
Robust Contextual Bandits via Bootstrapping

Qiao Tang, Hong Xie, Yunni Xia, Jia Lee, Qingsheng Zhu
Chongqing Key Laboratory of Software Theory and Technology, Chongqing University

felicity 0719@163.com, xiehong2018@cqu.edu.cn, xiayunni@hotmail.com, {lijia,qszhu}@cqu.edu.cn

Abstract

Upper confidence bound (UCB) based contextual bandit al-
gorithms require one to know the tail property of the reward
distribution. Unfortunately, such tail property is usually un-
known or difficult to specify in real-world applications. Using
a tail property heavier than the ground truth leads to a slow
learning speed of the contextual bandit algorithm, while using
a lighter one may cause the algorithm to diverge. To address
this fundamental problem, we develop an estimator (evalu-
ated from historical rewards) for the contextual bandit UCB
based on the multiplier bootstrapping technique. We first estab-
lish sufficient conditions under which our estimator converges
asymptotically to the ground truth of contextual bandit UCB.
We further derive a second order correction for our estimator
so as to obtain its confidence level with a finite number of
rounds. To demonstrate the versatility of the estimator, we
apply it to design a BootLinUCB algorithm for the contextual
bandit. We prove that the BootLinUCB has a sub-linear re-
gret upper bound and also conduct extensive experiments to
validate its superior performance.

Introduction
Contextual bandit is a popular online learning framework
and has been applied to solve many real-world problems, i.e.,
it has been applied to recommender systems to recommend
products to interactive users (Li et al. 2010; Wang, Wu, and
Wang 2016; Zhang et al. 2019), applied to optimize infor-
mation retrieval algorithms (Hofmann et al. 2011; Gampa
and Fujita 2019; Glowacka et al. 2019), as well as applied
to networking applications such as selecting edge servers in
mobile edge computing systems (Ouyang et al. 2019). Also,
numerous variants of contextual bandit were developed (Fil-
ippi et al. 2010; Wang, Wu, and Wang 2016; Krishnamurthy,
Wu, and Syrgkanis 2018; Zhang et al. 2019). To illustrate,
consider the following example of a simplified contextual
bandit:

Example 1. Consider a finite number of arms indexed by
a ∈ A , {1, . . . , A}, where A ∈ N+. Arm a is associated
with a feature vector xa ∈ Rd, where d ∈ N+. The reward
model for arm a is

Ra = xTa θ∗ +Wa,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where θ∗ ∈ Rd and Wa is random variable with normal
distribution N (0, σ2

a). In each round t ∈ N+, the decision
maker selects an arm at ∈ At ⊆ A and receives the reward,
which is a sample from Rat . The objective is to design an
arm selection algorithm to attain as large as possible the
cumulative reward in T ∈ N+ rounds.

For the bandit feedback illustrated in Example 1, contex-
tual bandit algorithms need to balance the exploitation vs.
exploration trade-off. One popular class of contextual bandit
algorithms use the upper confidence bound (UCB) approach
to balance this trade-off (Abbasi-Yadkori, Pál, and Szepesvári
2011; Auer 2002; Chu et al. 2011; Lattimore and Szepesvári
2020). The following example illustrates one of the UCB
approaches for Example 1.

Example 2. Consider the setting of Example 1. In round t,
selects the arm at ∈ arg maxa∈At Ut(a), where Ut(a) is the
UCB associated with arm a and it is defined as

Ut(a) , xTa θ̂t + φt(xa,σ,Ht−1),

where σ = (σ1, . . . , σA),Ht denotes the historical arms and
rewards up to round t, θ̂t denote an estimator of θ∗ evaluated
fromHt−1, and the penalty term satisfies φt(xa,σ,Ht−1) >
0.

Example 2 summarizes the structure of LinUCB algo-
rithms for contextual bandit (Abbasi-Yadkori, Pál, and
Szepesvári 2011; Chu et al. 2011). The penalty term en-
courages exploration and a larger value induces more explo-
ration. The penalty term φt(xa,σ,Ht−1) is non-decreasing
in σa, ∀a ∈ A, capturing that when the reward is subjected
to a larger variation, the estimated θ̂t becomes less accurate,
thus, the algorithm needs to do more explorations. Unfortu-
nately, one does not possess the knowledge of σa, ∀a ∈ A,
in practice. Using a standard deviation larger than σa for
Algorithm in Example 2 leads to over exploration, i.e., slow
learning speed, while the reverse may cause the algorithm
to diverge. In summary, Example 2 highlights a reward dis-
tribution tail property mis-match problem (e.g., σa charac-
terizes the tail property of the reward distribution), which is
inherent in many UCB based contextual bandit algorithms be-
yond LinUCB, e.g., LinRel (Auer 2002), SupLinUCB (Chu
et al. 2011), action elimination algorithms (Lattimore and
Szepesvári 2020).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12182

This paper considers how to address the fundamental prob-
lem of reward distribution tail property mis-match in a gen-
eral setting, i.e., the reward distribution can evolve over time
and can have non-parametric distribution beyond Gaussian,
etc. Specifically, we deploy multiplier bootstrap methods (Ar-
lot et al. 2010; Yang, Shang, and Cheng 2017) and develop
an estimator for the UCB of contextual bandit, which can
be directly evaluated from the historical arms and rewards
without requiring one to know or specify the tail property of
the reward distribution. There are two challenges in provid-
ing theoretical guarantees: (1) the ground truth UCB being
estimated across arms are correlated, (2) one only possesses
the bandit feedback in each round and it is coupled with the
estimated UCB. We address them and our contributions are:

• We apply the multiplier bootstrap technique to develop a
novel estimator for the contextual bandit UCB. The estima-
tor can be directly evaluated from the historical arms and
rewards without requiring one to specify the tail property
of the reward distribution.

• We establish sufficient conditions, under which our esti-
mator converges asymptotically to the ground truth of the
contextual bandit UCB. These sufficient conditions guide
us to select arms in early time decision rounds.

• We further derive a second-order correction for our esti-
mator to obtain its confidence level with only a finite num-
ber of rounds. We select arm associated with the largest
data-driven UCB (i.e., corrected estimator) in the remain-
ing time slots (i.e., except the early time slots mentioned
above), resulting in our BootLinUCB algorithm for the
contextual bandit. We prove BootLinUCB has a sub-linear
regret upper bound. The estimator is general and can be ap-
plied to other UCB based contextual bandits, e.g., LinRel
(Auer 2002), SupLinUCB (Chu et al. 2011), etc.

• We conduct extensive experiments to validate its superior
performance of our BootLinUCB algorithm over the latest
bootstrapping based LinUCB algorithm (Hao et al. 2019)
and the classical LinUCB algorithm (Chu et al. 2011).

Related Work
The research of contextual bandit (Chu et al. 2011; Li et al.
2010) can be organized into three lines: algorithmic line,
modeling line and application line. The algorithmic line
focuses on developing algorithms with faster learning speed,
more robust to model misspecification, etc., (Abbasi-Yadkori,
Pál, and Szepesvári 2011; Chu et al. 2011; Agrawal and
Goyal 2013; Zhu et al. 2017; Hao et al. 2019). The modeling
line focuses on extending the contextual bandit model to
handle more general or complicated settings (Filippi et al.
2010; Wang, Wu, and Wang 2016; Krishnamurthy, Wu, and
Syrgkanis 2018; Zhang et al. 2019). The application line
focuses on tuning contextual bandit algorithms to solve online
decision problems in real-world applications (Li et al. 2010;
Hofmann et al. 2011; Glowacka et al. 2019; Ouyang et al.
2019; Zhang et al. 2019). This paper falls into the algorithmic
line, in particular, using bootstrapping methods to improve
contextual bandit algorithms.

A number of recent works applied bootstrapping methods
to design data driven algorithms for contextual bandit. These
research can be organized into the Thompson sampling line
and UCB line. In the Thompson sampling line, bootstrapping
methods are used to design Thompson sampling algorithms
for contextual bandit (Eckles and Kaptein 2014; Osband and
Van Roy 2015; Tang et al. 2015; Elmachtoub et al. 2017;
Kveton et al. 2019; Vaswani et al. 2018). One advantage of
the Thompson sampling method is that these algorithms are
non-parametric, i.e., they do not require the parametric form
on the model. However, these algorithms usually do not have
theoretical guarantee, i.e., the regret upper bound, except
(Kveton et al. 2019) whose regret upper bound is obtained
under Bernoulli assumption. In contrast, our work applies to
a broader class of distributions, i.e., symmetry sub-Gaussian
distributions. Another technical difference is that our work
develops data driven UCB algorithms for contextual bandit
with theoretical guarantees. In the UCB line, bootstrapping
methods are used to design data driven UCB algorithms for
contextual bandit (Sudarsanam and Ravindran 2016; Hao
et al. 2019). Again, one advantage over the UCB method
is that these algorithms are non-parametric and adaptively
adjusted to the ground truth UCB. These algorithms (Su-
darsanam and Ravindran 2016; Hao et al. 2019) do not have
regret upper bound for contextual bandit problem. Note that
the algorithm in (Hao et al. 2019) provides regret upper bound
for classical multi-armed bandit problem. However, it is non-
trivial to extend it to contextual bandit problems because in
the classical multi-armed bandit problem, the UCB for each
arm is independent, while in contextual bandit they are corre-
lated. We develop apply the multiplier bootstrap technique
to develop a novel estimator for the contextual bandit UCB
and establish conditions to guarantee the convergence of the
estimator.

Contextual Bandit Model
Consider a contextual bandit model with a finite number
of A ∈ N+ arms. Denote the arm set as A , {1, . . . , A}.
Each arm a ∈ A is associated with a d ∈ N+ dimensional
feature vector xa ∈ Rd. The feature vector xa is known to
the decision maker. Consider a discrete time system indexed
by t ∈ N+. Each time slot corresponds to one decision epoch
or decision round. In time slot t, a subset of At ⊆ A arms
is presented to the decision maker. Then, the decision maker
selects one arm from At denoted by at ∈ At. Finally, the
decision maker receives a reward rt ∈ R. Note that the
reward of other arms are not revealed to the decision maker.
The objective is to design an arm selection algorithm to attain
as high as possible the cumulative reward.

We consider linear reward functions. Define the reward
function for arm a in time slot t as

Ra,t , x
T
a θ∗ +Wa,t, (1)

where θ∗ denotes a “preference” vector and the random
variable Wa,t denotes a stochastic noise with zero mean
E[Wa,t] = 0. Furthermore, Wa,t across arms and time slots
are independent (Abbasi-Yadkori, Pál, and Szepesvári 2011;
Chu et al. 2011). The preference vector θ∗ is unknown to
the decision maker. The stochastic noise Wa,t captures the

12183

randomness or variation in reward. The reward rt in time
slot t is a sample or realization of Rat,t. Then the expected
reward in time slot t is E[Rat,t] = xTatθ∗.

We consider a risk neutral decision maker, who aims to
maximize the expected cumulative reward E[

∑T
t=1Rat,t].

The linearity of expectation

E

[
T∑
t=1

Rat,t

]
=

T∑
t=1

E[Rat,t]

implies that the optimal arm denoted by a∗t in time slot t can
be derived as

a∗t ∈ arg max
a∈At

E[Ra,t] = arg max
a∈At

xTa θ∗.

However, the optimal arm a∗t is unknown to the decision
maker because the preference vector θ∗ is unknown to the
decision maker. The objective is to design an arm selection al-
gorithm, denoted by A, to maximize the expected cumulative
reward E[

∑T
t=1Rat,t].

We consider a class of history-dependent arm selection
algorithms A, which prescribe an arm for each interaction
history. Denote the reward history up to time slot t asHt ,
{(a1,xa1 , r1), . . . , (at,xat , rt)}, which contains historical
arms and rewards. Formally, the algorithm can be represented
as a mapping function A : Ht−1 7→ At and at = A(Ht−1).
We use the regret to quantify the performance of algorithm
A, which is:

RT (A) ,
T∑
t=1

xTa∗t θ∗ − E

[
T∑
t=1

xTatθ∗

∣∣∣∣at = A(Ht−1)

]
.

A smaller regret implies that algorithm A achieves a larger
expected cumulative reward.

BootLinUCB Algorithmic Framework
In this section, we first present some basic elements of regu-
larized least squares for contextual bandits. Then we present
the formulation of our quantile bootstrapping oracle for con-
textual bandits. Finally, we apply this quantile bootstrapping
oracle to design our BootLinUCB algorithmic framework.

Regularized Least Squares
Regularized least squares is the main stream method to es-
timate the preference vector θ∗ of contextual bandits (Latti-
more and Szepesvári 2020):

θ̂t = arg min
θ∈Rd

t−1∑
s=1

(xTasθ − rs)
2 + λ‖θ‖22,

where θ̂t denotes an estimation of θ∗ in time slot t and λ > 0
denotes a regularization parameter. The closed form expres-
sion for θ̂t is:

θ̂t = V −1t−1

t−1∑
s=1

xasrs,

where

Vt−1 = λI +
t−1∑
s=1

xasx
T
as .

This closed form expression of θ̂t implies that

xTa (θ∗ − θ̂t) = E(xa,Ft−1) + λxTaV
−1
t−1θ∗,

where Ft−1 , {a1, . . . , at−1}, and E(xa,Ft−1) is defined
as a partial residual

E(xa,Ft−1) , xTaV
−1
t−1

t−1∑
s=1

xas(xTasθ∗ − rs).

The tail property of the reward distribution is essential for
deriving the UCB of xTa θ∗. To illustrate, the following lemma
generalizes the UCB in (Chu et al. 2011) for a bounded
reward [0, 1] to a sub-Gaussian reward.
Lemma 1. Suppose Wa,t is sub-Gaussian, i.e.,
E[exp(cWa,t)] ≤ exp(c2σ2

a,t/2), ∀c ∈ R, and Ft is
deterministic, then

P[xTa θ∗≥xTa θ̂t+λxTaV −1t−1θ∗+ϕt(xa,Ht−1)] ≤ αt,
where

ϕt(xa,Ht−1) = σmax

√
2 ln(1/αt)‖xa‖V −1

t−1

denotes an upper bound of the (1−αt)-quantile of the partial
residual E(xa,Ft−1) and σmax = maxa,t σa,t.
Remark: Lemma 1 implies that an UCB for the ground truth
reward xTa θ∗ can be

Ut(a) , xTa θ̂t+λx
T
aV
−1
t−1θ∗+ϕt(xa,Ht−1).

A variety of contextual bandit algorithms use Ut(a) to select
arms: LinUCB algorithm (Chu et al. 2011) selects arms via
at ∈ arg maxa∈At Ut(a); LinRel (Auer 2002) and SupLin-
UCB (Chu et al. 2011) use Ut(a) to assists arm selection
and sub-optimal arm elimination; forced-exploration based
algorithms (Abbasi-Yadkori, Antos, and Szepesvári 2009)
can use to Ut(a) to determine the condition of stopping ex-
ploration adaptively, just to name a few. However, in practice,
the exact ϕt(xa,Ht−1) is unknown to the decision maker,
because the parameter σa,t is unknown and Wa,t may not
even be sub-Gaussian, making it more difficult to specify the
UCB. We next formulate an oracle to bootstrap Ut(a) beyond
sub-Gaussian reward.

Quantile Bootstrapping Oracle
To be consistent with the condition in Lemma 1, in this sub-
section, we consider a deterministic Ft. Lemma 1 shows that
the upper confidence bound of the ground truth reward xTa θ∗
is determined by the (1− αt)-quantile of the partial residual
E(xa,Ft−1). Formally, the ground truth (1− α)-quantile of
E(xa,Ft−1) is defined as

qt(xa, 1− α), inf {z∈R|P [E(xa,Ft−1)≤z]≥1−α} .
With the ground truth quantile qt(xa, 1 − αt), the ground
truth UCB for xTa θ∗ can be expressed as

Υt(a) , xTa θ̂t+λx
T
aV
−1
t−1θ∗ + qt(xa, 1− αt).

Note that Υt(a) ≤ Ut(a) because ϕt(xa,Ht−1) is an up-
per bound of the (1 − αt)-quantile of the partial residual
E(xa,Ft−1), i.e., qt(xa, 1 − αt) ≤ ϕt(xa,Ht−1). The
following definition states a class of bootstrapping oracles,
which bootstrap (or estimate) the quantile qt(xa, 1−αt) from
the reward historyHt−1 with theoretical guarantees.

12184

Definition 1. Define BootQuantile(x,Ht−1, α) as an
oracle which bootstraps the quantile qt(xa, α) from the in-
teraction historyHt−1, and satisfies:

P [E(xa,Ft−1) ≤ Qt(xa, α)] ≥ α, ∀a ∈ At,
where Qt(xa, α) = BootQuantile(xa,Ht−1, α), α ∈
[0, 1], and Ft−1 is deterministic.
The oracle defined in Definition 1 takes the feature vector,
interaction history and confidence level as input, and outputs
an estimated quantile for each arm satisfying the inputted
confidence level. The detail of the bootstrapping oracle is
deferred to next section. In this section, let us focus on how
to use it to design algorithms for contextual bandit.

BootLinUCB Algorithm
We apply the BootQuantile(x,Ht−1, α) oracle to de-
sign our BootLinUCB algorithmic framework outlined
in Algorithm 1, where Ft can be coupled with reward.
Note that for other algorithms like forced-exploration
based algorithms (Abbasi-Yadkori, Antos, and Szepesvári
2009), LinRel (Auer 2002), SupLinUCB (Chu et al. 2011),
where Ft is deterministic or independent of the reward,
the BootQuantile(x,Ht−1, α) oracle can also be ap-
plied. Due to page limit, we omit them. To execute al-
gorithm 1, one needs to specify a bootstrapping oracle
BootQuantile(xa,Ht−1, α) and the parameters for the
confidence level αt, ∀t = 1, . . . , T . In each time slot t, the
algorithm first computes an estimate of the preference pa-
rameter denoted by θ̂t. It then computes an estimate of the
quantile Qt(xa, 1 − αt) for each arm by calling the boot-
strapping oracle. It uses the estimated quantile to construct
a UCB for each arm, and then selects the arm with the
largest UCB value. Finally, it receives the reward and up-
dates the interaction history, etc. Note that λxTaV

−1
t−1θ∗ is

unknown as θ∗ is unknown. In the implementation, one can
replace λxTaV

−1
t−1θ∗ with its upper bound (Chu et al. 2011)

λxTaV
−1
t−1θ∗ ≤ L

√
λ‖xa‖V −1

t−1
, where L is an upper bound

of the norm of the preference parameter ‖θ∗‖ ≤ L. The
following theorem states the regret upper bound.

Algorithm 1 BootLinUCB algorithmic framework

1: Input: an oracle BootQuantile(xa,Ht−1, α) and
confidence level parameters α1, . . . , αT .

2: H0 ← ∅, b0 ← 0, V0 ← λI .
3: for t = 1, . . . , T do
4: θ̂t = V −1t−1bt−1.
5: Qt(xa,1−αt)←BootQuantile(xa,Ht−1,1−αt).
6: Choose arm

at∈ arg max
a∈At

[
xTa θ̂t+λx

T
aV
−1
t−1θ∗+Qt(xa, 1−αt)

]
.

7: Observe reward rt.
8: Vt ← Vt−1 + xatx

T
at .

9: bt ← bt−1 + xatrt.
10: Ht ← Ht−1 ∪ {(at,xat , rt)}.
11: end for

Theorem 1. If for each given a, Wa,t, ∀t are identical, the
regret of Algorithm 1 can be bounded as

RT (ABootLinUCB)

≤
T∑
t=1

E [min{Qt(xat , 1−αt) +Qt(−xat , 1−αt), gt}]

+ 2
T∑
t=1

(
t+A− 2

A− 1

)
αtgt,

where gt , maxa∈At x
T
a θ∗ − mina∈At x

T
a θ∗ denotes the

maximum possible regret in time slot t.
Remark: Due to page limit, we present all proofs
in our supplementary file. Though in Algorithm
1 Ft depends on the reward, we can decouple it
via the conditioning trick in the analysis. The term∑T

t=1

(
t+A−2
A−1

)
αtgt has an order of O(

∑T
t=1

(
t+A−2
A−1

)
αt).

For example, if we select αt = 1/(
(
t+A−2
A−1

)
t), then we

have O(
∑T
t=1

(
t+A−2
A−1

)
αt) = O(lnT). Namely, this

term can be made sub-linear. To analyze the order of∑T
t=1 E [min{Qt(xat , 1− αt) +Qt(−xat , 1− αt), gt}]

we need more details of the bootstrapping oracle, and we
defer it to next section.

Bootstrapping Algorithm
We first apply the multiplier bootstrap technique to design an
estimator for the quantile qt(xa, α). We establish sufficient
conditions, under which our estimator converges. These con-
ditions and the estimator guide us to design an algorithm to
implement the bootstrapping oracle.

Asymptotically Accurate Estimator
To be consistent with the condition in definition 1, in this
subsection, we consider a deterministic Ft. The quantile
qt(xa, α) can be rewritten as

qt(xa, α)

= inf

{
z∈R

∣∣∣∣∣P
[
xTaV

−1
t−1

t−1∑
s=1

xas(rs−xTasθ∗)≤z

]
≥α

}
.

In the above quantile, the randomness is caused by reward
rs, s = 1, . . . , t, which are independent samples from the
reward distribution expressed in Equation (1). We apply the
multiplier bootstrapping technique (Arlot et al. 2010) to re-
sample the reward rs, s = 1, . . . , t, for the purpose of estimat-
ing the quantile qt(xa, α). Formally, we define an estimator
for qt(xa, α) as:

q̂t(xa, ε, α)

, inf

{
z∈R

∣∣∣∣∣Pw
[
t−1∑
s=1

wsx
T
aV
−1
t−1xasεs≤z

]
≥α

}
,

where w1, . . . , wt−1 are independent and identically dis-
tributed (IID) random variables following the Rademacher
distribution, i.e., ws = 1 with probability 0.5 and ws = −1
with probability 0.5. We define w , (w1, . . . , wt−1), εs ,

12185

xTasθ∗ − rs as reward residual, ε , (ε1, . . . , εt−1), and Pw
as computing probability with respect to randomness caused
by w.

To analyze the estimator q̂t(xa, ε, α), we need to charac-
terize the tail of the reward distribution. Let Z denote the
space of random variables such that Wa,t ∈ Z, ∀a, t. The
convergence of the estimator q̂t(xa, ε, α) relies on the tail
property of Z defined as follows.
Definition 2. Define a metric

HZ(z) , sup
Z∈Z

E
[
Z2;Z2 > z

]
E [Z2]

to quantify how heaviness of the tail of a space of random
variables Z , where z ∈ R+.
For each given z, a larger HZ(z) implies that the tail of
the space of random variables Z is heavier. The following
assumption captures a class of distributions with “nice” tails.
Assumption 1. The space of random variables Z satisfies

lim
z→∞

HZ(z)→ 0.

Assumption 1 characterizes a broad class of distributions.
For example, if Z is a space of random variables with a
bounded domain, then Condition 1 holds. If Z is a space
of sub-Gaussian random variables, then Assumption 1 also
holds.
Assumption 2. There exist 0 < c1 < c2 such that the
variance V ar(Wa,t) ∈ [c1, c2], ∀a, t.

The next condition is essential for the convergence of the
quantile estimator q̂t(xa, ε, α).
Condition 1. For any a ∈ A, it holds that

lim
t→∞

‖xa‖V −1
t
→ 0.

Condition 1 identifies a sequence of well behaved actions.
Due to correlation among the quantile of arms, the quantile
estimator q̂t(xa, ε, α) may not converge under poorly be-
haved action sequences. We will show how to design arm
selection strategies to guarantee Condition 1 in next section.
Theorem 2. Under Assumption 1, 2 and Condition 1, the
quantile estimator q̂t(xa, ε, α) converges to the ground truth
qt(xa, α), i.e.,

lim
t→∞

|q̂t(xa, ε, α)− qt(xa, α)| = 0, ∀a, α,

where Ft−1 is deterministic.
Remark: Theorem 2 states the sufficient conditions under
which the estimator q̂t(xa, ε, α) converges to the ground
truth. Namely, the estimator q̂t(xa, ε, α) is asymptotically
accurate. However, it is difficult to implement, as it requires
the preference parameter θ∗. To relieve this difficulty, we
replace θ∗ with θ̂t. Formally, we express the new estimator
as

q̂t(xa, ε̂, α)

= inf

{
z∈R

∣∣∣∣∣Pw
[
t−1∑
s=1

wsx
T
aV
−1
t−1xas ε̂s≤z

]
≥α

}
, (2)

where ε̂s = xTas θ̂t − rs denotes the empirical residual and
ε̂ = (ε̂1, . . . , ε̂t−1). The following theorem establish the
asymptotic convergence of this estimator.
Theorem 3. Under the same conditions as Theorem 2, the
quantile estimator q̂t(xa, ε, α) converges to the ground truth
qt(xa, α), i.e.,

lim
t→∞

|q̂t(xa, ε̂, α)− qt(xa, α)| = 0, ∀a, α,

where Ft−1 is deterministic.
Remark: Theorem 3 states sufficient conditions under which
the quantile estimator q̂t(xa, ε̂, α) converges to the ground
truth quantile qt(xa, α). Note that it requires the same condi-
tion as Theorem 2, i.e., no extra conditions are needed.

Non-Asymptotic Validity of Estimator
The quantile estimator expressed in Eq. (2) has the nice
asymptotic accurate property. However, it can not be directly
used to design our bootstrapping oracle as we do not known
the confidence level of it. Now, we establish its confidence
level via second-order correction (Arlot et al. 2010; Hao
et al. 2019). The second order correction relies on the tail
property of the reward distribution, in particular, the concen-
tration behavior of E(xa,Ft−1). We define a function β(·)
to characterize the concentration behavior.
Definition 3. Define β(·) as a function such that

P[E(xa,Ft−1) ≥ β(α)‖xa‖V −1
t−1

] ≤ α,

where Ft−1 is deterministic.
For example, as derived in Lemma 1, when the reward

follows a sub-Gaussian distribution, the function β(α) has
the expression β(α) = O(ln(1/α)). For other distribu-
tions with tail heavier than the sub-Gaussian distribution
(Bubeck, Cesa-Bianchi, and Lugosi 2013), we may have
β(α) = O(poly(1/α)). Furthermore, β(α) can be made to
infinity, i.e., β(α) = exp(1/α) or β(α) = ∞, to character-
ize reward distribution with heavier tails. Namely, β(α) can
characterize the full design space of reward distribution.
Theorem 4. Suppose Condition 1 holds and Ft is determin-
istic. Suppose the Wa,t, ∀a, t, follow symmetric distribution.
Then we have:

P [E(xa,Ft−1)≥q̂t(xa, ε̂, 1− α(1− δ)) + ∆(t, α)]≤2α,

where δ ∈ (0, 1),

∆(t, α),β

(
α

|A|

)√√√√2
t∑

s=1

(xTaV
−1
t xas)2‖xas‖2V −1

t

ln
1

αδ
,

and xa is dependent of xa1 , . . . ,xat−1 . Furthermore,
limt→∞∆(t, α) = 0 holds for any fixed α.
Remark: Theorem 4 states the sufficient conditions and a
second order correction term ∆(t, α), under which the quan-
tile estimator q̂t(xa, ε̂, α) can provide confidence level. Fur-
thermore, for each fixed confidence level, the second order
correction term ∆(t, α) vanishes. Comparing with Theorem
3, one can observe that Theorem 4 requires an extra con-
dition that the reward distribution is symmetric. Note that

12186

this extra condition is not due to the contextual bandit, but
instead from the bootstrapping technique. To the best of
our knowledge, handling non-symmetric distribution for non-
asymptotic convergence is an open problem (Arlot et al. 2010;
Chernozhukov et al. 2014; Yang, Shang, and Cheng 2017).

Quantile Bootstrapping Algorithm Design
Even though the corrected quantile estimator derived in The-
orem 4, i.e., q̂t(x, ε̂, α(1 − δ)) + ∆(t, α), has the desired
property as stated in Definition 1, one should not directly
implement the bootstrapping oracle BootQuantile as
q̂t(x, ε̂, α(1− δ)) + ∆(t, α). This is because this implemen-
tation may not guarantee Condition 1 to hold, which in turn
may lead to Theorem 4 not to hold.

We will first refine q̂t(x, ε̂, α(1 − δ)) + ∆(t, α), and
then use this refinement to design the bootstrapping oracle
BootQuantile such that Condition 1 can be guaranteed.
To facilitate the analysis, we define the following notation to
quantify the norm of a set of arms:

‖At‖V −1
t−1

, max
a∈At

‖xa‖V −1
t−1
.

Based on this notation, the following lemma states a sufficient
condition to guarantee Condition 1.
Lemma 2. Suppose it holds that

dim(At) = dim(A), ∀t, (3)

Then lim supt→∞ ‖At‖V −1
t−1

= 0 implies Condition 1.

To show lemma 2, the following lemma derives a sufficient
condition for Condition 1.
Lemma 3. Suppose Eq. (3) holds. We have:

lim sup
t→∞

‖At‖V −1
t−1

> 0⇒ lim inf
t→∞

‖At‖V −1
t−1

> 0.

Lemma 3 states that if lim inft→∞ ‖At‖V −1
t−1

> 0 does
not hold, then Condition 1 holds. It is easier to show that
lim inft→∞ ‖At‖V −1

t−1
> 0 leads to contraction than di-

rectly showing lim supt→∞ ‖At‖V −1
t−1

= 0. The follow-
ing theorem states the sufficient conditions under which
lim inft→∞ ‖At‖V −1

t−1
> 0 leads to contradiction, and it fur-

ther refines the quantile estimator.
Theorem 5. Suppose Eq (3) holds. Suppose αt goes to zero
as t goes to infinity. If BootQuantile(x,Ht−1, 1 − αt)
returns q̃t(x, ε̂, 1− αt

2 (1−δ)), Algo. 1 guarantees Condition
1, where q̃t(x, ε̂, α) is defined as an refined quantile estimator

q̃t(x, ε̂, α) , ∆

(
t,

1− α
1− δ

)
+

{
+∞, if dim({x1, . . . ,xat})> dim({x1, . . . ,xat−1

}),

min
{
xT θ̂t+q̂t(x, ε̂, α), 2SL

}
−xT θ̂t, otherwise,

where ‖xa‖ ≤ S, ∀a ∈ A.

Remark: Theorem 5 states sufficient conditions on the action
set At the confidence parameter αt and a refined quantile
estimator, such that Condition 1 holds. The condition on

αt means that αt vanishes, which is commonly hold. The
condition on action set At is that the dimension of the linear
space spanned by At is the same as that spanned by A. The
main purpose of this condition is to make the proof and
the statement of Theorem 5 clean. The refined estimator
q̃t(x, ε̂, α) means that we should always give the highest
priority to those arms whose feature vector can increase the
dimension of the linear space spanned by the feature vectors
of historical actions. The following lemma states that we
can still provide confidence level for the refined quantile
estimator.
Lemma 4. The refined quantile estimator q̃t(x, ε̂, α) has the
following confidence level:

P
[
E(xa,Ft−1) ≤ q̃t

(
x, ε̂, 1− α

2
(1− δ)

)]
≥ 1− α,

where Ft is deterministic.
Lemma 4 provides confidence level for the refined quantile
estimator. Namely, the refined quantile estimator has the nice
properties defined in Definition 1. Thus, we use this refined
quantile estimator to design our bootstrapping oracle. Algo-
rithm 2 outlines the procedures to compute the refined oracle.
The key step of Algorithm 2 is step 4, which computes the
estimator q̂t(xa, ε̂, αt(1− δ)). It is computationally expen-
sive to compute the exact value for q̂t(xa, ε̂, αt(1− δ)). In
the implementation, one can use Monte Carlo simulation to
approximate it, which is quite common in multiplier boot-
strapping literature (Arlot et al. 2010; Hao et al. 2019). The
following theorem derive the regret as:
Theorem 6. Suppose Eq. (3) holds. Under the condition of
Theorem 1 and Algo. 2, we have

RT (ABootLinUCB)

≤
dim(A)∑
t=1

gt+4
T∑

t=dim(A)+1

(
t+A−2

A−1

)
Aαtgt

+

T∑
t=dim(A)+1

E [q̃t(xat , ε̂, 1−αt)−q̃t(−xat , ε̂, 1−αt)] .

Furthermore, suppose the reward follows sub-Gaussian dis-
tribution, and αt = 1/(

(
t+A−2
A−1

)
t), then the above regret has

an order ofRT (ABootLinUCB) ≤ O(A
√
T (lnT)2).

Remark: Theorem 6 states a general regret upper bound
for our bootLinUCB algorithm under the refined quantile

Algorithm 2 BootQuantile(xa,Ht−1, 1− 2αt)

1: a← xTa θ̂t.
2: Compute ε̂ from the reward historyHt−1
3: c← ∆(t, αt) .
4: b← q̂t(xa, ε̂, αt(1− δ))
5: if dim({xa1 , . . . ,xat−1})< dim({xa1 , . . . ,xat}) then
6: RETURN +∞.
7: else
8: RETURN min {a+ b, 2SL} − a+ c
9: end if

12187

estimator. This regret upper bound can be further simplified to
be sub-linear if the reward follows sub-Gaussian distribution.

Experiments on Synthetic Data
Experiment setting. We compare our BootLinUCB algo-
rithm with the latest bootstrapping based LinUCB algorithm
(Hao et al. 2019) and the classical LinUCB algorithm (Chu
et al. 2011). Since the latest bootstrapping based LinUCB al-
gorithm (Hao et al. 2019) does not have theoretical guarantee,
we denote it by BootLinHeu, where Heu represents heuristic.

Consider T = 2000 decision rounds. The Wa,t, ∀a, t fol-
low normal distribution with mean 0 and variance σ. We
generate the feature vectors of A arms as follows: (1) gen-
erate min{d,A} orthogonal feature vectors with unit square
norm (details refer to our code); (2) each of the remaining
A − min{d,A} feature vectors is drawn from [0, 1]d uni-
formly at random. The preference parameter θ∗ is drawn from
[0, 1]d uniformly at random. In each round, we set At = A.
Similar with previous works (Arlot et al. 2010; Hao et al.
2019), we use Monte Carlo simulation to estimate the quan-
tile estimator q̂t(x, ε̂, α) with 1000 simulation rounds. We
set αt = 1/

√
t+ 2, δ = 1/(t+ 2) for our BootLinUCB, and

set αt = 1/
√
t+ 2 for the LinUCB algorithm. We set param-

eters for the BootLinHeu algorithm according to (Hao et al.
2019). Unless we state explicitly, we consider the following
default parameters: A = 20 arms, features with d = 10 di-
mension, regularization parameter λ = 1, reward variance
σ = 1. For each algorithm, we repeatedly run it for 100 times,
and calculate its average regret over 100 times.
Convergence comparison. We first use a specific setting to
show that the BootLinHeu (Hao et al. 2019) has a risk of
diverging, while the BootLinUCB algorithm does not have
this risk. We set A = 10 and d = 5. Five of the feature
vectors are five standard base vectors, and the remaining five
as well as θ∗ are:

(0.08, 0.32, 0.22, 0.14, 0.73), (0.1, 0.22, 0.15, 0.09, 0.68),

(0.58, 0.87, 0.32, 0.3, 0.14), (0.18, 0.88, 0.83, 0.24, 0.65),

(0.86, 0.2, 0.51, 0.83, 0.97),

θ∗=(0.23, 0.36, 0.61, 0.26, 0.73).

Figure 1 shows ten regret curves for the BootLinUCB and
BootLinHeu algorithm respectively. One can observe that
all regret curves of BootLinUCB are flat, while three out
of ten regret curves of BootLinHeu increases linearly in t.
This implies that the BootLinHeu has a risk of diverging (i.e.,
always select an sub-optimal arm leading to regret increases
linearly in t), while our BootLinUCB algorithm does not
have this risk. Thus, in remaining experiments we do not
further compare with BootLinHeu.
Mismatch of reward tail distribution. Now we study the
robustness of our BootLinUCB algorithm with respect to
the mismatching of reward distribution tail. We input the
variance of reward distribution σin = 1 to both LinUCB and
BootLinUCB. Figure 2 shows the average regret of LinUCB
and BootLinUCB as we vary the ground truth variance σ
from 0.1 to 0.5. One can observe that when σ = 0.1, the
average regret of BootLinUCB is around half of LinUCB
(T=2000). Increasing the ground truth variance to σ = 0.5,

0 600 1200 1800

T

0

50

100

150

200

R
e

g
re

t

10 regret curvers for

BootLinUCB

All showing the

convergence property

(a) BootLinUCB

0 600 1200 1800

T

0

50

100

150

200

R
e

g
re

t

10 regret curvers for

BootLinHeu

Possibility of

divergence

(b) BootLinHeu

Figure 1: Regret curves of BootLinUCB and BootLinHeu.

the average regret of BootLinUCB is around 100/160 = 5/8
of LinUCB (T=2000). These results further confirm that the
BootLinUCB can significantly reduce the over exploration
problem LinUCB caused by mismatching of the reward tail
distribution.

Conclusion
This paper presents the BootLinUCB algorithm for the con-
textual bandit. BootLinUCB is a data driven UCB based
algorithm, which uses the multiplier bootstrapping technique
to estimate the UCB of contextual from the historical rewards.
The BootLinUCB is more robust to misspecification of the
reward tail distribution than the previous reward tail distribu-
tion based UCB algorithms in contextual bandit. In particular,
we design an estimator for the UCB of contextual bandit with
theoretical guarantee on the convergence. Based on the esti-
mator we design our BootLinUCB algorithm. We also prove
that the BootLinUCB has a sub-linear regret upper bound and
conduct extensive experiments to show its superior perfor-
mance over a variety of baselines. Our approach open doors
for others to consider similar bootstrapping technique for
other online learning algorithms or reinforcement algorithms.

Acknowledgments
This work was supported in part by Chongqing Natural Sci-
ence Foundation (cstc2020jcyj-msxmX0652), Chongqing
High-Technology Innovation and Application Development
Funds (cstc2019jscx-msxmX0422, cstc2019jscx-fxyd0385)
and the Fundamental Research Funds for the Central Univer-
sities (2020CDJ-LHZZ-057). Hong Xie is the corresponding
author.

0 500 1000 1500 2000

T

0

40

80

120

160

A
v
e
ra

g
e
 R

e
g

re
t

LinUCB

BootLinUCB

(a) σ = 0.1

0 500 1000 1500 2000

T

0

40

80

120

160

A
v
e
ra

g
e
 R

e
g

re
t

LinUCB

BootLinUCB

(b) σ = 0.5

Figure 2: Regret under mismatch of reward tail distribution.

12188

References
Abbasi-Yadkori, Y.; Antos, A.; and Szepesvári, C. 2009.
Forced-exploration based algorithms for playing in stochastic
linear bandits. In COLT Workshop on On-line Learning with
Limited Feedback, volume 91, 235.

Abbasi-Yadkori, Y.; Pál, D.; and Szepesvári, C. 2011. Im-
proved algorithms for linear stochastic bandits. In Advances
in Neural Information Processing Systems, 2312–2320.

Agrawal, S.; and Goyal, N. 2013. Thompson sampling for
contextual bandits with linear payoffs. In International Con-
ference on Machine Learning, 127–135.

Arlot, S.; Blanchard, G.; Roquain, E.; et al. 2010. Some
nonasymptotic results on resampling in high dimension, I:
confidence regions. In The Annals of Statistics, volume 38,
51–82. Institute of Mathematical Statistics.

Auer, P. 2002. Using confidence bounds for exploitation-
exploration trade-offs. In Journal of Machine Learning Re-
search, volume 3, 397–422.

Bubeck, S.; Cesa-Bianchi, N.; and Lugosi, G. 2013. Bandits
with heavy tail. In IEEE Transactions on Information Theory,
volume 59, 7711–7717. IEEE.

Chernozhukov, V.; Chetverikov, D.; Kato, K.; et al. 2014.
Gaussian approximation of suprema of empirical processes.
In The Annals of Statistics, volume 42, 1564–1597. Institute
of Mathematical Statistics.

Chu, W.; Li, L.; Reyzin, L.; and Schapire, R. 2011. Contex-
tual bandits with linear payoff functions. In Proceedings of
the Fourteenth International Conference on Artificial Intelli-
gence and Statistics, 208–214.

Eckles, D.; and Kaptein, M. 2014. Thompson sampling with
the online bootstrap. In arXiv preprint arXiv:1410.4009.

Elmachtoub, A. N.; McNellis, R.; Oh, S.; and Petrik, M. 2017.
A practical method for solving contextual bandit problems
using decision trees. In arXiv preprint arXiv:1706.04687.

Filippi, S.; Cappe, O.; Garivier, A.; and Szepesvári, C. 2010.
Parametric bandits: The generalized linear case. In Advances
in Neural Information Processing Systems, 586–594.

Gampa, P.; and Fujita, S. 2019. BanditRank: Learning
to Rank Using Contextual Bandits. In arXiv preprint
arXiv:1910.10410.

Glowacka, D.; et al. 2019. Bandit algorithms in informa-
tion retrieval. In Foundations and Trends® in Information
Retrieval, volume 13, 299–424. Now Publishers, Inc.

Hao, B.; Yadkori, Y. A.; Wen, Z.; and Cheng, G. 2019. Boot-
strapping Upper Confidence Bound. In Advances in Neural
Information Processing Systems, 12123–12133.

Hofmann, K.; Whiteson, S.; de Rijke, M.; et al. 2011. Contex-
tual bandits for information retrieval. In NIPS 2011 Workshop
on Bayesian Optimization, Experimental Design, and Ban-
dits, Granada, volume 12, 2011.

Krishnamurthy, A.; Wu, Z. S.; and Syrgkanis, V. 2018.
Semiparametric contextual bandits. In arXiv preprint
arXiv:1803.04204.

Kveton, B.; Szepesvari, C.; Vaswani, S.; Wen, Z.; Latti-
more, T.; and Ghavamzadeh, M. 2019. Garbage In, Reward
Out: Bootstrapping Exploration in Multi-Armed Bandits. In
Chaudhuri, K.; and Salakhutdinov, R., eds., Proceedings of
the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
3601–3610. Long Beach, California, USA: PMLR.
Lattimore, T.; and Szepesvári, C. 2020. Bandit algorithms.
Cambridge University Press.
Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A
contextual-bandit approach to personalized news article rec-
ommendation. In Proceedings of the 19th international con-
ference on World wide web, 661–670. ACM.
Osband, I.; and Van Roy, B. 2015. Bootstrapped thomp-
son sampling and deep exploration. In arXiv preprint
arXiv:1507.00300.
Ouyang, T.; Li, R.; Chen, X.; Zhou, Z.; and Tang, X. 2019.
Adaptive User-managed Service Placement for Mobile Edge
Computing: An Online Learning Approach. In IEEE INFO-
COM 2019-IEEE Conference on Computer Communications,
1468–1476. IEEE.
Sudarsanam, N.; and Ravindran, B. 2016. Linear Ban-
dit algorithms using the Bootstrap. In arXiv preprint
arXiv:1605.01185.
Tang, L.; Jiang, Y.; Li, L.; Zeng, C.; and Li, T. 2015. Person-
alized recommendation via parameter-free contextual bandits.
In Proceedings of the 38th international ACM SIGIR confer-
ence on research and development in information retrieval,
323–332.
Vaswani, S.; Kveton, B.; Wen, Z.; Rao, A.; Schmidt, M.; and
Abbasi-Yadkori, Y. 2018. New insights into bootstrapping
for bandits. In arXiv preprint arXiv:1805.09793.
Wang, H.; Wu, Q.; and Wang, H. 2016. Learning Hid-
den Features for Contextual Bandits. In Proceedings of
the 25th ACM International on Conference on Information
and Knowledge Management, CIKM ’16, 1633–1642. New
York, NY, USA: ACM. ISBN 978-1-4503-4073-1. doi:
10.1145/2983323.2983847. URL http://doi.acm.org/10.1145/
2983323.2983847.
Yang, Y.; Shang, Z.; and Cheng, G. 2017. Non-asymptotic
theory for nonparametric testing. In arXiv preprint
arXiv:1702.01330.
Zhang, X.; Xie, H.; Li, H.; and Lui, J. 2019. Toward Building
Conversational Recommender Systems: A Contextual Bandit
Approach. In arXiv preprint arXiv:1906.01219.
Zhu, F.; Zhu, X.; Wang, S.; Yao, J.; and Huang, J. 2017.
Robust Contextual Bandit via the Capped Ell Two Norm. In
arXiv preprint arXiv:1708.05446.

12189

