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Abstract

The creation of Bayesian networks often requires the spec-
ification of a large number of parameters, making it highly
desirable to be able to learn these parameters from historical
data. In many cases, such data has uncertainty associated with
it, including cases in which this data comes from unstructured
analysis or from sensors. When creating diagnosis networks,
for example, unstructured analysis algorithms can be run on
the historical text descriptions or images of previous cases so
as to extract data for learning Bayesian network parameters,
but such derived data has inherent uncertainty associated with
it due to the nature of such algorithms. Because of the inability
of current Bayesian network parameter learning algorithms
to incorporate such uncertainty, common approaches either
ignore this uncertainty, thus reducing the resulting accuracy,
or completely disregard such data. We present an approach for
learning Bayesian network parameters that explicitly incorpo-
rates such uncertainty, and which is a natural extension of the
Bayesian network formalism. We present a generalization of
the Expectation Maximization parameter learning algorithm
that enables it to handle any historical data with likelihood-
evidence-based uncertainty, as well as an empirical valida-
tion demonstrating the improved accuracy and convergence
enabled by our approach. We also prove that our extended al-
gorithm maintains the convergence and correctness properties
of the original EM algorithm, while explicitly incorporating
data uncertainty in the learning process.

Introduction
Bayesian networks (BNs) (Pearl 1988) provide a powerful
framework for probabilistic reasoning. In practice, however,
the creation of BNs often requires the specification of a large
number of parameters, making it highly desirable to be able
to learn these parameters from historical data.

In real-world applications, such historical data often has
uncertainty associated with it. A prominent example is when
such data is available only in unstructured formats. For ex-
ample, Wasserkrug et al. (2019) report on work on creating
a model for electrical equipment diagnosis, in which much
of the data available to train the BN was in textual descrip-
tions written by technicians. In order to be able to utilize
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this data to train the BN, natural language processing (NLP)
tools were used to transform the unstructured data into a
structured format necessary for learning BN parameters. Of
course, such NLP models are not completely accurate, and
have both false positives and false negatives. In addition,
most such tools provide confidence measures indicating their
level of certainty about the outcome. It is of course desirable
to use such confidence levels when learning the parameters
of the BN.

While there are standard ways to incorporate uncertainty
during inference in BNs (Mrad et al. 2015), to the best of
our knowledge, incorporating uncertainty of any sort during
parameter learning has not been addressed.

In this paper, we address this gap. Our primary contribu-
tion is an algorithm that enables the use of uncertain data as
inputs for learning the parameters of BNs. More specifically,
we extend the standard EM algorithm for BNs (Koller and
Friedman 2009) to incorporate historical examples with like-
lihood evidence–based uncertainty. In addition, we prove that
our proposed algorithm maintains the correctness and conver-
gence properties of the original EM algorithm. Finally, we
present an empirical validation that demonstrates the value
of our approach.

Preliminaries
A Bayesian network (Pearl 1988) is defined as B =
〈X,D, G,P〉, where X = {X1, . . . , Xn} is a set of ran-
dom variables, D = {D1, . . . , Dn} is the set of the corre-
sponding domains, G = (V,E) is a directed acyclic graph
over X (that is, V = X), and P = {P1, . . . , Pn}, where
Pi = Pr(Xi | Pai) is the conditional probability table (CPT)
that provides the conditional probability of each value of Xi

given the values of its parents Pai.
Bayesian networks are often used for diagnosis, in both

medical (Kahn et al. 1997) and engineering domains (Cai,
Huang, and Xie 2017). Figure 1(a) depicts a well-known ex-
ample of a diagnosis network in the medical domain, which
we will use to illustrate the key concepts of our work (and
which was also empirically analyzed). The network is of-
ten called the “Asia” or “Lung cancer” network (Lauritzen
and Spiegelhalter 1988). Figure 1(b) shows the CPT of the
node “Dyspnoea?”. Once its parameters have been deter-
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(a) Asia Bayesian network

(b) CPT for the Dyspnoea node

Figure 1: Example of a Bayesian network.

mined, the network can use evidence regarding “Visit to
Asia?”, “Smoker?”, “Positive X-ray?”, and “Dyspnoea?” to
compute the probability of “Lung cancer?”, “Tuberculosis?”
and “Bronchitis?”.

It is quite conceivable that in real-world medical cases in
which such diagnosis BNs need to be created, available his-
torical information is in unstructured format such as written
reports or X-ray images. For example, it is quite likely that
whether a specific patient has the symptom “Dyspnoea?” or
had a “Positive X-ray?” has to be extracted from a description
written by a physician. NLP tools can be used to transform
such unstructured data into a structured format, with asso-
ciated uncertainty. For example, an NLP tool run on such
a historical report may be able to indicate with a 0.7 confi-
dence level that a specific patient indeed had the “Dyspnoea?”
symptom. The work we describe here can effectively utilize
such data when learning the parameters of a BN.

Related Work
There are two primary types of relevant previous work. The
first consists of various types of algorithms for learning the
parameters of BNs, and the second deals with uncertain evi-
dence.

Over the years, a variety of algorithms for learning the
parameters of BNs have been proposed. Two prominent types
of algorithms are Maximum Likelihood Estimation (MLE)
(Spiegelhalter and Lauritzen 1990) and Bayesian Learn-
ing (Bernardo and Smith 1994). A primary difference be-
tween these is that MLE methods provide point estimates of
the parameters, while Bayesian Learning maintains a con-
stantly updated distribution over these parameters (this en-
ables Bayesian Learning to continuously learn and improve
the parameters as new examples are provided, as well as
incorporate expert estimates).

Expectation Maximization (EM) is an MLE-type algorithm

that supports learning from evidence with missing values, i.e.,
data in which the values of some of the variables are unknown.
An example for the Asia network (Fig. 1(a)) could be an input
where values are given for all the nodes in the network except
for “Lung Cancer?”, which is unknown. EM has played a
critical role in learning probabilistic graphical models and
BNs (Dempster, Laird, and Rubin 1977; Lauritzen 1995;
Heckerman 1998). There have been many enhancements
proposed over the years to address a variety of challenging
situations for EM, such as slow convergence or the presence
of hidden variables (Bauer, Koller, and Singer 1997; Ortiz
and Kaelbling 1999; Thiesson, Meek, and Heckerman 2001;
Elidan et al. 2002; Elidan and Friedman 2005).

In contrast to the case of missing evidence, which is used
when there is missing knowledge about the values of some
random variables, uncertain evidence is usually introduced
whenever there is knowledge about the value of the random
variable, but the observational process is unable to clearly
report a single state for the observed variable. Historically,
several types of uncertain evidence have been considered in
this context (Mrad et al. 2015; Pan, Peng, and Ding 2006).
Likelihood (or virtual) evidence is perhaps the most common
kind of uncertain evidence in the context of BNs. Likelihood
evidence “corresponds to the cases where the observation is
uncertain,” where “the uncertainty on the observation may
come from the unreliability or imprecision of the source of
the information” (Mrad et al. 2015). This type of uncertainty
is suitable for representing the uncertainty associated with in-
formation sources, such as sensors and unstructured analysis,
because likelihood evidence is assumed not to incorporate
any prior knowledge beyond what appears directly in the
information source (the sensor, text, or picture). This is the
type of uncertain evidence that we address in this paper.

Several approaches have been proposed over the years to
deal with inference using uncertain evidence in BNs, includ-
ing Pearl’s method, which uses an auxiliary binary child for
each variable with likelihood evidence (Pearl 1988), entropy-
based techniques (Valtorta, Kim, and Vomlel 2002; Peng,
Zhang, and Pan 2010), and recent methods based on credal
networks (Marchetti and Antonucci 2018). During such infer-
ence, combining multiple sources of evidence and uncertainty
is typically done in a Bayesian framework that allows for var-
ious prior distributions to be combined in a flexible manner
(Spiegelhalter and Best 2003).

However, all of the above work on dealing with uncer-
tain evidence addresses how to incorporate such evidence
during BN inference, i.e., after the network’s parameters
have already been determined. To the best of our knowledge,
no previous work has addressed this issue during the learn-
ing of the parameters. Song et al. (2012) address a type of
uncertainty called attribute uncertain data, but only while
learning the structure of the BN. No formal proof is provided
regarding the properties of this method; the incorporation
of uncertainty is based on heuristics, and is carried out in a
manner that is external to the BN.

Learning BN Parameters with Uncertainty
In this section, we detail our algorithm for learning the param-
eters of a BN given a set of cases in which some inputs may
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(a) Extended network

(b) CPT for the Dyspnoea node

Figure 2: Extending the Asia network to carry out likelihood
evidence based inference.

have associated uncertainty of the type likelihood evidence
(Pearl 1988).

Likelihood evidence is an observation that does not single
out a unique value of a variable X that has k possible values,
and is represented by a likelihood ratio L(X) = (L(X=
x1) : . . . : L(X= xk)). When this is normalized, L(X=
xi) is Pr(obs | X= xi), the probability of the observation
occurring when the value ofX is xi. Given this interpretation,
BN inference with likelihood evidence can be carried out as
follows (Pearl 1988). A virtual node for the observation is
added to the network with an appropriate CPT; the virtual
evidence is set as a hard finding on this node; the evidence on
all the nodes in the BN is then propagated using standard BN
propagation algorithms (Pearl 1988; Koller and Friedman
2009).

For example, suppose that an NLP analysis of a historical
medical record relevant to the Asia network (Fig. 1(a)) finds
the symptom “Dyspnoea?” with 0.7 confidence. This would
be represented by assigning the node “Dyspnoea?” in the
network the likelihood evidence (0.7 : 0.3). In order to carry
out inference with such evidence, the following steps would
be taken.

1. The original Asia BN would first be extended with a
boolean-valued node “DyspnoeaObs”, which would be
a child of “Dyspnoea?” (see Fig. 2(a)), and have the CPT
shown in Fig. 2(b).

2. The value of “DyspnoeaObs” would be set to true, and
inference would be carried out on the augmented network
using any standard BN inference algorithm.

We use this method for inference with likelihood evidence
to extend the EM algorithm (Koller and Friedman 2009, Sec.
19.2.2) to learn BN parameters from data with likelihood
evidence. The original algorithm learns BN parameters with
missing data, i.e., on examples for which some of the values
of the variables in the network are missing or unknown. To
do this, it repeats two steps: an expectation step, in which, for
each example, the missing data values are replaced with the
expected values given the current BN parameters using BN
inference; and a maximization step, in which the maximum
likelihood values of the BN parameters are calculated given
the (now complete) data. At a high level, this algorithm can
be described as follows:
Repeat until convergence:

1. Complete the data for each example by calculating the
expected value for each variable with missing values given
the current parameters of the BN.

2. Update the parameters of the BN to the Maximum Likeli-
hood Estimate (MLE) given the set of full data provided
by the expectation step.

The core idea of our algorithm is to use inference with
likelihood evidence, as described above, in the expectation
step. Step 1 above is thus replaced by the following:

1. Complete the data for each example:

(a) Extend the original network by adding nodes and edges
to each node for which there is likelihood evidence, as
well as the appropriate CPTs. (In this way, the example
with likelihood evidence can be replaced with a new
example with only missing data. For example, if an
observation child has been added to node V , the node V
now has an unknown value in this new augmented data
point.)

(b) Calculate the expected value for the nodes with the
missing data.

Algorithm 1 describes our EM-Likelihood approach. It
takes as input a Bayesian network B and a set of data ex-
amples S. Each data example Sj ∈ S contains for each
variable Xi one element di ∈ Di ∪ Li ∪ {?}, where
Li = {(Pr(obs | Xi= x1) : . . . : Pr(obs | Xi= xk))} is
the set of all likelihood evidence values for the k possible
values of variable Xi, and “?” denotes the unknown value.
That is, the value of variable Xi in any example Sj can be
any of its discrete values, unknown, or a new type of value,
indicating likelihood evidence.

The purpose of the algorithm is to learn the values for
the network’s parameters θ; more specifically, for each value
xl of variable X and values ul of the parents of X in the
network, the conditional probability θxl|ul . The set of all
(xl,ul) values is denoted by Val(X,PaBX). The algorithm
computes successive approximations θt at each iteration t.
Following Koller and Friedman (2009), we use M̄θt [xl,ul]
to denote the expected sufficient statistics for xl | ul, based
on the current set of parameters.

The EM-Likelihood algorithm is based on the EM algo-
rithm appearing in Koller and Friedman (2009), with the
primary difference being the expectation step, which takes
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Algorithm 1 EM-Likelihood: an EM algorithm for learning
with likelihood evidence
Require: Bayesian network B = 〈X,D, G,P〉, dataset S

procedure EM(B, S)
θ ← θ0 . Initialize by uniform sampling
for t← 1, 2, . . . , until convergence do
M̄θt ← COMPUTE-ESS(G, θt, S)
for i← 1, . . . , n do

for each xl,ul ∈ Val(Xi,PaBXi) do
θt+1
xl|ul ←

M̄θt [xl,ul]

M̄θt [ul]

function COMPUTE-ESS(G, θ, S)
for i← 1, . . . , n do

for each xl,ul ∈ Val(Xi,PaBXi) do
M̄ [xl,ul]← 0

for each example Sj ∈ S do
(G′, θ′)← AUGMENT-BN(G, θ, Sj)
E ← ∅ . Initialize evidence set
for i← 1, . . . , n do

if Xi has a unique value di ∈ Di in Sj then
E ← E ∪ {Xi = di}

else if Xi has likelihood evidence in Sj then
E ← E ∪ {OXi = true}

Run inference on (G′, θ′) with the evidence E
for i← 1, . . . , n do

for xl,ul ∈ Val(Xi,PaBXi) do
M [xl,ul]←M [xl,ul] + P(G′,θ′)(xl,ul | E)

return M̄
function AUGMENT-BN(G, θ, S)

Initialize G′ ← G, θ′ ← θ
for each variable X with likelihood evidence

(l1 : . . . : lk) in S do
B Add new observation node, connect to variable
G′

V ← G′
V ∪ oX , G′

E ← G′
E ∪ (X, oX)

DoX ← {true, false}
for i← 1, . . . , k do
θ′OX=true|X=xi

← li

return (G′, θ′)

likelihood evidence into account by creating for each exam-
ple a new BN that has additional observation nodes oX for
each variable X with likelihood evidence, connected as a
child of X (function AUGMENT-BN). The CPTs for the new
nodes are created based on the likelihood values (function
COMPUTE-ESS).

The augmentation of the inference step is seemingly a
small change in the original algorithm. However, note that in
this algorithm, inference, and, therefore, the resulting param-
eter learning, is carried out based not on a single network, but
rather on a set of networks, each derived from the original net-
work. Moreover, the number of different networks is equal to
the number of examples that contain likelihood evidence, and
networks differ based on the number and identity of nodes

with likelihood evidence. Therefore, this extension requires
formal justification, which we provide in the sequel. Specifi-
cally, we show that our algorithm converges, and is correct in
the sense that it computes a Maximum Likelihood Estimate,
i.e., that it converges to a local maximum of l(θ : S), the
likelihood function of the parameters θ of the original BN
given the dataset S. This claim is formalized in Theorem 1.
First, we define the following notation.

Let S = {S1, . . . , Sm} be a set of input examples to a
BN with a fixed structure B. For each example Sj , let SLj
be the set of variables with likelihood evidence in Sj , and
let SFj be the set of variables with fixed values. Let Bj be
the Bayesian network derived from B, augmented with new
observation nodes oX for variables X that have likelihood
evidence in the example Sj (as created in function AUGMENT-
BN) and the CPTs based on the likelihoods (as computed by
COMPUTE-ESS). Define the likelihood function l(θ : S) =
log

∏m
j=1 PBj (S

F
j |θ), where PBj (S

F
j |θ) is the probability of

getting the deterministic values in example Sj in the Bayesian
network Bj , with evidence consisting of all the oX variables
set to true.
THEOREM 1 (correctness and convergence). The EM-
Likelihood algorithm converges to a local maximum of the
likelihood function l(θ : S).

Proof (sketch). The core idea behind the original correctness
and convergence proof of the EM algorithm uses the expected
log-likelihood function that, given a set of independent partial
observations S and a joint distribution Q for creating a com-
plete assignment H to these partial observations, is defined
as

EQ[l(θ : 〈S,H〉)] =
∑
H

Q(H)l(θ : 〈S,H〉).

Then, by the linearity of expectations and the conditional
independence relationships on the parameters of CPTs in-
duced by the structure of the BN, it is shown that

EQ[l(θ : 〈S,H〉)] =

n∑
i=1

∑
(xi,ui)∈

(Xi,PaXi )

M̄Q[xi,ui] log θxi|ui ,

where M̄Q[xi,ui] is the expected count according to Q that
the nodeXi and its parents PaXi have the joint value (xi,ui),
and θxi,ui is the CPT entry corresponding to the conditional
probability that the value of Xi is xi given that the values of
its parents are ui. It is then shown that selecting the probabil-
ity Q to be the probability induced by each step in the EM
algorithm results in convergence to a local maximum of the
the likelihood l(θ : S).

Similarly, in our case, it can be shown that given a set of
observations S′ with likelihood evidence, we can define an
expected likelihood function EQ[l(θ : 〈S′, H〉)], such that

EQ[l(θ : 〈S′, H〉)] =
n∑
i=1

∑
(xi,ui)∈

(Xi,PaXi )

M̄Q[xi,ui] log θxi|ui ,

where H is the completion of S′ with the missing values for
the examples of the augmented BNs. This is based on the fact
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Figure 3: Simplified Child network

that S′ can be viewed as a set of missing evidence for a set of
related BNs that share a common set of parameters that need
to be learnt, and due to the ability to independently maximize
the CPT of each node in this set of networks when calculating
the overall MLE. Furthermore, we show, analogously to the
original EM, that our choice of Q results in a local maximum
of the likelihood function l(θ : S′)

Note that, in addition, it is quite straightforward to augment
our algorithm to enable Bayesian Learning benefits such as
incorporating expert estimates as well as enabling continuous
improvement and updating. This can be done by storing the
(expected) number of historical examples used to train the
each entry in the CPT, and taking these values into account
when updating the parameters when provided with a new set
of examples.

Empirical Results
We implemented our algorithm on top of the open-source
Merlin1 library and used three networks for validation. In
all experiments we initialized the algorithm using a uniform
distribution. We began with a network containing just two
binary nodes: “Problem” and its child “Symptom.” We then
tested it on the Asia network (Fig. 1(a)), and finally on a
larger network, which is a slightly simplified version of the
Child network (Spiegelhalter and Cowell 1992) (Fig. 3).

For each experiment, we selected nodes with which we
associate likelihood evidence. Then we went through the
sequence of steps, briefly presented in the following list (we
used Hugin2 to generate samples from the networks).

1. Extend a base network by adding an “observation” child
node to each node for which we wanted to generate likeli-
hood evidence.

2. Assign CPTs with the chosen values of likelihood to the
“observation” nodes.

3. Sample data for the extended network with the assigned
CPTs.

4. Create a dataset with likelihood evidence from the sampled
data.
1Available at http://github.com/radum2275/merlin.
2See http://hugin.com.

Node
Dyspnoea DyspnoeaObs

Sampled data true or false true
Likelihood evidence
dataset

0.7 —

Deterministic dataset true —

Table 1: Producing likelihood and deterministic datasets from
the simulated data.

5. Create a deterministic dataset, against which to compare,
from the sampled data.

6. Repeat Steps 2–5 with other likelihood values and the
corresponding CPTs.

7. Merge datasets with likelihood evidence that were sampled
from different CPTs to a single dataset. Perform the same
operation for the deterministic datasets.

8. Run EM parameter estimation for the dataset with like-
lihood evidence and the deterministic dataset. Compare
goodness-of-fit with respect to the actual network CPTs.

To illustrate these steps, consider the “Asia, Dyspnoea"
experiment, in which we introduced likelihood evidence only
to the node “Dyspnoea?”of the Asia network. In step 1, we
added the node “DispnoeaObs” as a child to node “Dys-
pnoea?” as shown in Fig. 2(a). In Step 2, to generate 0.7
likelihood evidence for “Dyspnoea?” node, the child “Dys-
pnoeaObs” was assigned the CPT from Fig. 2(b). In Step 3,
we sampled multiple times from this network to get many ex-
amples with likelihoods both of 0.7 and 0.3. A 0.7 likelihood
is obtained when the value of the node “DyspnoeaObs” is
true and 0.3 when it is false.

In Step 4, from the sampled dataset, we created a dataset
with likelihood evidence by placing the relevant likelihoods in
the parent of the appropriate observation node in the original
network and deleting data for the observation node. To derive
the deterministic dataset against which to compare in Step
5, we placed the value of the observation node as the value
for the parent node. Table 1 illustrates this process. Note that
the sampled value of the “Dyspnoea” node in the sampled
data is used neither in the deterministic nor in the likelihood
evidence dataset.

In Step 6, we repeated sampling using various settings
for the CPTs of child nodes to specify various likelihoods.
For each uncertain node, we varied the CPTs (and thereby
generated likelihood evidence), over the values 0.6, 0.7, 0.8,
0.9 and 0.95. Then, in Step 7, these observations were merged
into a dataset with 100,000 observations per experiment,
20,000 observations per each value for each uncertain node.

In the two-node network, we performed a single exper-
iment with uncertainty on the “Symptom” node. For the
Asia network, we ran five experiments. Four experiments
simulated networks with one uncertain node per experi-
ment, one each of “Positive X-Ray?”, “Dyspnoea?”, “Asia?”,
and “Smoker?”. The final experiment simulated a network
with likelihood values generated simultaneously for all these
nodes. Finally, two experiments were performed with the
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Experiment
Overall discrepancy, %

Maximum Average
Deter-
ministic

Likeli-
hood

Deter-
ministic

Likeli-
hood

Two-Node 17.28 1.00 8.70 0.45
Asia, X-Ray 21.04 0.71 2.61 0.15
Asia, Dyspnoea 17.53 0.85 1.76 0.11
Asia, Asia? 20.62 1.92 2.92 0.22
Asia, Smoker 6.49 0.65 1.10 0.10
Asia, 4 nodes 20.58 1.10 7.95 0.17
Child, Case 1 16.95 2.83 1.12 0.30
Child, Case 2 25.08 2.96 3.99 0.34

Table 2: Overall discrepancies in EM likelihood experiments.

Node
Discrepancy, %

Maximum Average
Deter-
ministic

Likeli-
hood

Deter-
ministic

Likeli-
hood

Problem 0.36 0.36 0.36 0.36
Symptom 17.28 1.00 17.04 0.54

Table 3: CPT discrepancies for the two-node network.

Child network. In the first one (Case 1), uncertainty was as-
signed to the “Birth Asphyxia” node, which is not a leaf node.
In the second experiment (Case 2), uncertainty was assigned
to four nodes: “Birth Asphyxia”, “LVH”, “Grunting”, and
“HypDistrib”.

In order to measure the goodness-of-fit in all experiments,
we computed for each CPT the average and maximum abso-
lute differences between the probability estimates and their
actual values for each set of values of a CPT of a node and
its parents. We then looked at the average of these averages
and maximum of these maxima. These are named “average
overall discrepancy” and “maximum overall discrepancy,”
respectively.

Table 2 summarizes the overall discrepancies of the ex-
periments. In all experiments, parameter estimates that were
obtained via our EM-Likelihood algorithm are close to the
actual network parameters. In contrast, approximation using
deterministic values results in a significant deviation from
the original parameters.

Table 3 provides CPT discrepancies for nodes of the two-
node network. The deterministic dataset generates strongly
biased estimates for the “Symptom” node, whereas discrep-
ancies for the likelihood dataset are small. In contrast, the
“Problem” node is not affected by uncertainty, and the discrep-
ancies for this node are small and identical for both datasets.
This is to be expected, since the same deterministic sampled
values for this node and its parents are used for creation of
both likelihood and deterministic datasets. In general, as in
our sampling methodology nodes either have actual values
or likelihood evidence assigned, nodes that are not assigned
likelihood evidence and are not descendants of a node as-
signed likelihood evidence, are not affected by such evidence
because intermediate nodes have actual values.

Node
Discrepancy, %

Maximum Average
Deter-
ministic

Likeli-
hood

Deter-
ministic

Likeli-
hood

Smoker 0.00 0.02 0.00 0.02
Tuberculosis 0.30 0.30 0.15 0.15
Lung cancer 1.90 0.09 1.89 0.07
Bronchitis 6.49 0.29 6.40 0.20

Table 4: CPT discrepancies for the Asia network. Uncertain
data for the “Smoker” node.

Node
Discrepancy, %

Maximum Average
Deter-
ministic

Likeli-
hood

Deter-
ministic

Likeli-
hood

Visit to Asia 17.42 0.04 17.42 0.04
Tuberculosis 3.87 0.96 1.97 0.50

Table 5: CPT discrepancies for the Asia network. Uncertain
data for the “Visit to Asia” node.

Table 4 shows CPT discrepancies for several nodes of
the Asia network in the experiments with uncertainties for
the “Smoker” node. Note that the discrepancies for “Smoker”
itself are minor. Since the CPT of “Smoker” is ( 0.5

0.5 ), its
marginal distribution does not change following uncertain
data sampling. However, CPT estimates of its children, “Lung
cancer” and “Bronchitis”, have large discrepancies for the de-
terministic dataset. “Tuberculosis” is not a child of “Smoker”,
so its discrepancies are small for both approaches, as ex-
pected.

Table 5 summarizes experiments with uncertainty for
“Visit to Asia”. For the deterministic dataset we observe
significant discrepancies for “Visit to Asia” and its child,
“Tuberculosis”.

Table 6 shows CPT discrepancies for all nodes of Asia
network in the experiments with 4 uncertain nodes. In this
case, all nodes, except for the logical node “Tuberculosis
or cancer”, are either uncertain, or one of their children is.
We observe very significant differences in the discrepancy
measures for the deterministic and likelihood datasets.

Table 7 presents the detailed results of two experiments
with the Child network. We show discrepancies for the nodes
with assigned uncertainty and their children. “Disease” is a
child of “Birth Asphyxia”, and “Lower Body O2" is a child of
“Hypoxia Distribution”. We again observe that the likelihood
evidence EM algorithm provides good results.

We also ran a convergence experiment on the two-node
network by varying the number of samples between 1,000
and 100,000. The results displayed in Fig. 4 indicate that the
goodness-of-fit for the likelihood evidence datasets gradually
improves with the sample size and is satisfactory even for
small sample sizes. In the deterministic setting, not only do
the estimates deviate significantly from the actual network
parameters, but there is no significant improvement even for
large sample sizes.
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Node
Discrepancy, %

Maximum Average
Deter-
ministic

Likeli-
hood

Deter-
ministic

Likeli-
hood

X-Ray 20.11 0.43 19.61 0.36
Dyspnoea 16.97 1.10 13.34 0.56
Visit to Asia 20.58 0.06 20.58 0.06
Smoker 0.04 0.02 0.04 0.02
Tuberculosis 3.87 0.25 1.95 0.14
Lung cancer 1.94 0.13 1.85 0.09
Bronchitis 6.21 0.13 6.20 0.11
Tuberculosis
or cancer 0.00 0.00 0.00 0.00

Table 6: CPT discrepancies for the Asia network. Four nodes
with uncertain data.

Node
Discrepancy, %

Maximum Average
Deter-
ministic

Likeli-
hood

Deter-
ministic

Likeli-
hood

Birth Asphyxia,
Case 1

16.95 0.09 16.95 0.09

Birth Asphyxia,
Case 2

16.83 0.13 16.83 0.13

Disease, Case 1 12.28 2.20 2.19 0.46
Disease, Case 2 12.17 1.02 2.14 0.33
LVH, Case 2 18.86 0.78 17.21 0.26
Grunting, Case 2 18.90 1.35 10.54 0.63
Hypoxia Distri-
bution, Case 2

19.78 2.11 15.72 0.72

Lower Body O2,
Case 2

25.08 1.71 5.82 0.59

Table 7: CPT discrepancies for the Child network

Figure 4: Convergence results for the two-node network.

Summary and Future Work
We have shown how to improve the learning of the parame-
ters of Bayesian networks from uncertain historical data. Our

core contributions include an enhancement to the EM algo-
rithm that takes likelihood evidence of historical examples
into account, irrespective of the source of the likelihood evi-
dence. We also proved that our algorithm correctly converges
to a local maximum of the desired MLE, in spite of the fact
that the inference phase is now carried out on a large number
of different BNs. Finally, our work also includes an extensive
empirical study, showing the importance of explicitly incor-
porating the uncertainty of historical evidence. This empirical
analysis not only demonstrated the large accuracy gap that
results when failing to properly account for the uncertainty in
the data, but also the possible failure of learning algorithms
to converge to the actual parameters when failing to properly
account for such uncertainty.

Our planned future work includes validating our approach
on a real use case, such as a real diagnosis scenario with
historical unstructured data. In such work, we would aim to
compare the diagnosis results of a network properly trained
on uncertain evidence with the diagnosis results carried out
on a network that did not explicitly incorporate such evi-
dence. An additional avenue of future work would be to
extend our work to other learning algorithms for BNs, as
well as other types of uncertainties. There are several algo-
rithms for learning BN parameters from missing data that
use BN-based inference as a part of the learning (an exam-
ple is the extension to EM proposed by Masegosa, Feelders,
and van der Gaag (2016), which can take qualitative expert
knowledge into account when learning the parameters). Such
algorithms could potentially also be extended in a manner
similar to the one we have shown above. Similarly, an algo-
rithm for carrying out inference on other types of uncertain
data (such as fixed probabilistic evidence uncertainty and not-
fixed probabilistic evidence uncertainty (Mrad et al. 2015))
could potentially be used to create an EM-based algorithm
analogous to the one we have presented here. Of course, any
such extensions would have to be analyzed to ensure proper-
ties such as correctness and convergence. Finally, as in the
EM algorithm, each iteration requires inference on a large
number of examples, each on a different network, and as only
a local maximum is guaranteed, an important direction would
be to either augment our algorithm, or find new algorithms,
so as to reduce computation time and provide results closer
to the global MLE.
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