
Submodel Decomposition Bounds for Influence Diagrams

Junkyu Lee1,2, Radu Marinescu2, Rina Dechter1

1 University of California Irvine
2 IBM Research

junkyul@uci.edu, radu.marinescu@ie.ibm.com, dechter@ics.uci.edu

Abstract
Influence diagrams (IDs) are graphical models for repre-
senting and reasoning with sequential decision-making prob-
lems under uncertainty. Limited memory influence diagrams
(LIMIDs) model a decision-maker (DM) who forgets the his-
tory in the course of making a sequence of decisions. The
standard inference task in IDs and LIMIDs is to compute
the maximum expected utility (MEU), which is one of the
most challenging tasks in graphical models. We present a
model decomposition framework in both IDs and LIMIDs,
which we call submodel decomposition that generates a tree
of single-stage decision problems through a tree clustering
scheme. We also develop a valuation algebra over the sub-
models that leads to a hierarchical message passing algorithm
that propagates conditional expected utility functions over a
submodel-tree as external messages. We show that the over-
all complexity is bounded by the maximum tree-width over
the submodels, common in graphical model algorithms. Fi-
nally, we present a new method for computing upper bounds
over a submodel-tree by first exponentiating the utility func-
tions yielding a standard probabilistic graphical model as an
upper bound and then applying standard variational upper
bounds for the marginal MAP inference, yielding tighter up-
per bounds compared with state-of-the-art bounding schemes
for the MEU task.

Introduction
Influence diagrams (IDs) (Howard and Matheson 1981)
which extend Bayesian networks (BNs) with decision vari-
ables and utility functions, are discrete graphical models for
single-agent sequential decision making under uncertainty.
The standard inference task in IDs is finding the maximum
expected utility (MEU) and a set of optimal policy functions
that jointly achieve the MEU under given constraints on the
available information at each decision.

IDs assume perfect recall, namely that the agent or de-
cision maker (DM) is “no-forgetting” and the sequence of
previous decisions and immediate observations are all avail-
able when making a decision. The naive evaluation of the
MEU leads to algorithms that are space and time expo-
nential in the length of the history (Howard and Matheson
1981), hence, earlier works focused on variable elimination
algorithms with the complexity bounded by the treewidth

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Bodlaender 1988) derived from tree decomposition meth-
ods that are tied to the algorithms for solving for IDs. A
valuation algebra (Kohlas and Shenoy 2000) for IDs was
introduced by (Jensen, Jensen, and Dittmer 1994) together
with a variable elimination algorithm over a correspond-
ing constrained junction tree. More recently, (Dechter 2000)
presented an improved variable elimination algorithms with
lower width parameters, while (Pralet, Schiex, and Verfaillie
2006) developed a multi-cluster operator DAG (MC-DAG)
decomposition to capture the lowest possible treewidth of
IDs. Despite this progress, the MEU task remains clearly in-
tractable so current research focuses on developing bound-
ing schemes. One type of bounds uses the principle of in-
formation relaxation, thereby relaxing the constrained or-
dering of observations and decision variables and allow-
ing more observations to be available to the DM (Nils-
son and Hohle 2001; Jensen and Gatti 2010; Yuan, Wu,
and Hansen 2010). Other approaches are based on transla-
tion and exploit the equivalence between the MEU and the
Marginal MAP (MMAP) tasks (Mauá 2016), thus applying
bounding schemes for MMAP to the translated MEU (Liu
and Ihler 2012; Marinescu, Dechter, and Ihler 2014; Mauá
and Cozman 2016). Finally, state-of-the-art decomposition
bounds (Lee, Ihler, and Dechter 2018; Lee et al. 2019) ap-
ply decomposition schemes directly to IDs using methods
such as weighted mini-bucket (WMB) (Liu and Ihler 2011;
Marinescu et al. 2018), and generalized dual decomposition
(GDD) (Ping, Liu, and Ihler 2015). Yet, the quality of those
decomposition bounds quickly degrades due to non-convex
optimization routines that must be applied.

Relaxing the perfect recall condition leads to limited
memory influence diagrams (LIMIDs) that pose additional
challenges to the MEU task. A limited memory agent only
has access to partial knowledge in the sequence of deci-
sions and observations which means that exact algorithms
for LIMIDs must jointly optimize multiple policy functions
by exhaustive enumeration (Mauá, de Campos, and Zaffalon
2012). Iterative local policy update algorithms can reduce
the complexity by locally improving a subset of policy func-
tions. However, local policy search algorithms assume that
the local policy evaluation is easy (Lauritzen and Nilsson
2001; Detwarasiti and Shachter 2005; Mauá and Cozman
2016). To the best of our knowledge, the only upper bounds
available in the literature for LIMIDs are the theoretical er-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12147

ror bounds presented in (Mauá and Cozman 2016).
Another line of research related to the decomposition of

IDs and LIMIDs studies the structure of DAGs to identify
the relevant random variables for optimizing a single policy
function. Specifically, (Nielsen and Jensen 1999) introduced
d-separation criteria for identifying relevant utility functions
and observed variables for a decision, and (Nielsen 2001)
presented decomposition of IDs. For LIMIDs, (Zhang and
Poole 1992; Lauritzen and Nilsson 2001) defined soluble
LIMIDs in which the variable elimination for IDs can apply.
(Detwarasiti and Shachter 2005) extended the d-separation
criteria for identifying relevant random variables in LIMIDs
while updating a single policy function.

Contribution: In this paper, we take a fresh look at IDs
and LIMIDs by viewing the underlying DAG as a causal dia-
gram and provide a new unified tree decomposition method,
called a submodel-tree decomposition (STD). For IDs, each
node in the submodel-tree is a single-time step decision
problem for evaluating value functions, and it is equivalent
to MC-DAGs (Pralet, Schiex, and Verfaillie 2006). For LIM-
IDs, each node in the submodel-tree captures multiple deci-
sion variables that must be optimized jointly. The STD of-
fers a new tree clustering framework by using d-separation
criteria over the causal DAG and it facilitates hierarchical
message passing algorithms, whose complexity can be char-
acterized by a graph width parameter applicable to both IDs
and LIMIDs. Since exact message passing algorithms over
the STD is intractable, we develop convex variational de-
composition bounds over the STD, which allow us to reuse
MMAP bounds via Jensen’s inequality applied to log mo-
ment generating functions. Our experimental results show
that the new bounding scheme generates bounds that are or-
ders of magnitudes tighter than those obtained by the current
methods in IDs and LIMIDs.

Background
Graphical Models
A graphical model M is a tuple 〈X,D,F〉, where X =
{X1, . . . , Xn} is a set of discrete random variables, D =
{D1, . . . , Dn} are their finite domains of values, and F =
{F1(X1), . . . Fr(Xr)} is a set of non-negative functions
with each function Fk ∈ F being defined over a subset of
variables Xk ⊆ X called its scope and denoted by sc(Fk).
The graphical model encodes a joint probability distribution
P (X) = 1

Z

∏
Fk∈F Fk(Xk), where Z is the normalization

constant or partition function. The primal graph ofM is an
undirected graph in which nodes are associated with vari-
ables and two nodes are connected if they appear together
in the scope of some function. The join-tree decomposi-
tion obtained by triangulating the primal graph offers exact
message passing algorithms with the worst-case complexity
characterized by the treewidth of the primal graph (Dechter
2013). The join-graph decomposition further decomposes
a join-tree into possibly a loopy join-graph GJ = 〈C,S〉
that satisfies the running intersection property. Each cluster
C ∈ C is assigned with a subset of variables XC ⊆ X and
functions FC ⊆ F such that sc(Fk) ⊆ XC for all Fk ∈ FC ,
and a separator Sij ∈ S between clusters Ci and Cj is la-

(a) Perfect Recall ID (b) Limited Memory ID

Figure 1. Example of an ID and LIMID

beled by XSij
= XCi

∩XCj
. (Mateescu et al. 2010).

The MMAP inference task eliminates variables either by
maximization or summation and, it can be formulated as
computing the weighted log partition function,

ΦW(θ) = log

Wn∑
Xn

. . .

W1∑
X1

exp(θ(X)), (1)

where θ(X)=
∑

Fk∈F logFk(Xk), and the powered-sum
elimination operator

∑w
X f(X)=[

∑
X f(X)1/w]w general-

izes the maximization (w = 0+) and the summation (w = 1)
with weights 0≤ w≤ 1 for a variableX (Liu and Ihler 2011).
When combined with variational inference (Wainwright and
Jordan 2008), a decomposition scheme provides variational
upper bounds derived from a certain constrained optimiza-
tion problem with the decomposition graph encoding con-
straints. The generalized dual decomposition bound (GDD)
(Ping, Liu, and Ihler 2015) provides convex upper bounds
that are obtained by duplicating all the shared variables be-
tween cluster nodes in the join-graph,

ΦW(θ) ≤
∑
Ci∈C

log

WCi∑
XCi

exp
[
θCi(XCi) +

∑
Sij∈S

δSij (XSij)
]
, (2)

where θCi
(XCi

)=
∑

Fk∈FC
logFk(Xk), the weights WCi=

{WCi

k |Xk ∈ XCi} are assigned to a variable Xk such
that Wk =

∑
Ci∈CW

Ci

k , and δSij (XSij) is the cost-
shifting functions over a separator that cancels each other
Sij(XSij

) = −Sji(XSij
). GDD offers a message passing

algorithm that tightens the bound by optimizing the weights
WCi and δCi,Cj

(XCi
∩XCj

) between clusters. Often, em-
pirical studies report that a simpler weighted mini-bucket
with moment-matching (WMB-MM) algorithm that opti-
mizes the cost-shifting functions only once over the decom-
position graph with larger cluster size turns out to be effec-
tive in difficult problems (Liu and Ihler 2011; Marinescu,
Dechter, and Ihler 2014).

Influence Diagrams
An IDM is a tuple 〈X,D,P,U,O〉 consisting of a set of
discrete chance variables X={X1, . . . , Xn}, a set of dis-
crete decision variables D= {D1, . . . , Dm}, a set of con-
ditional probability functions P={P1, . . . , Pn} associated
with the chance variables, a set of additive utility functions
U = {U1, . . . , Ur}, and a set of precedence relations O

12148

that we will specify shortly. We denote the finite domain
of a variable X ∈ X ∪ D by ΩX , and ΩS is the Carte-
sian product of individual domains ΩX of variables X in
a set S ⊆ (X ∪ D), i.e., ΩS = ×X∈SΩX . Given a node
X in a DAG G, we denote the set of parents, children, an-
cestors, descendants, and family of X by pa(X), ch(X),
an(X), de(X), and fa(X) = pa(X) ∪ {X}, respectively.
Clearly, the definitions above extend to a set of nodes X
by taking the union of individual sets. Figure 1 illustrates
an example of IDs with and without the perfect recall con-
dition which we adapted from the Pigs example (Lauritzen
and Nilsson 2001). We associate nodes in a DAG G with
the chance variables drawn as circles, the decision variables
drawn as squares, and the utility functions drawn as dia-
monds. The directed arcs toward any chance node Xi in
G specify the scope of the conditional probability function
Pi

(
Xi|pa(Xi)

)
. The parents of a value node Ui define the

scope of the utility or value function Ui

(
pa(Ui)

)
. The di-

rected arcs toward decision variables are called informa-
tional arcs, and they specify the set of precedence relations
OC = {pa(Dk) ≺ {Dk}|Dk ∈ D}, where pa(Dk) is
the set of variables observed immediately before decision
Dk. Under the perfect recall, DM knows the decision or-
der OD = {D1 ≺ D2 ≺ . . . ≺ DT } that constitutes the
history ht = ht−1 ∪ pa(Dt), where h0 = ∅, for making
decisions Dt at the t-th time step. In case of LIMIDs, DM
does not have access to OD and each decision Dk is made
solely based on immediate observations pa(Dk). The solid
arcs directed toward decision variables in Figure 1a and Fig-
ure 1b specify the OC . The dotted directed arcs in Figure
1a are the explicit informational arcs specifying the history
that are omitted in conventional IDs. By explicitly including
these informational arcs in the DAG of IDs, we can express
ht as simply ht = pa(Dk) for Dk ∈ Dt. In this paper, we
encode the perfect recall condition of IDs by explicit infor-
mational arcs and IDs will refer to both IDs with or without
the perfect recall condition. A deterministic policy function
∆k

(
Dk|pa(Dk)

)
for a decision variable Dk in both IDs and

LIMIDs is a mapping ∆k : Ωpa(Dk) 7→ ΩDk
, and the set

of all policy functions ∆∆∆ = {∆k

(
Dk|pa(Dk)

)
|Dk ∈ D} is

called a strategy. The MEU task is to compute the MEU and
the global maximum (optimal) strategy ∆∆∆∗. Namely,

MEU := max
∆∆∆

E
[∑
Ui∈U

Ui

]
(3)

= max
∆∆∆

∑
X∪D

(∏
Pk∈P

Pk

)
·
(∏
∆k∈∆∆∆

∆k

)
·
(∑
Uk∈U

Uk

)
, (4)

∆∆∆∗ = argmax
∆∆∆

E[
∑
Ui∈U

Ui]. (5)

Submodel-Tree Decomposition
A DM controls the decision variables in an ID M. Delib-
erate choices by the DM based on some strategy ∆̃∆∆ result
in the expected utility E∆̃∆∆[

∑
Ui∈U Ui]. Therefore, we view

the DAG G ofM as a causal diagram and make explicit use
of graph concepts from causal graphs (Pearl 2009). In this
section, we identify a relevant subset of M for computing

the local MEU in the partial evaluation of M denoted by
LMEUM(D′U′), which is a local maximum conditional ex-
pected utility obtained by maximizing the sum of expected
utilities over a subset of utility functions U′ ⊆ U on pol-
icy functions for a subset decision variables D′ ⊆ D. We
call the relevant subset ofM for computing LMEUM(D′U′)

submodelM′(D′,U′), and show that it can be identified by
the backdoor and front door criteria (Pearl 2009). Next, we
define graph-based combination and marginalization oper-
ations over the submodels and develop a valuation algebra
over the system of submodels in an ID. It is known that
the valuation algebra satisfies the axioms of local compu-
tation (Shenoy and Shafer 1990), so we can obtain a clus-
ter tree decomposition, which we call submodel-tree decom-
position, that assigns submodels to each cluster. We subse-
quently develop a hierarchical message passing algorithm
over the submodel-tree. The complexity of exact algorithms
over this tree can be characterized by the maximum width
of the individual submodel clusters, which we call submodel
width ws.

Submodels in the MEU Task
Given M = 〈X,D,P,U,O〉, we define a partially spec-
ified strategy for a subset of decision variables D′⊆D by
(∆∆∆D′∪∆̃∆∆D\D′), where ∆∆∆D′ = {∆

(
Dk|pa(Dk)

)
|Dk ∈ D′}

and ∆̃∆∆D\D′ is a set of arbitrary policy functions for D\D′.
The partial evaluation of M over (D′,U′) computes a lo-
cal maximum conditional expected utility and finds the local
maximum strategy (∆∆∆∗D′ ∪ ∆̃∆∆D\D′) as follows.
Definition 1. The local maximum conditional expected util-
ity evaluated on D′⊆D and U′⊆U inM is defined by

LMEUM(D′,U′) := max
∆∆∆D′

E
[∑
Ui∈U′

Ui

∣∣pa(D′)
]
, (6)

where the conditional expectation is taken over the con-
ditional probability P (X ∪D)/P

(
pa(D′)

)
and the local

maximum conditional expected utility is obtained by a local
maximum strategy (∆∆∆∗D′ ∪ ∆̃∆∆D\D′).

Definition 2. The set of relevant variables for evaluating
LMEUM(D′,U′) with an arbitrary fixed ∆̃∆∆D\D′ is the sub-
set of observed variables RELO(D′,U′) ⊆ pa(D′) and the
subset of hidden variables RELH(D′,U′) ⊆

(
(X ∪ D) \

pa(D′)
)

so that Eq. (6) can be evaluated by

LMEUM(D′,U′) = max
∆D′

E
[∑
Ui∈U′

Ui

∣∣RELO(D′,U′)
]
, (7)

where the conditional expectation is taken over the relevant
subset of variables P

(
RELH(D′,U′)|RELO(D′,U′)). The

local maximum strategy remains the same under the relevant
observed variables RELO(D′,U′).

Definition 3. A submodel M′(D′,U′) of an ID M rele-
vant to LMEUM(D′,U′) is a tuple 〈X′,D′,P′,U′,O′〉 such
that X′ = X ∩

(
RELO(D′,U′) ∪ RELH(D′,U′)

)
, P′ =

{Pk

(
Xk|pa(Xk)

)
|Xk ∈ X′, sc(Pk) ∈ (X′ ∪ D′)}, and

O′ =
{

RELO(D′,U′) ≺ D′ ≺ RELH(D′,U′)
}

.

12149

The relevant observed variables and hidden variables can
be found by graph separation criteria. In the following, the
backdoor set for a pair (X,Y) is denoted by BD(X,Y), and
the front door set is denoted by FD(X,Y) (Pearl 2009).
Proposition 1. For computing LMEUM(D′,U′), the rel-
evant observed variables RELO(D′,U′) is a subset of
pa(D′) that forms BD(D′,U′), and the relevant hidden
variables RELH(D′,U′) is a subset of

(
X ∪D \ pa(D′)

)
,

where each variable in RELH(D′,U′) is a member of any
FD(pa(D′), ch(U′)), where ch(U′) is an auxiliary child
node for the value nodes U′.

We say that a relevant set is minimal if we cannot reduce
the set further. Intuitively, RELO(D′,U′) is a subset of ob-
served variables that shields all the influence between the de-
cision nodes D′ and the value nodes U′, and RELH(D′,U′)
is a subset of hidden variables that mediates influence be-
tween the decision nodes D′ and value nodes U′. Next, we
introduce a utility random variable and show lemmas for
proving the above proposition.
Definition 4 (Utility Random Variables). Given a utility
function Uk ∈ U in an ID M, we define Wk as a random
variable with its domain defined by

ΩWk = range(Uk) s.t. Uk : sc(Uk)→ range(Uk), (8)

where range(Uk) is the set of outcomes of the utility function
Uk. The probability associated with Wk can be defined by

P
(
Wk=wk

)
=
∑

pa(Uk)

P
(
pa(Uk)

)
· I
(
Uk(pa(Uk)) = wk

)
, (9)

where wk ∈ range(Uk), I
(
Uk(pa(Uk)) = wk

)
is the indi-

cator function, and P
(
pa(Uk)

)
is the marginal probability

over the set of random variables pa(Uk) inM.
By using the utility random variable, we can rewrite the

expected utility by E
[
Uk

]
=
∑

wk∈ΩWk
wk ·P (Wk = wk).

In the presence of multiple utility functions U′, we first add
a new child value node to all value nodes U′, and define a
utility random variable for the newly added value node.
Lemma 1 (Identifying Relevant Observed Nodes). Let
〈Bk〉k∈N be a nested sequence of subsets of pa(D′) such
that (1) B0 = pa(D′), and (2) Bk ⊆ Bk−1, where each
Bk is a BD(D′,U′). Then, for a set RELO(D′,U′), there
exists a sequence 〈Bk〉k∈N that reaches to the minimal
RELO(D′,U′).

Proof. By induction, let’s assume that Bk is a BD(D′,U′)
and Y = pa(D′)\Bk. SinceBk is a backdoor set,Bk blocks
every path between D′ and U′ that contains an arrow into
D′. The LMEUM(D′,U′) can be written by

max
∆
(
D′|pa(D′)

)E[∑
Ui∈U′

Ui

∣∣pa(D′)
]

(10)

= max
∆
(
D′|pa(D′)

)∑
D′

∆
(
D′|pa(D′)

)∑
W

W·P (W |fa(D′)) (11)

= max
∆
(
D′|Bk

)∑
X′

D

∆(D′|Bk)
∑
W

W · P (W |D′, Bk). (12)

Since Bk is a BD(D′,U′), the joint policy func-
tion ∆

(
D′|pa(D′)

)
over D′ only depends on Bk,

i.e., ∆
(
D′|pa(D′)

)
= ∆(D′|Bk), and P (W |Y, Bk) =

P (W |Bk). The input ID has a finite number of nodes, and
by removing irrelevant observed nodes we eventually reach
to the minimal RELO(D′,U′).

Lemma 2 (Identifying Relevant Hidden Nodes). Let
〈Fk〉k∈N be a nested sequence of subsets of (X ∪ D) \
(fa(D′)) such that F0 = ∅ and Fk−1 ⊆ Fk where each Fk

is generated by adding a node X ∈ FD(fa(D′), ch(U′)),
where ch(U′) is an auxiliary utility node added as a child
of all utility nodes U′. Then, for a set RELH(D′,U′),
there exists a sequence 〈Fk〉k∈N that reaches to the minimal
RELH(D′,U′).

Proof. Suppose a set of hidden variables Z satisfies Z ⊆
FD(fa

(
D′), ch(U′)

)
. Introducing a new utility random vari-

able W for the node ch(U′), the LMEUM(D′,U′) can be
written by

max
∆
(
D′|pa(D′)

)∑
W

W · P
(
W |pa(D′)

)
(13)

= max
∆(D′|pa(D′))

∑
W

W
∑
D′

∆
(
D′|pa(D′)

)
·P
(
W |fa(D′)

)
(14)

= max
∆
(
D′|pa(D′)

)∑
W

W
∑
D′

∆
(
D′|pa(D′)

)
·

[∑
Z

P
(
Z|fa(D′)

)
· P
(
W |fa(D′),Z

)]
. (15)

Since Z ⊆ FD
(
fa(D′),W

)
, Eq. (15) shows that the

hidden variables Z are relevant to LMEUM(D′,U′). Now
suppose that a hidden node T is not a member of any
FD
(
fa(D′),W

)
. Following the definition of the front door

criteria, there are two possible cases in IDs. First, the node
T is not an ancestor of W . Namely, T is a barren node for
evaluating LMEUM(D′,U′). Second, the node T is an an-
cestor of W , but it is d-separated from W given pa(D′). In
both cases, the hidden random variable T is not relevant to
LMEUM(D′,U′) since the variable T can be marginalized
out without inducing any change to LMEUM(D′,U′). The
input ID has a finite number of nodes, and by removing all
irrelevant hidden nodes from the set of all hidden nodes, we
obtain the minimal RELH(D′,U′).

The MEU task in a submodel M′(D′,U′) is subject to
change due to the changes in U′ and ∆̃∆∆D\D′ . Therefore,
we want to capture a submodel M′(D′,U′) such that the
evaluation of the local maximum conditional expected util-
ity LMEUM(D′,U′) and the local maximum policy functions
∆∆∆∗D′ remains stable regardless of the changes in the utility
and policy functions outside of the submodel.

Definition 5. We say a submodel M′(D′,U′) is stable if
the set of relevant hidden variables does not contain any un-
observed decision variable.

Given a fixed set of policy functions ∆̃∆∆D\D′ , irrelevant
utility functions do not change the local maximum policy

12150

(a)M′({D3}, {U3}) (b)M′({D2, D3}, {U2, U3})

Figure 2. Example of submodels. See Example 1.

functions ∆∆∆∗D′ . The relevant utility functions can be iden-
tified from G by RELU (D′) = de(D′) ∪ U (Nielsen and
Jensen 1999).
Proposition 2. If a submodelM′(D′,RELU (D′)) is stable,
the MEU task inM′ is independent to policy functions out-
side of the submodel ∆̃∆∆D\D′ , and the local maximum policy
functions ∆∆∆∗D′ extend to the global maximum strategy ∆∆∆∗.

Example 1. Figure 2 shows submodels in the LIMID from
Figure 1b. In both examples, the decision nodes and value
nodes of the submodel are shaded, the relevant observed
nodes are marked with stripes, and the relevant hidden
nodes are marked with a double-lined boarder. Figure 2a
depicts M′({D3}, {U3}), where RELO({D3}, {U3}) =
{C6} since removing C6 from pa(D3) opens a backdoor
path between D3 and U3. RELH({D3}, {U3}) contains
all hidden variables {C1, C2, D1, C3, C4, D2, C5} since in-
fluence between pa(D3) and ch(U3) propagates through
C5. The submodel M′({D3}, {U3}) is not stable since
RELH({D3}, {U3}) contains unobserved decision vari-
ablesD1 andD2 that may change the local maximum policy
function ∆∗(D3|C3). On the other hand, Figure 2b shows
a stable submodel M′({D2, D3}, {U2, U3}). We can see
that C4 can be removed from pa({D2, D3}) because C4

does not open any backdoor path, and the relevant ob-
served variables are {C3, C6}. RELH({D2, D3}, {U2, U3})
is {C5} since other unobserved variables C1, C2, and D1

are not in any FD({D2, D3}, {U2, U3}). The utility func-
tions {U2, U3} in the submodel is RELU ({D2, D3}).

Valuation Algebra Over Submodels
A valuation algebra is a system of potentials with combi-
nation and marginalization operations (Kohlas and Shenoy
2000). In this section, we develop a valuation algebra for
solving IDs that uses submodels as potentials. We introduce
the structural concepts and necessary definitions for the val-
uation algebra over submodels.
Proposition 3. Given a submodelM′, the probability and
policy functions can be factorized as

P (X′H,up|X′O,out)P (X′O,in|X′O,out,X
′
H,up)∆(D′|X′O,in,X

′
O,out)

P (X′H,down|X′O,out,X
′
H,up,X

′
O,in,D

′), (16)

where X′O,in is a subset of relevant observed variables whose
parents are included in submodel, X′O,out is the rest of the

relevant observed variables, X′H,up is the relevant hidden
variables that are ancestors of relevant observed variables,
and X′H,down is the rest of the relevant hidden variables.
The joint policy function ∆(D′|X′O,in,X

′
O,out) is factorized

as
∏

∆k∈∆∆∆D′ ∆k

(
Dk|pa(Dk) ∩ (X′O,in ∪X′O,out)

)
.

In Figure 2b, we can inspect X′O,in = {C6}, X′O,out =
{C3}, and X′H,up = {C5}. By using the factorization in
Eq. (16), we can compute the conditional expected utility
from the submodelM′ by

E[
∑

Ui∈U′

Ui|X′
O,out] (17)

and avoid unnecessary marginalization involved in Eq. (7).
Since the conditional expected utility is a function over
X′O,out, we will call it a set of interface variables.

Definition 6. The domain of a submodel ΩM′ is the set of
all variables X′ ∪D′ in the submodel.

Definition 7. The combination operation ⊗ is a binary op-
eration,M′(D′,U′) =M′1(D′1,U

′
1)⊗M′2(D′2,U

′
2) such

that D′ = D′1 ∪D′2 and U′ = U′1 ∪U′2.

The marginalization operation is defined by a projection
operation ⇓Y that marginalizes variables (X′ ∪D′) \Y.

Definition 8. We denote the projection operation of a sub-
modelM′(D′,U′) toM′′(D′′,U′′) by

M′′(D′′,U′′) =⇓Y M′(D′,U′),

whereM′′ is a tuple 〈X′′,D′′,P′′,U′′,O′′〉 with variables
X′′ and D′′ projected on Y. For a probability function
Pk ∈ P′′, if sc(Pk) ⊆ Y, then Pk remains the same in
P′′. Otherwise, we marginalize sc(Pk) \Y from Pk by∑

sc(Pk)\Y Pk

(
Xk, pa(Xk)

)∑
sc(Pk)\Y Pk

(
pa(Xk)

) . (18)

For a utility function Uk ∈ U′′, if sc(Pk) 6⊆ Y, then we
marginalize sc(Pk) \Y from Uk by∑

sc(Pk)\Y

UkP
(

an(Uk) \Y|pa
(
(an(Uk) ∪ {Uk}) \Y

))
. (19)

Although the definition of the marginalization operation
is lengthy, the graph manipulation is intuitive as shown in
Figure 3.

Example 2. Figure 3 illustrates the marginalization opera-
tion applied to the ID shown in Figure 3a. We will consider
a submodel M′({D3}, {U2}) highlighted by the shaded
nodes. Figure 3b shows the case where we are marginalizing
out all but XO, out = {X4}. We can see that all the nodes in
M′({D3}, {U2}) are removed and the new value node V is
added according to Eq. (19). Figure 3c shows another case
where we are marginalizing out {C5, C6}. We can see that
both hidden variables are removed and U2 is also replaced
by a new value function V (C3, C4). Although the diagram
does not show the changes in the parameters of the proba-
bility function, P (C3) is also updated according to Eq. (18).

12151

(a) ID andM′({D3}, {U2}) (b) ⇓{C4} M
′({D3}, {U2}) (c) ⇓{C3,C4,D3} M

′({D3}, {U2})

Figure 3. Example of the marginalization operation for a submodel. See Example 2 for the details.

While solving LIMIDs, we can refine the decision order
OD from the reverse topological order of decision nodes in
G. Note that the decision order OD is already specified in O
in IDs with perfect recall. We next define a decision order
OD relative to G as follows.

Definition 9. Given an M, OD = {D1 ≺ . . . ≺ DT } is
a sequence of disjoint subsets of decision variables, found
along with a sequence of submodels 〈Mt〉Tt=1 and DAGs
〈Gt〉Tt=1 such that:

1. GT = G,
2. Mt is a stable submodel M′

(
Dt,RELU (Dt)

)
in Gt,

where Dt is a set of decision variables in Gt chosen from
the last to the first decision nodes in the reverse topologi-
cal order in Gt,

3. Gt−1 is generated from Gt by deleting Dt and RELU (Dt)
and adding a new value node V (X′O, out) fromMt.

Following the decision order OD relative to G, we can
obtain a set of stable submodels MOD

inM. To define the
valuation algebra, let MOD

denote a closure of submodels
in MOD

, and DOD
denote the set of domains of submodels

in MOD
.

Theorem 1. Given an IDM and the decision ordering OD

relative to G, a tuple ΥM = 〈MOD
,DOD

,⊗,⇓〉 is a valua-
tion algebra.

Next, we prove that the system of stable submodels in an
IDM relative to the decision order OD, ΥM, satisfies the
axioms of valuation algebra (Kohlas and Shenoy 2000).

Definition 10 (Neutral Submodels). Given a submodel
M′ := 〈X′,D′,P′,U′,O′〉 of an ID M, we say M′ is a
neutral submodel of M if P′ = ∅ and U′ = {0(X)|X ∈
X′}, where 0(X) is a constant function 0(X) : X → 0. We
denote a neutral submodel over a variable X byM′0(X), a
neutral submodel over a set of variables X by M′0(X) =

⊗X∈XM′0(X), and a set of neutral submodels over each
variable X ∈ X by M0(X) = {M′0(X)|X ∈ X}.
Lemma 3 (Neutral Elements). For X,Y ∈ DOD

,

M′0(X) ⊗M
′
0(Y) =M′0(X∪Y).

Proof. The set of utility functions inM′0(X) andM′0(Y) is
{0(Xi)|Xi ∈ X} and {0(Xi)|Xi ∈ Y}, respectively. It is
immediate to see that the set of utility functions inM′0(X)⊗
M′0(Y) andM′0(X∪Y) are {0(Xi)|Xi ∈ X ∪Y}.

Lemma 4 (Semigroup). MOD
is a semigroup with the com-

bination operation over submodels.

Proof. The combination operation is closed in MOD
. Given

M1,M2 ∈MOD
, the combination of submodelsM1⊗M2

is defined as a component-wise union of the sets in submod-
els. Therefore, the combination operator is commutative and
associative, showing that MOD

is a semigroup.

Lemma 5 (Domain of Combination). For M′1,M′2 ∈
MOD

, ΩM′
1⊗M′

2
= ΩM′

1
∪ ΩM′

2
.

Proof. Since M′1(D′1,U
′
1) and M′2(D′2,U

′
2) are stable

submodels, each domain contains all relevant variables for
computing the LMEUM(D′

1,U
′
1) and LMEUM(D′

2,U
′
2), re-

spectively. Without loss of generality, we assume that D′1 ∩
D′2 = ∅ and U′1 ∩ U′2 = ∅. Any non-neutral submodel
in MOD

can be reduce to the combination of submodels in
MOD

. Let D′1 ≺ D′2 in OD. Then, U′1 is not relevant to
D′2 by construction of MOD

. Therefore RELO(D′2,U
′
1) =

∅ and RELH(D′2,U
′
1) = ∅. If D′2 6∈ de(D′1), then

RELO(D′1,U
′
2) = ∅ and RELH(D′1,U

′
2) = ∅. If D′2 ∈

de(D′1), then RELO(D′1 ∪ D′2,U
′
2) = RELO(D′2,U

′
2)

and RELH(D′1 ∪ D′2,U
′
2) = RELH(D′2,U

′
2). There-

fore, RELO(D′1 ∪ D′2,U
′
1 ∪ U′2) = RELO(D′1,U

′
1) ∪

RELO(D′2,U
′
2), and RELH(D′1 ∪ D′2,U

′
1 ∪ U′2) =

RELH(D′1,U
′
1) ∪ RELH(D′2,U

′
2)

Lemma 6 (Marginalization). For any stable submodel
M′ ∈ MOD

and X ∈ DOD
, the marginalization satis-

fies
w�

X
M′ =

w�
X∩ΩM′

M′,Ω⇓XM′ = X ∩ ΩM′ , andw�
ΩM′
M′ =M′.

Proof. Two projectionsM′′1 :=⇓XM′ andM′′2 :=⇓X∩ΩM′

M′ are equivalent by definition given a stable submodel
M′ := 〈X′,D′,P′,U′,O′〉. Since ΩX is X, Ω⇓XM′ is
X∩ (X′ ∪D′). Finally, projecting a submodel to its domain
leaves the submodel unchanged.

Lemma 7 (Transitivity of Marginalization). For a stable
submodel M′ ∈ MOD

and X ∈ DOD
,
w�

X
(
w�

Y
M′) =w�

X∩YM
′.

Proof. Let a stable submodel M′ in MOD
be denoted

by M′ := 〈X′,D′,P′,U′,O′〉 and the submodels after

12152

marginalization by

M′′L := 〈X′′L,D′′L,P′′L,U′′L,O′′L〉 =
w�

X
(
w�

Y
M′),

M′′R := 〈X′′R,D′′R,P′′R,U′′R,O′′R〉 =
w�

X∩YM
′.

Two submodels are equivalent if both have the same sets
of variables, domains, functions, and constrained ordering.
By definition of marginalization operation, X′′L = (X′ ∩
Y) ∩ X = X′ ∩ (X ∩ Y) = X′′R. For the probabil-
ity functions, consider a conditional probability function
P
(
X ′i|pa(X ′i)

)
. There are 3 possible cases when marginal-

izing out Y and X in sequence. First, the probability func-
tion remains the same in the marginalized submodelM′′L if
sc(P

(
X ′i|pa(X ′i)

)
) ⊂ Y and sc(P

(
X ′i|pa(X ′i)

)
) ⊂ X. Sec-

ond, a probability function P
(
X ′i|pa(X ′i)

)
is removed from

M′′L ifX ′i ∈ X′\Y orX ′i ∈ (X′∩Y)\X, which is equiv-
alent to the condition X ′i ∈ X′ \ (X ∩Y). The last case is
marginalizing the subset of pa

(
X ′i
)
, resulting in eliminating

all but
(
pa
(
X ′i
)
∩ (X′∩Y)

)
∩ (Y∩X), which is equivalent

to pa
(
X ′i
)
∩ (X′ ∩ (X∩Y)). From the above cases, we can

see that the probability functions inM′′L andM′′R are the
same. For a utility function Ui, if Ui remains inM′′L, it will
also remain in M′′R for the similar reasoning as shown in
the probability functions. Lastly, D′′L = D′′R is immediate
due to X′′L = X′′R, and O′′L = O′′R since the relevant
sets are the same inM′′L andM′′R.

Lemma 8 (Distributivity of Marginalization). For a pair
of stable submodels M′1,M′2 ∈ MOD

with ΩM′
1

= X,w�
X

(M′1 ⊗M′2) =M′1 ⊗ (
w�

X
M′2).

Proof. We show the equivalence by comparing two submod-
els,

M′′L := 〈X′′L,D′′L,P′′L,U′′L,O′′L〉=
w�

X
M′1 ⊗M′2,

M′′R := 〈X′′R,D′′R,P′′R,U′′R,O′′R〉=M′1 ⊗
(
⇓XM′2

)
.

X′′L = (X ∪ X′2) ∩ X = X ∪ (X′2 ∩ X) = X′′R. The
projection operation applies to each element in the set of
functions. Since ΩM′

1
= X, the functions in M′1 remain

the same inM′′L. The rest of the functions inM′′L can be
obtained by ⇓X M′2. Therefore, P′′L = P′′R and U′′L =
U′′R . The equivalence of D′′L and D′′R is immediate due
to X′′L = X′′R. Lastly, O′′L = O′′R since the relevant sets
of the observed variables and the hidden variables in both
X′′L and X′′R are the same.

Any valuation algebra satisfies the axiom for local com-
putation. Therefore, the MEU task in IDs can also be solved
by local computations using the valuation algebra over the
stable submodels relative to OD.

Submodel-Tree Clustering
The tree decomposition framework for inference tasks over
graphical models offers the generic architecture for local
computation (Shenoy 1997; Kask et al. 2005). We now
present the submodel-tree decomposition for IDs.

Figure 4. Submodel-tree decomposition TST

Definition 11. Given an ID M, and the set of stable sub-
models MOD

relative to the decision ordering OD, the
submodel-tree decomposition is a tuple TST := 〈T, χ, ψ〉,
where T = (C,S) is a tree of cluster nodes C and separator
edges S , χ is a labelling function that maps a node C ∈ C to
a set of chance and decision variables χ(C) = XC ∪DC ,
and ψ maps a node C ∈ C to a set of stable submodels
ψ(C) ⊂ MOD

. In addition, T = (C,S) should satisfy the
running intersection property. Namely, for any variable X ,
a set of cluster nodes including the variable induces a con-
nected subtree of T .

Now, we use an example to illustrate the submodel-tree
decomposition TST.
Example 3. Figure 4 shows the TST of the LIMID shown
in Figure 1b. The submodel-tree decomposition starts by
identifying OD and a set of stable submodels MOD

. Be-
ginning with M′(D3, U3), we see that RELH(D3, U3)
contains unobserved decision variables, so we combine
M′({D3}, {U3}) andM′({D2}, {U2, U3}) to find a stable
submodelM′2({D2, D3}, {U2, U3}) and D′2 = {D2, D3}.
After adding M′2 to the submodel-tree, we delete D′2 and
{U2, U3} and add a new value node V (C3), which is the
conditional expected utility computed fromM′2. We can also
find D′1 = {D1} and M′1(D1, {U1, V }) in the same way
and complete the submodel-tree decomposition ofM.

Evaluating IDs over Submodel-Trees
The submodel-tree decomposition TST facilitates the MEU
task in IDs by identifying independent single-stage decision
problems, where each submodel cluster defines a single time
step decision problem in perfect recall IDs. In case of LIM-
IDs, a submodel cluster may span decision variables over
multiple time steps and it is required to perform joint op-
timization over the policy functions in the submodel. If a
LIMID is soluble (Lauritzen and Nilsson 2001), each cluster
only contains a single decision variable that allows applying
the exact variable elimination algorithm.

Hierarchical Message Passing
Algorithm 1 presents a hierarchical message passing scheme
over a submodel-tree decomposition. The message propaga-
tion over the submodel-tree is a single pass procedure start-
ing from the last decision stage to the first. The evaluation
of each submodel is performed by a subroutine Eval(MC),
which is any exact algorithm for solving IDs or LIMIDs.
This step is internal message passing for computing the con-
ditional expected utility V C at clusterMC . The V C propa-
gates from the leaf nodes to the root node and the algorithm

12153

Algorithm 1 Hierarchical Message Passing over TST

Require: TST := 〈T (C,S), χ, ψ〉
Ensure: Submodel-tree augmented with messages sent out

from clusters, MEU
1: MEU← 0
2: for each cluster C from the leaves to the root in T do
3: Pull messages from incoming edges
4: Update submodelMC at C
5: V C ← Eval(MC)
6: if C is the root node or V C is a constant then
7: MEU← MEU + V C

8: else
9: Push V C to the outgoing edge

return MEU

returns the MEU at the root. The message at each cluster C
can be computed by

V C(XC
O,out) = max

∆
DC∆
DC∆
DC

E[
∑

Ui∈UC

Ui

∣∣XC
O, out], (20)

where DC and UC denote the decision variables and utility
functions at cluster C and XC

O,out is the interface variables at
cluster C.
Theorem 2. The time and space complexity for solving IDs
over the submodel-tree decomposition is exponential in the
submodel-tree width ws := maxC∈C wc(C), which is the
maximum of the constrained tree width wc(C) of individual
submodels.

Variational Decomposition Bounds
Exact evaluation of individual submodels is still infeasible
for practical problems and recent works focus on developing
bounding schemes having an anytime behavior that can trade
computational resources for the quality of the bounds. The
main obstacle for developing efficient variational bounds
for the MEU task is due to the additive utility functions,
which hinders formulating a dual representation of the infer-
ence task. Therefore, we propose to use Jensen’s inequality
(Jensen 1906) applied to the log moment generating func-
tion, E[X] ≤ logE[eX], which exponentiates the utility
functions in IDs to bound the MEU by the log partition func-
tion of a probabilistic graphical model.
Proposition 4. The MEU task in a submodel can be
bounded by the Marginal MAP task after exponentiating the
utility functions,

V C(XC
O,out) ≤ max

∆DC∆DC∆DC

logE[e
∑

Ui∈UC Ui
∣∣XC

O, out] (21)

≤ log
∑
XC

O,in

max
DC

∑
XC

H

P (XC |XC
O,out)

· exp
[∑
Ui∈UC

Ui +
∑

(C′,C)∈S

VC′ (XC)
]

(22)

The first inequality in Eq. (21) is obtained by the Jensen’s
inequality, and the second inequality in Eq. (22) is the de-
composition bounds for the MMAP task (Liu 2014; Ping,
Liu, and Ihler 2015).

Figure 5. ST-GDD(i): decomposition bounds over TST

We present briefly two new algorithms based on the varia-
tional decomposition bounds for MMAP: (1) submodel-tree
decomposition with generalized dual decomposition (ST-
GDD), and (2) submodel-tree decomposition with weighted
mini-bucket with moment matching (ST-WMBMM). Both
GDD and WMBMM algorithms provide state-of-the-art up-
per bounds for the MMAP task and they use the i-bound
parameter for controlling the space and time complexity in
an anytime manner. Next, we illustrate ST-GDD(i) by using
an example in Figure 5.

Example 4. For the 2-stage submodel-tree in Figure 4,
Eval(MC) bounds two submodels M′1 and M′2. The in-
ternal GDD message passing algorithm decomposes each
submodel into a join-graph using some i-bound. For M′2,
the internal message passing tightens the upper bounds, and
sends an approximate message from the internal clusters by
marginalizing out all the variables except for the interface
variable C3. The MEU can be computed by adding all the
values from the internal clusters at the root submodel,M′1.

Experiments
We compare the upper-bounds from the proposed algo-
rithms ST-GDD(i) and ST-WMBMM(i) with the state-of-
the-art methods in the following three experiments: (1) syn-
thetic IDs with perfect recall comparing against the state-
of-the-art decomposition bounds JGDID(i) (Lee, Ihler, and
Dechter 2018) and WMBEID(i) (Lee et al. 2019), (2) upper
bounds of the LIMIDs comparing against the error-bounds
presented by (Mauá 2016), and (3) a case study that evalu-
ates the upper bounds on large scale problems adopted from
an online-planning domain.
Benchmarks Domains. The synthetic benchmark domains
are generated as follows: (1) Factored FH-MDP instances
are generated from two-stage factored MDP templates by
varying the number of state and action variables, and the
time horizon; (2) Factored FH-POMDP instances are gener-
ated similarly to FH-MDP instances, using factored POMDP
templates; (3) Random influence diagram instances (RAND)
are generated by generating DAGs in random for influence
diagrams; (4) BN instances are existing Bayesian networks
used in the UAI-2006 probabilistic inference competitions
which we converted to IDs; (5) The LIMID benchmark con-
verted the above four benchmark domains into LIMIDs by
removing the temporal constraints; and (6) System admin-
istrator MDP/POMDP instances are generated by translat-

12154

Domain n wc ws ST-GDD(i=1) ST-GDD(i=5) ST-WMB(i=10) JGDID(i=1) WMBEID(i=10)

ID-BN 84.6 30.2 21.8 0.19 0.15 0.13 0.33 0.74
IDBN14w57d12 115 57 42 103.89 96.24 95.37 1420 2.2E+4

FH-MDP 105.7 25.5 25.4 0.06 0.07 0.18 0.16 0.44
mdp9-32-3-8-3 99 43 43 18.92 19.71 25.31 23.09 111.81

FH-POMDP 55.9 28.1 28.1 0.31 0.22 0.06 0.56 0.72
pomdp8-14-9-3-12-14 96 47 46 73.53 76.37 67.18 5.E+08 5.E+09

RAND 56.2 20.5 17.9 0.22 0.24 0.24 0.23 0.46
rand-c70d21o1 84 32 34 1309.89 1791.93 1752.47 1743.6 2.E+04

Table 1. Quality of upper bounds on ID benchmarks. n is the number of variables, wc is the constrained induced width by
JGDID or WMBEID, ws is the submodel induced width by ST-GDD or ST-WMB. Each domain shows the average of the
statistics and the average gap U−Umin

U , and the bounds from the hardest instance.

ing RDDL instances into 2-stage influence diagrams and un-
rolling them to the desired time-horizons (up to 10).
Results from the ID domains. Table 1 shows a sum-
mary of the experiments comparing the quality of the up-
per bounds for IDs. We can see that the submodel induced
width ws is lower than the constrained induced width wc

from a strong junction tree. The average gaps (the lower,
the better) from all four benchmarks show that the proposed
ST-GDD and ST-WMBMM generate higher quality upper
bounds than others. From the results of ST-GDD(i=5) and
ST-WMBMM(i=10), we can see that a simple single-pass
internal message-passing algorithm can generate compara-
ble upper bounds with higher i-bounds.
Results from the LIMID domains. Table 2 shows the re-
sults from the LIMIDs benchmark domain. To the best of
our knowledge, there’s no practical upper bounding scheme
available for LIMIDs, so we compare against the theoreti-
cal bounds given in (Mauá and Cozman 2016). We can see
that the upper bounds from ST-WMB with i=10 are orders
of magnitudes tighter than the theoretical kpu-UB.
A Case Study on SysAdmin Domain. The SysAdmin do-
main (Guestrin et al. 2003) is one of the problems used in
the international planning competitions. We compare the up-
per bounds from ST-WMB(i=20) and the expected value
returned by the online MDP/POMDP planner (Cui and
Khardon 2016, 2019). This is because other schemes JG-
DID, WMBEID, and kpu-UB could not generate any mean-
ingful bounds at this scale. Although the values from the
online planner and ST-WMB are not directly comparable
as the online planner computes the Monte-Carlo estimate

Domain n ws ST-WMB(i=10) kpu-UB
IDBN14w42d6 115 33 45.3 1.22E+8
IDBN14w57d12 115 44 93.73 4.70E+8
mdp9-32-3-8-3 99 43 25.33 1.68E+11
pomdp9-14-8-3-10-4 92 44 41.35 4.27E+8
rand-c50d15o1 84 27 1250 1.13E+6
rand-c70d7o1 91 21 658 4.38E+5

Table 2. Upper bounds on LIMID benchmarks. ws is the
submodel induced width of the LIMID instances, kpu-UB
is the analytical bound (Mauá and Cozman 2016).

of the suboptimal online strategy while the ST-WMB com-
putes the deterministic upper bounds of the optimal offline
strategy, we can see that the upper bounds from the finite-
horizon MDP and POMDP instances are close to the lower
bounds, demonstrating the potential for applying our bound-
ing schemes to planning under uncertainty.

Instance ws t=4 (OP) t=4 (UB) t=10 (OP) t=10 (UB)
mdp6 68 110.51 130.63 239.00 328.25
mdp7 88 147.94 172.62 312.81 433.28
mdp8 92 146.62 174.22 300.06 439.45
mdp9 109 184.25 218.21 385.26 547.76
mdp10 113 183.65 217.52 364.57 549.87
pomdp6 360 110.55 155.24 229.13 420.17
pomdp7 480 147.50 195.35 304.58 526.01
pomdp8 480 147.90 207.96 298.83 568.49
pomdp9 701 182.78 244.42 372.75 666.88
pomdp10 300 184.93 253.04 375.90 707.23

Table 3. Upper bounds for SysAdmin domain. ws is the
submodel induced width, OP denotes the value from online
planners, UB denotes the upper bounds from ST-WMB(20),
and t is the number of stages.

Conclusion
This paper presents a graph-based decomposition scheme,
submodel-tree decomposition for solving influence dia-
grams. For the perfect recall IDs, the submodel-tree de-
composition identifies the minimal relevant sets for com-
puting the MEU. For LIMIDs, it identifies the subset of de-
cision variables that should be optimized jointly under the
imperfect recall. Since exact algorithms are intractable, we
also present a variational decomposition bounding scheme
for the MEU task which is built on top of the proposed
submodel-tree decomposition and decomposition bounds
for MMAP inference, achieving tighter upper bounds com-
pared with the state-of-the-art approaches. In the future
work, the presented decomposition methods can be extended
to more general influence diagrams such as multi-agent in-
fluence diagrams. Since submodel decomposition bounds
provide a cost-to-go function over a submodel-tree, we can
utilize the bounding scheme for the heuristic search.

12155

Acknowledgments
We thank the reviewers for their valuable feedback. This
work was supported in part by NSF grants IIS-2008516.

Broader Impact
In this paper, we present a new method for solving influ-
ence diagrams that can also apply to more general limited
memory influence diagrams. The main contribution is two
folds. First, we presented a graph-based method for reduc-
ing influence diagrams. The proposed method can also apply
to a more general case than earlier works; decision making
under the limited memory (decision-maker does not have
access to the information about the history). Second, we
also provide a simple yet efficient way to generate upper
bounds of the optimal solution. For the potential impact of
the current work, the proposed method can improve other
approaches such as heuristic search of sampling methods for
decision-making. More importantly, the ideas shown in the
current work can provide a new perspective on sequential
decision making by relaxing the restriction of underlying
models from MDP or POMDP to more general structures.
Concerning the limitation of our work, care must be taken
when applying our work to a real-world application setting.
Our proposed method provides upper bounds of the value
of the optimal solution and suboptimal policies that may not
achieve the optimal value. Besides, the input problem has to
be provided in a structured format that requires knowledge
engineering or machine learning.

References
Bodlaender, H. L. 1988. Dynamic programming on graphs
with bounded treewidth. In International Colloquium on Au-
tomata, Languages, and Programming, 105–118. Springer.

Cui, H.; and Khardon, R. 2016. Online Symbolic Gradient-
Based Optimization for Factored Action MDPs. In Proceed-
ings of the International Joint Conferences on Artificial In-
telligence, 3075–3081.

Cui, H. J.; and Khardon, R. 2019. Sampling Networks and
Aggregate Simulation for Online POMDP Planning. In Ad-
vances in Neural Information Processing Systems, 9218–
9228.

Dechter, R. 2000. A New Perspective on Algorithms for
Optimizing Policies under Uncertainty. In Proceedings of
the 5th Conference on Artificial Intelligence and Planning
Systems, 72–81.

Dechter, R. 2013. Reasoning with probabilistic and deter-
ministic graphical models: Exact algorithms. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning 7(3):
1–191.

Detwarasiti, A.; and Shachter, R. D. 2005. Influence dia-
grams for team decision analysis. Decision Analysis 2(4):
207–228.

Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored MDPs. Jour-
nal of Artificial Intelligence Research 19: 399–468.

Howard, R. A.; and Matheson, J. E. 1981. Influence Dia-
grams. Readings on the Principles and Applications of De-
cision Analysis 721–762.
Jensen, F.; Jensen, F. V.; and Dittmer, S. L. 1994. From In-
fluence Diagrams to Junction Trees. In Proceedings of the
International Conference on Uncertainty in Artificial Intel-
ligence, 367–373.
Jensen, F. V.; and Gatti, E. 2010. Information enhancement
for approximate representation of optimal strategies from in-
fluence diagrams. on Probabilistic Graphical Models 161.
Jensen, J. L. W. V. 1906. Sur les fonctions convexes et
les inégalités entre les valeurs moyennes. Acta Math. 30:
175–193. doi:10.1007/BF02418571. URL https://doi.org/
10.1007/BF02418571.
Kask, K.; Dechter, R.; Larrosa, J.; and Dechter, A. 2005.
Unifying tree decompositions for reasoning in graphical
models. Artificial Intelligence 166(1-2): 165–193.
Kohlas, J.; and Shenoy, P. P. 2000. Computation in valuation
algebras. In Handbook of defeasible reasoning and uncer-
tainty management systems, 5–39. Springer.
Lauritzen, S. L.; and Nilsson, D. 2001. Representing and
Solving Decision Problems with Limited Information. Man-
agement Science 47(9): 1235–1251.
Lee, J.; Ihler, A.; and Dechter, R. 2018. Join Graph Decom-
position Bounds for Influence Diagrams. In Proceedings
of the 34th Conference on Uncertainty in Artificial Intelli-
gence, 1053–1062.
Lee, J.; Marinescu, R.; Ihler, A.; and Dechter, R. 2019. A
Weighted Mini-Bucket Bound for Solving Influence Dia-
grams. In Proceedings of the 35th Conference on Uncer-
tainty in Artificial Intelligence (UAI).
Liu, Q. 2014. Reasoning and Decisions in Probabilistic
Graphical Models–A Unified Framework. University of Cal-
ifornia, Irvine.
Liu, Q.; and Ihler, A. 2011. Bounding the Partition Function
using Hölder’s Inequality. In Proceedings of the Interna-
tional Conference on Machine Learning, 849–856.
Liu, Q.; and Ihler, A. 2012. Belief Propagation for Struc-
tured Decision Making. In Proceedings of the 28th Confer-
ence on Uncertainty in Artificial Intelligence, 523–532.
Marinescu, R.; Dechter, R.; and Ihler, A. 2014. AND/OR
Search for Marginal MAP. In Proceeding of the Interna-
tional Conference on Uncertainty in Artificial Intelligence,
563–572. Quebec City, Canada.
Marinescu, R.; Lee, J.; Dechter, R.; and Ihler, A. 2018.
And/or Search for Marginal Map. Journal of Artificial In-
telligence Research 63: 875–921.
Mateescu, R.; Kask, K.; Gogate, V.; and Dechter, R. 2010.
Join-graph propagation algorithms. Journal of Artificial In-
telligence Research 37: 279–328.
Mauá, D. D. 2016. Equivalences Between Maximum a Pos-
teriori Inference in Bayesian Networks and Maximum Ex-
pected Utility Computation in Influence Diagrams. Int. J.
Approx. Reasoning 68(C): 211–229.

12156

Mauá, D. D.; and Cozman, F. G. 2016. Fast Local Search
Methods for Solving Limited Memory Influence Diagrams.
Int. J. Approx. Reasoning 68(C): 230–245.
Mauá, D. D.; de Campos, C. P.; and Zaffalon, M. 2012. Solv-
ing Limited Memory Influence Diagrams. Journal of Artifi-
cial Intelligence Research 44: 97–140.
Nielsen, T. D. 2001. Decomposition of influence diagrams.
In European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning and Uncertainty, 144–155. Springer.
Nielsen, T. D.; and Jensen, F. V. 1999. Well-defined Deci-
sion Scenarios. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, 502–511.
Nilsson, D.; and Hohle, M. 2001. Computing Bounds on
Expected Utilties for Optimal Policies Based on Limited In-
formation. Dinar Research Report .
Pearl, J. 2009. Causality. 78–85. Cambridge University
Press.
Ping, W.; Liu, Q.; and Ihler, A. T. 2015. Decomposition
Bounds for Marginal MAP. In Proceedings of Advances in
Neural Information Processing Systems 28, 3267–3275.
Pralet, C.; Schiex, T.; and Verfaillie, G. 2006. From Influ-
ence Diagrams to Multi-operator Cluster DAGs. In Proceed-
ings of the International Conference on Uncertainty in Arti-
ficial Intelligence, 393–400.
Shenoy, P. P. 1997. Binary join trees for computing
marginals in the Shenoy-Shafer architecture. International
Journal of approximate reasoning 17(2-3): 239–263.
Shenoy, P. P.; and Shafer, G. 1990. Axioms for Probabil-
ity and Belief-function propagations. In Proceedings of the
International Conference on Uncertainty in Artificial Intel-
ligence, 169–198.
Wainwright, M. J.; and Jordan, M. I. 2008. Graphical mod-
els, exponential families, and variational inference. Founda-
tions and Trends® in Machine Learning 1(1-2): 1–305.
Yuan, C.; Wu, X.; and Hansen, E. A. 2010. Solving Multi-
stage Influence Diagrams Using Branch-and-bound Search.
In Proceedings of the International Conference on Uncer-
tainty in Artificial Intelligence, 691–700.
Zhang, N. L.; and Poole, D. L. 1992. Stepwise-
Decomposable Influence Diagrams. In Proceedings of the
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 141–152.

12157

