem as a classification active learning problem that aims to
efficiently train a binary classifier to predict whether a data
point belongs to the super- or sub-level set. However, this ap-
proach is infeasible in the important cases when the thresh-
old h is close to minx∈X f(x) or maxx∈X f(x). In these
cases, the data points in the domain X mostly belong to one
single class, thus, any standard classification active learning
method results in incorrect classification for the minor class.

To overcome this issue, we formulate the explicit LSE
problem as a regression active learning problem, i.e. actively
train a network to predict the function value f(x), ∀x ∈ X .
Using the network predictionA(x), we can approximate the
super-level set H and sub-level set L as Ĥ = {x ∈ X |
A(x) > h} and L̂ = {x ∈ X | A(x) ≤ h}. However,
unlike the standard regression active learning problem that
aims to train a network to most accurately predict the func-
tion values for all data points, our goal is to train a network
to most accurately predict the function values of only those
data points that affect the level set classification accuracy.
At iteration t + 1, given the current observed data Dt, us-
ing the mutual information (Houlsby et al. 2011; Gal, Islam,
and Ghahramani 2017) as a way to represent uncertainty, we
propose the acquisition function as,
αexp(x;Dt) = I(Iy;ω|x,Dt)

= H(Iy|x,Dt)− Ep(ω|Dt)[H(Iy|x, ω)], (1)
where y denotes the predicted function value corresponding
to the data point x, Iy is equal 1 if y > h and equal 0 other-
wise, H(Iy|x,Dt) denotes the entropy of Iy given the data
point x and the current observed data Dt, and H(Iy|x, ω)
denotes the entropy of Iy given x and the model weights ω.
The value of αexp(x;Dt) is highest when the BNN is most
uncertain whether x belongs to the super- or sub-level set.

Using the fact that p(Iy = c|x,Dt) =
∫
p(Iy =

c|x, ω)p(ω|Dt) dω, we can rewrite αexp(x;Dt) as,

αexp(x;Dt) = −
∑

c∈{0,1}

(∫
p(Iy = c|x, ω,Dt)p(ω|Dt) dω

× log

∫
p(Iy = c|x, ω,Dt)p(ω|Dt) dω

)
+ Ep(ω|Dt)

∑
c∈{0,1}

p(Iy = c|x, ω) log p(Iy = c|x, ω),

where c ∈ {0, 1} and p(Iy = c|x, ω,Dt) is set to be c if
y|x, ω is larger than h, and 1− c vice versa. Finally, approx-
imating the true posterior p(ω|Dt) as the MC-dropout poste-
rior q∗θ(ω), and using the stochastic forward passes {ω̂j}Mj=1

provided by MC-dropout, we can compute αexp(x;Dt) as,

αexp(x;Dt) ≈ −
∑

c∈{0,1}

( 1

M

∑
M

p̂jc

)
log
( 1

M

∑
M

p̂jc

)
+

1

M

∑
c,j

p̂jc log p̂jc, (2)

Algorithm 1 ExpHLSE: Explicit High Dimensional LSE
via Bayesian Neural Network

1: Input: Function f , domain X , threshold h, Bayesian
neural networkM, acquisition function αexp(x), initial
observations Dinit, evaluation budget T .

2: Output: Estimated super- and sub-level sets Ĥ , L̂.
3: Initialize D0 = Dinit,
4: for t = 1, 2, . . . , T do
5: Train the MC-Dropout BNN using Dt−1
6: Generate M forward passes {ω̂j}Mj=1 from the BNN
7: Find x∗ = argmax αexp(x)(x;Dt−1) using Eq. (2)
8: Update observations Dt = Dt−1 ∪ {x∗, f(x∗)}
9: end for

10: Train the BNN using DT
11: Compute the estimated super- and sub-level sets Ĥ =

{x ∈ X | A(x) > h} and L̂ = {x ∈ X | A(x) ≤ h}
where A(x) is the BNN prediction for the data point x.

with p̂jc being the probability of input x with model parame-
ters ω̂j ∼ q∗θ(ω) to be in class c.

Our proposed algorithm that solves the explicit high di-
mensional LSE problem using BNN, ExpHLSE, is pre-
sented in Algorithm 1.

Remark 1. It is worth noting that instead of using the
mutual information, other criteria such as variation ration
(Freeman 1965) and entropy (Shannon 1948) can also be
used to construct the acquisition function.

The Implicit LSE Problem
In the implicit LSE problem, the goal of the sampling pro-
cess is to select the data point with two goals: 1) learn the
unknown threshold level most accurately, and, 2) classify the
data points into the super- and sub-level sets corresponding
to the estimated threshold level most accurately. To unify
these two goals, we aim to sample the data point for which
if its function value is known, the estimated super- and sub-
level set are most accurate. For ∀x ∈ X , we denote f̃(x) as
a random variable denoting all the possible values of f(x).
We then define a random variable H̃(x) as,

H̃(x) = {x′ ∈ X | f̂x(x′) > lmax
x′∈X

f̂x(x′)}, (3)

where

f̂x(x′) =

{
Ef̂(x′)∼p(f̂(x′)|Dt)

f̂(x′) if x′ 6= x

f̃(x) if x′ = x
, ∀x′ ∈ X ,

with f̂(x′) is a random variable representing the estimated
value of f(x′). With this definition, for ∀x ∈ X , f̂x(x′)
represents all the possible functions f(x′) when the value of
f(x) varies, thus, the random variable Ĥ(x) represents all the
possible super-level sets H when the value of f(x) varies.
To obtain an accurate estimated super(sub)-level set within
a minimal number of sampled data, the goal is to sample the
data point x for whom the random variable H̃(x) is most
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uncertain. As H̃(x) is a random variable representing sets
of data points, evaluating which H̃(x) being the most uncer-
tain is intractable. Thus, we simplify by defining a new ran-
dom variable G̃(x) representing the cardinality of the ran-
dom variable H̃(x), i.e. G̃(x) = |H̃(x)| . Then we can sam-
ple the data point x whose the corresponding random vari-
able G̃(x) is most uncertain. To characterize the uncertainty
of the random variable G̃(x), we compute its mutual infor-
mation (Houlsby et al. 2011; Gal, Islam, and Ghahramani
2017). Thus, the acquisition function can be formulated as,

αimp(x;Dt) = I[G̃(x);ω|x,Dt]
= H[G̃(x)|x,Dt]− Ep(ω|Dt)[H[G̃(x)|x, ω]],

(4)
where I[.] is the mutual information operator and H[.] is the
entropy operator. The value of αimp(x;Dt) is highest when
the BNN is most uncertain in estimating the value of G̃(x).

Firstly, we show how to approximate the first term
in Eq. (4), H[G̃(x)|x,Dt]. Using the entropy formula,
H[G̃(x)|x,Dt] can be computed as,

H[G̃(x)|x,Dt]

= −
∑

q∈Q(x)
p(G̃(x) = q|x,Dt) log p(G̃(x) = q|x,Dt),

where Q(x) is a set consisting of all the possible val-
ues of G̃(x) when f(x) varies. Using the property
p(G̃(x) = q|x,Dt) =

∫
p(G̃(x) = q|x, ω)p(ω|Dt) dω

and the stochastic forward passes {ω̂j}Mj=1 generated by
MC-dropout, we can approximate p(G̃(x) = q|x,Dt)
as 1/M

∑M
j=1 p(G̃(x) = q|x, ω̂j). Therefore, the term

H[G̃(x)|x,Dt] can finally be approximated as,

H[G̃(x)|x,Dt] ≈−
∑

q∈Q(x)

( 1

M

∑M

j=1
p(G̃(x) = q|x, ω̂j)

)
× log

( 1

M

∑M

j=1
p(G̃(x) = q|x, ω̂j)

)
,

(5)
Similarly, the second term Eω∼p(ω|Dt)[H[G̃(x)|x, ω]] in

Eq. (4) can be approximated as,

Eω∼p(ω|Dt)[H[G̃(x)|x, ω]] ≈ 1

M

∑M

j=1
H[G̃(x)|x, ω̂j)]]

≈ 1

M

∑
j=1,...,M
q∈Q(x)

p(G̃(x) = q|x, ω̂j)) log p(G̃(x) = q|x, ω̂j)).

(6)
Our proposed implicit high dimensional LSE algorithm

with BNN, ImpHLSE, is presented in Algorithm 2.

Remark 2. If there are multiple data points with the same
mutual information I[G̃(x);ω|x,Dt], we select the data
point with the smallest set

⋂M
j=1 H̃j(x), i.e. the data point

that makes the cardinality |
⋂M
j=1 H̃j(x)| to be smallest. This

is to ensure that the selected data point is also the data point
that causes the set H̃(x) to be most uncertain.

Algorithm 2 ImpHLSE: Implicit High Dimensional LSE
via Bayesian Neural Network

1: Input: Function f , domain X , threshold ratio l,
Bayesian neural network M, acquisition functions
αimp(x), initial observationsDinit, evaluation budget T .

2: Output: Estimated super- and sub-level sets Ĥ and L̂.
3: Initialize D0 = Dinit,
4: for t = 1, 2, . . . , T do
5: Train the MC-Dropout BNN using Dt−1
6: Generate M forward passes {ω̂j}Mj=1 from the BNN
7: Compute all the possible values of the random vari-

able G̃(x) for each data point x ∈ X using {ω̂j}Mj=1

8: Compute the probability distribution of G̃(x)
9: Compute x∗ = argmax αimp(x;Dt−1) using Eq. (4)

10: Update observations Dt = Dt−1 ∪ {x∗, f(x∗)}
11: end for
12: Train the BNN using DT
13: Compute the estimations of the super- and sub-level sets

as Ĥ = {x ∈ X | A(x) > lmaxx∈X A(x)} and L̂ =
{x ∈ X | A(x) ≤ lmaxx∈X A(x)} where A(x) is the
BNN prediction for the data point x.

Remark 3. Similar to the explicit LSE problem, instead of
using the mutual information, other criteria such as varia-
tion ration (Freeman 1965) and entropy (Shannon 1948) can
also be used to construct the acquisition function.

BNN Hyper-parameters Tuning
In general, training a neural network requires a variety of
hyper-parameters which contribute to their estimation ac-
curacies. Since our proposed methods belong to the ac-
tive learning scheme, the data keeps growing, and thus the
network hyper-parameters need to be updated to avoid is-
sues such as under-fitting, improper parameter optimiza-
tion. In the sequel, we will denote the hyper-parameters
corresponding to the BNN architecture such as the archi-
tecture type, number of layers or neurons as major hyper-
parameters and other hyper-parameters such as learning rate,
drop-out rate as minor hyper-parameters. We then use the
incremental neural architecture search (iNAS) method de-
veloped in (Geifman and El-Yaniv 2019) to tune the major
hyper-parameters and a grid-search method to tune the mi-
nor hyper-parameters. In particular, at iteration t, we split
the current observed data Dt into a training and a validation
set, and initialize the BNN architecture with fixed major and
minor hyper-parameters. We then generate a set of poten-
tial candidates for the major hyper-parameters provided by
iNAS given the initial major hyper-parameters, and a grid for
the minor hyper-parameters. We then choose the major and
minor hyper-parameters that optimize the mean square error
on the validation dataset. The whole current observed data
Dt is then trained again with these optimal hyper-parameters
to generate the BNN. Finally, note that when training the
BNN, we use the standard loss function for regression prob-
lem, i.e. the loss function is the mean square error between
the model predicted output and the ground-truth value.
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Time Complexity of The Proposed Algorithms
The Proposed Explicit LSE Algorithm The time com-
plexity of the proposed ExpHLSE acquisition fucntion de-
veloped in Eqs. (1), (2) isO(M |X |), whereM is the number
of stochastic forward passes by MC-dropout, and |X | is the
cardinality of the function domain X .

The Proposed Implicit LSE Algorithm The time com-
plexity of the proposed ImpHLSE acquisition function in
Eqs. (4), (5), (6) isO(4|X |+ 4M |X |) where M is the num-
ber of stochastic forward passes by MC-dropout, and |X | is
the number of instances in X . This time complexity is com-
puted by splitting the computation of the acquisition func-
tion αimp(x;Dt) into 3 steps. The first step, which is to com-
pute all the possible values of G̃(x) for ∀x ∈ X when f̃(x)
varies, has the time complexity ofO((M + 3)|X |). The sec-
ond step, which is to compute the probability distribution of
G̃(x), has the time complexity ofO((M + 1)|X |). The final
step, which is to compute the two entropy terms, which has
the time complexity of O(2M |X |).

Experimental Results
In this section, we evaluate our proposed methods on three
benchmark synthetic functions and three real-world prob-
lems. The details about the synthetic functions and the real-
world problems are in the subsequent sections. For all the
problems with dimension d, the optimization process is ini-
tialized with an initial 3d points (for synthetic functions),
and 5d points (for real-world problems) sampled following
a latin hypercube sample scheme (Jones 2001). For all the
tasks, the experiments were repeated 5 times for the syn-
thetic functions and 3 times for the real-world experiments.
All the experiments are running on multiple servers where
each server has multiple Tesla V100 SXM2 32GB GPUs.

We compare our proposed methods, ExpHLSE and Im-
pHLSE, with the state-of-the-art LSE methods. Specifically,
for the explicit LSE problem, three baselines we compare
against are: (1) Straddle in (Bryan et al. 2005); (2) LSEexp
in (Gotovos et al. 2013); and (3) TruVAR in (Bogunovic
et al. 2016). For the implicit LSE problem, we compare
against the method LSEimp in (Gotovos et al. 2013) as this is
the only method developed to solve the implicit LSE prob-
lem. For the LSEexp and LSEimp methods, as suggested in
(Gotovos et al. 2013), the exploration-exploitation param-
eters β1/2

t is chosen to be 3 and the accuracy parameter ε
is chosen to increase exponentially from 2% to 20% of the
maximum value of each dataset. For the TruVAR method,
we use same setting as suggested in (Bogunovic et al. 2016),
i.e. we set β1/2

t = log(|X |t2), η(1) = 1, r = 0.1 and δ̄ = 0.
For GP-based methods, we use the Matérn 5/2 kernel for the
GP and we fit the GP using the Maximum Likelihood Es-
timation method. We also use multi-start to ensure the so-
lution of the optimizer does not stuck in a local minima.
For our proposed methods, the BNN we use is a feedfor-
ward neural network (FNN). The major hyper-parameters
for the iNAS tuning process are the number of layer and
the number of neurons per layer whilst the minor hyper-
parameters are the learning rate and the drop-out rate. The

iNAS tuning process is initialized with a FNN with 1 layer
and 256 neurons/layer. More details of the hyper-parameter
tuning process are in the supplementary material. Finally,
for the GP-based methods (except TruVAR), the batch size
is set to 1 and for our proposed BNN based methods and
TruVAR, the batch size is set to 10d with d being the di-
mension of the LSE problem. The batch size is the number
of data points selected by the acquisition function at each
iteration. Setting batch size as 10d means we select 10d
data points with highest acquisition function values. Note
that this setting is in favour of the GP-based methods, as
the smaller the batch size, the better the performance due
to early feedback. Our source code is publicly available at
https://github.com/HuongHa12/HighdimLSE.

Synthetic Functions
We evaluate the performance of the methods on three ten di-
mensional benchmark test functions: Ackley10, Levy10 and
Alpine10. As their original function domains are continu-
ous, thus we follow the common practice in (Gotovos et al.
2013; Bogunovic et al. 2016) which is to randomly select
a large number of data points in the continuous domains to
generate the corresponding discrete domains X . In particu-
lar, for each problem with dimension d, we select 10000d
data points. For the explicit LSE problem, for each function,
the threshold h is set in such a way that results in the vol-
ume of the super-level set being 20% of the domain X . For
the implicit LSE problem, we set the implicit threshold ra-
tio l in such a way that makes lmaxx∈X f(x) to be equal
to the threshold h in the explicit LSE problem. This is to
enable us to compare the two settings. Same with previous
works, to measure the effectiveness of the LSE methods, we
use the F1-score (i.e., the harmonic mean of precision and
recall) with respect to the true super- and sub-level sets. The
method resulting in the higher F1-score is the better method.

In Figure 1, we compare the performance of our pro-
posed methods ExpHLSE and ImpHLSE and other base-
lines. Note that we do not have the performance of TruVAR
as its computation time is prohibitive in these cases. Besides,
it is also worth noting that the LSEimp method has a special
stopping condition, thus, it only runs for a limited number of
iterations. For the explicit LSE problem, it can be seen that
ExpHLSE outperforms all baselines on all three functions,
especially on the function Ackley10. For the implicit LSE
problem, our method ImpHLSE also outperforms LSEimp
significantly on Levy10 and Ackley10, and performs sim-
ilarly on Alpine10. It is interesting to observe that all the
baseline methods perform poorly on the function Ackley10
for both LSE problems. This can be explained by the low
representational power of GP, in particular, the number of
basic kernels (e.g. RBF, Matérn, polynomial) for GP is lim-
ited, and the kernel methods generally encounter the curse
of dimensionality issue when learning complex functions.

Material Design
Alloys are produced by mixing many elements to achieve
properties that are not possible by a single element. We con-
sider a special alloy that consists of 16 elements and the sum
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Figure 1: Three synthetic benchmark functions: F1-score for super-/sub-level set for explicit LSE (top row) and implicit LSE
(bottom row). Our proposed methods are in blue while baselines are in other colors. Plotting mean and standard error over 5
repetitions. Method with higher F1-score is better.

Figure 2: Material Design: F1-score for super-/sub-level set
for explicit LSE (left plot) and implicit LSE (right plot). Our
proposed methods are in blue while baselines are in other
colors. Plotting mean and standard error over 3 repetitions.
Method with higher F1-score is better.

of all elements is 100%. We aim to find the element compo-
sitions that achieve the desired properties, that is, when cast
a room temperature (27o), these composition results in an
Face-Centered-Cubic (FCC) proportion of at least 95%. This
problem can be formulated as an explicit or implicit LSE
problem for which the explicit threshold level h is set as 0.95
or the implicit threshold ratio l is set as 0.95. Same with the
current practice in material design, we use the Thermo-Calc
software to assist in computing the thermochemical hetero-
geneous phase equilibria and conducting analysis for evalu-
ating the FCC score of each element composition.

In Figure 2, we evaluate our proposed methods and other
baselines using this alloy design problem. For the explicit
LSE problem (left plot), our proposed method ExpHLSE
outperforms other baseline methods significantly. In par-
ticular, ExpHLSE can achieve an F1-score of 90% within
300 sampled data while all the baseline methods can only
achieve F1-scores of approximately 65% − 80% within the
same number of sampled data. For the implicit LSE prob-
lem (right plot), our proposed method ImpHLSE also out-
performs LSEimp by a very high margin. In this particular
problem, because of its designed classification methodol-
ogy, LSEimp does not identify any data point belonging to
the super-level set, and hence, results in an F1-score of 0.

Figure 3: Protein Selection: F1-score for super-/sub-level set
for explicit LSE (left plot) and implicit LSE (right plot). Our
proposed methods are in blue while baselines are in other
colors. Plotting mean and standard error over 3 repetitions.
Method with higher F1-score is better.

Protein Selection
In biotechnology, one of the important tasks is to construct
new functional proteins by artificially modifying amino acid
sequences of proteins (Karasuyama et al. 2018; Inatsu et al.
2019). Bio-engineers need to identify the region in the pro-
tein space where the protein satisfies the required functional
properties. For this task, we use the Rhodopsin-family pro-
tein dataset provided in (Karasuyama et al. 2018). This fam-
ily of proteins are commonly used in optogenetics as it can
absorb a light with some certain wavelengths. The goal of
this experiment is to estimate the region in the protein fea-
ture space where the absorption wavelength is sufficiently
large for optogenetics usage. This dataset contains 796 pro-
teins with each protein having an amino acid sequence vec-
tor and a scalar absorption wavelength output. Our goal is
to identify the region of protein that (a) has the absorption
wavelength larger than 562 (explicit LSE), or, (b) has the
absorption wavelength larger than 90.4% of the maximum
absorption wavelength (implicit LSE).

In Figure 3, we compare the performance of our proposed
methods ExpHLSE and ImpHLSE with other baselines us-
ing this protein selection problem. For the explicit LSE prob-
lem, our proposed method ExpHLSE outperforms TruVAR
and LSEexp significantly whilst performs slightly better than
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LSEimp. Note that for this problem, LSEexp completes the
level set classification process very early (within a small
number of sampled data), however, its classification accu-
racy is low. This can be explained that the GP approximation
is not too accurate, and hence, it classifies the data points
wrongly and also causes the early termination of LSEexp. For
the implicit LSE problem, LSEimp also stops the classifica-
tion process early and it can achieve a maximum F1-score of
40% whilst our proposed method ImpHLSE can achieve a
maximum F1-score of 80% within 300 sampled data points.

Algorithmic Assurance
We consider the algorithmic assurance problem, which is
to find the domain of inputs where a given machine learn-
ing modelM will perform as users expected (Sawade et al.
2010). Specifically, given X being the domain where the
machine learning model M is applied, the problem is to
find the domain Lh = {x ∈ X | |yx − M(x)| ≤ h} or
Ll = {x ∈ X | |yx − M(x)| ≤ lmax |yx − M(x)|},
where yx is the true label of the data point x, M(x) is
the predicted label by the machine learning model, and h, l
are user-specified thresholds. This problem corresponds to
the explicit and implicit LSE problem where the black-box
function f(x) is the deviation between the machine learning
model output and the ground truth. The goal here is to esti-
mate the domain Lh or Ll using the least number of ground
truth sampled from the applied domain X . For the explicit
LSE problem, the threshold h is set in such a way that results
in the volume of the sub-level set Lh being 80% of the do-
main X . For the implicit LSE problem, the implicit thresh-
old ratio l is set in such a way that makes lmaxx∈X f(x) to
be equal to the threshold h in the explicit LSE problem.

For this algorithmic assurance problem, we consider the
problem of predicting the performance of highly config-
urable software systems. We aim to perform an algorithmic
assurance analysis on a state-of-the-art machine learning
model of predicting software performance, namely Deep-
Perf (Ha and Zhang 2019). We want to estimate the sub-
level sets where DeepPerf performs as expected on differ-
ent datasets (i.e. applied domain X ). We use two benchmark
datasets published in (Siegmund et al. 2015) for the soft-
ware performance prediction problem: HSMGP (3456 data
points) and HIPACC (13485 data points). The input dimen-
sions of HSMGP and HIPACC are 14, and 33, respectively.

In Figure 4, we show the performance of our proposed
methods and other baselines. For the explicit LSE prob-
lem, our method ExpHLSE outperforms all baselines on
all datasets. It especially performs better than Straddle and
TruVar by a high margin. For the implicit LSE problem,
our method ImpHLSE also outperforms the state-of-the art
LSEimp significantly for both datasets.

Scope and Limitations
Low Dimensional LSE The proposed BNN approaches
might be worse than the GP based methods when the dimen-
sion of the LSE problem is low or when the objective func-
tion is very simple. We ran the experiments with the func-
tions Branin (d=2), Hartman3 (d=3) and the results show

Figure 4: Algorithmic Assurance: F1-score for super-/sub-
level set for explicit LSE (top row) and implicit LSE (bot-
tom row). Our proposed methods are in blue while baselines
are in other colors. Plotting mean and standard error over 3
repetitions. Method with higher F1-score is better.

that the GP-based approaches are better than the BNN ap-
proaches. Our rule of thumb is that when the input dimen-
sion is higher than 10, the BNN-based approaches perform
better than the GP-based approaches and vice versa.

Run Time The run time of the BNN-based approaches,
which includes both the hyper-parameter tuning and the
BNN training process, is approximately 5-16 hours for each
experiment. Specifically, it takes 1-4 hours each time tuning
hyper-parameters and several minutes each time training the
BNN; and for each experiment, with the batch size of 10d,
we only need to tune and train 3-5 times for the evaluation
budget used. On the other hand, the run time of the GP-based
methods, which includes the GP hyperparameter tuning and
fitting process, is approximately 1-24 hours for each experi-
ment. The slow run time of the GP-based methods is due to
two reasons: 1) the batch sizes of the GP-based methods are
set as 1 to achieve the best performance, and, 2) the sample
budgets are large (as the input is high dimensional) and the
GP fitting process is slow when the sampled data is large (GP
complexity is cubic in the number of sampled data) (Krauth
and E. Bonilla 2017).

Conclusion
This paper proposes novel methods to solve the implicit and
explicit LSE problems using Bayesian Neural Networks. Us-
ing the uncertainty provided by the BNN, we derive new ac-
quisition functions to sample data points and estimate the
super- and sub-level sets in the most efficient manner. We
also suggest a practical methodology to efficiently tune the
network hyper-parameters to achieve high model accuracy.
Numerical experiments on both synthetic and real-world
datasets show that our proposed methods can achieve bet-
ter results compared to state-of-the-art approaches.
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