
Polynomial-Time Algorithms for Counting and Sampling
Markov Equivalent DAGs

Marcel Wienöbst, Max Bannach, Maciej Liśkiewicz
Institute of Theoretical Computer Science, University of Lübeck, Germany

{wienoebst,bannach,liskiewi}@tcs.uni-luebeck.de

Abstract

Counting and sampling directed acyclic graphs from a
Markov equivalence class are fundamental tasks in graphical
causal analysis. In this paper, we show that these tasks can be
performed in polynomial time, solving a long-standing open
problem in this area. Our algorithms are effective and eas-
ily implementable. Experimental results show that the algo-
rithms significantly outperform state-of-the-art methods.

1 Introduction
Graphical modeling plays a key role in causal theory, al-
lowing to express complex causal phenomena in an elegant,
mathematically sound way. One of the most popular graph-
ical models are directed acyclic graphs (DAGs), which rep-
resent direct causal influences between random variables by
directed edges (Spirtes, Glymour, and Scheines 2000; Pearl
2009; Koller and Friedman 2009). They are commonly used
in empirical sciences to discover and understand causal ef-
fects. However, in practice, the underlying DAG is usually
unknown, since, typically, no single DAG explains the ob-
servational data. Instead, the statistical properties of the data
are maintained by a number of different DAGs, which con-
stitute a Markov equivalence class (MEC, for short). There-
fore, these DAGs are indistinguishable on the basis of ob-
servations alone (Verma and Pearl 1990, 1992; Heckerman,
Geiger, and Chickering 1995).

It is of great importance to investigate model learning and
to analyze causal phenomena using MECs directly rather
than the DAGs themselves. Consequently, this has led to
intensive studies on Markov equivalence classes of DAGs
and resulted in a long and successful track record. Our work
contributes to this line of research by providing the first
polynomial-time algorithms for counting and for uniform
sampling Markov equivalent DAGs – two important prim-
itives in both theoretical and experimental studies.

Finding the graphical criterion for two DAGs to be
Markov equivalent (Verma and Pearl 1990) and providing
the graph-theoretic characterization of MECs as so-called
CPDAGs (Andersson, Madigan, and Perlman 1997) mark
key turning points in this research direction. In particular,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

they have contributed to the progress of computational meth-
ods in this area. Important advantages of the modeling with
CPDAGs are demonstrated by algorithms that learn causal
structures from observational data (Verma and Pearl 1992;
Meek 1995, 1997; Spirtes, Glymour, and Scheines 2000;
Chickering 2002a,b); and that analyze causality based on a
given MEC, rather than a single DAG (Maathuis, Kalisch,
and Bühlmann 2009; van der Zander and Liśkiewicz 2016;
Perkovic et al. 2017). Algorithms that ignore Markov equiv-
alence may lead to incorrect solutions.

A key characteristic of a MEC is its size, i. e., the number
of DAGs in the class. It indicates uncertainty of the causal
model inferred from observational data and it serves as an
indicator for the performance of recovering true causal ef-
fects. Moreover, the feasibility of causal inference methods
is often highly dependent on the size of the MEC; e. g., to
estimate the average causal effects from observational data
for a given CPDAG, as proposed by Maathuis, Kalisch, and
Bühlmann (2009), one has to consider all DAGs in the class.
Furthermore, computing the size of a Markov equivalence
class is commonly used as a subroutine in practical algo-
rithms. For example, when actively designing interventions,
in order to identify the underlying true DAG in a given MEC,
the size of the Markov equivalence subclass is an important
metric to select the best intervention target (He and Geng
2008; Hauser and Bühlmann 2012; Shanmugam et al. 2015;
Ghassami et al. 2018, 2019).

The first algorithmic approaches for counting the num-
ber of Markov equivalent DAGs relied on exhaustive search
(Meek 1995; Madigan et al. 1996) based on the graphical
characterization of Verma and Pearl (1990). The methods are
computationally expensive as the size of a MEC represented
by a CPDAG may be superexponential in the number of ver-
tices of the graph. More recently, He, Jia, and Yu (2015) pro-
posed a strategy, in which the main idea was to partition the
MEC by fixing root variables in any undirected component
of the CPDAG. This yields a recursive strategy for counting
Markov equivalent DAGs, which forms the basis of several
“root-picking” algorithms (He, Jia, and Yu 2015; Ghassami
et al. 2019; Ganian, Hamm, and Talvitie 2020). As an alter-
native approach, recent methods utilize dynamic program-
ming on the clique tree representation of chordal graphs and
techniques from intervention design (Talvitie and Koivisto
2019; AhmadiTeshnizi, Salehkaleybar, and Kiyavash 2020).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12198

The main drawback of the existing counting algorithms is
that they have exponential worst-case run time. Moreover, as
our experiments show, the state-of-the-art algorithms (Talvi-
tie and Koivisto 2019; Ganian, Hamm, and Talvitie 2020;
AhmadiTeshnizi, Salehkaleybar, and Kiyavash 2020) per-
form inadequately in practice on a wide range of instances.

The main achievement of our paper is the first polyno-
mial-time algorithm for counting and for sampling Markov
equivalent DAGs. The counting algorithm, called Clique-
Picking, explores the clique tree representation of a chordal
graph, but it avoids the use of computationally intractable
dynamic programming on the clique tree. The Clique-
Picking algorithm is effective, easy to implement, and our
experimental results show that it significantly outperforms
the state-of-the-art methods. Moreover, we show that, using
the algorithm in a preprocessing phase, uniform sampling of
Markov equivalent DAGs can be performed in linear time.

We prove that our results are tight in the sense that count-
ing Markov equivalent DAGs that encode additional back-
ground knowledge is intractable under standard complexity-
theoretic assumptions. This justifies the exponential time ap-
proaches by Meek (1995) and Ghassami et al. (2019).

The next section contains preliminaries on graphs and
MECs. In Sec. 3, we present the ideas of our novel ap-
proach, and Sec. 4 explains how to avoid overcounting using
minimal separators. Section 5 contains our algorithm and in
Sec. 6 we analyze its time complexity and formally present
the main results of the paper. Finally, Sec. 7 shows our ex-
perimental results. Due to space constraints, proofs are relo-
cated to the appendix. We provide short proof sketches for
the most important results in the main text.

2 Preliminaries
A graph G = (VG, EG) consists of a set of vertices VG and
a set of edges EG ⊆ VG×VG. Throughout the paper, when-
ever the graph G is clear from the context, we will drop the
subscript in this and analogous notations. An edge u − v
is undirected if (u, v), (v, u) ∈ EG and directed u → v
if (u, v) ∈ EG and (v, u) 6∈ EG. Graphs which contain
undirected and directed edges are called partially directed.
Directed acyclic graphs (DAGs) contain only directed edges
and no directed cycle. We refer to the neighbors of a vertex u
in G as NG(u) and denote the induced subgraph of G on a
set C ⊆ V by G[C]. The graph union G∪H includes edges
present in G or in H1.

The skeleton of a partially directed graph G is the undi-
rected graph that results from ignoring edge directions. A v-
structure in a partially directed graph G is an ordered triple
of vertices (a, b, c) which induce the subgraph a→ b← c.

A clique is a set K of pairwise adjacent vertices. We de-
note the set of all maximal cliques of G by Π(G). In a con-
nected graph, we call a set S ⊆ V an a-b-separator for two
nonadjacent vertices a, b ∈ V if a and b are in different con-
nected components in G[V \ S]. If no proper subset of S
separates a and b we call S a minimal a-b-separator. We say
a set S is a minimal separator if it is a minimal a-b-separator

1For example, the union of a → b → c and a ← b → c is the
graph a− b→ c.

for any two vertices2. We denote the set of all minimal sepa-
rators of a graph G by ∆(G). An undirected graph is called
chordal if no subset of four or more vertices induces an undi-
rected cycle. For every chordal graph on n vertices we have
|Π(G)| ≤ n (Dirac 1961). Furthermore, it is well-known
that a graph G is chordal if, and only if, all its minimal sep-
arators are cliques.

A Markov equivalence class (MEC) consists of DAGs en-
coding the same set of conditional independence relations
among the variables. Due to Verma and Pearl (1990), we
know that two DAGs are Markov equivalent if, and only
if, they have the same skeleton and the same v-structures.
A MEC can be represented by a CPDAG (completed par-
tially directed acyclic graph), which is the union graph of
the DAGs in the equivalence class it represents. The undi-
rected components of a CPDAG are undirected and con-
nected chordal graphs (UCCGs) (Andersson, Madigan, and
Perlman 1997).

An orientation of a partially directed graph G is obtained
by replacing each undirected edge with a directed one. Such
an orientation is called acyclic if it does not contain a di-
rected cycle and moral if it does not create a new v-structure
(sometimes called immorality). In the following, we will
only consider acyclic moral orientations (AMOs). For a par-
tially directed graph G, we denote by AMO(G) the set of
all AMOs and by #AMO(G) the number of AMOs of G.
In particular, if G is a CPDAG representing a MEC then
#AMO(G) is the size of the class. In this paper, we also re-
fer to the computational problem of counting the number of
AMOs for a given CPDAG as #AMO.

In case we have an induced subgraph a → b − c in a
partially directed graph, the edge between b and c is ori-
ented b → c in all AMOs. This is known as the first Meek
rule (Meek 1995).

For a CPDAG G, the AMOs of each UCCG of G can be
chosen independently of the other UCCGs and the directed
part of G (Andersson, Madigan, and Perlman 1997). Thus,

#AMO(G) =
∏

H is UCCG inG

#AMO(H).

Therefore, the problem #AMO of counting the number of
DAGs in a MEC reduces to counting the number of AMOs in
a UCCG (Gillispie and Perlman 2002; He and Geng 2008).

An AMO α of a graph G can be represented by a (not
necessarily unique) linear ordering of the vertices. A topo-
logical ordering τ represents α if for each edge u→ v in α,
u precedes v in τ . We denote all topological orderings repre-
senting an AMO α of a graphG by topG(α) = {τ1, . . . , τ`}.
Note that every AMO of a UCCG contains exactly one
source vertex, i. e., a vertex with no incoming edges.

The s-orientation Gs of a UCCG G is the union of
all AMOs of G with unique source vertex s. We view s-
orientations from the equivalent perspective of being the
union of all AMOs that can be represented by a topological
ordering starting with s. The undirected components of Gs
are UCCGs and can be oriented independently (He, Jia, and

2Observe that a minimal separator can be a proper subset of
another minimal separator (for different vertex pairs a-b).

12199

Yu 2015). This observation enables recursive strategies for
counting AMOs: the “root-picking” approaches (He, Jia, and
Yu 2015; Ghassami et al. 2019; Talvitie and Koivisto 2019;
Ganian, Hamm, and Talvitie 2020) that pick each vertex s
as source and recurse on the UCCGs of the s-orientation.
Because these UCCGs can be oriented independently, the
number of AMOs is obtained by alternately summing over
the number of AMOs for each source vertex s and multiply-
ing the number of AMOs for each independent UCCG.

3 Lexicographic BFS and AMOs
We introduce the core ideas of our algorithm for #AMO
and a linear-time algorithm for finding the UCCGs of the s-
orientations and their generalization, the π(K)-orientations.
We do this by connecting AMOs with so-called perfect elim-
ination orderings (PEOs). A linear ordering of the vertices
is a PEO if for each vertex v, the neighbors of v that occur
after v form a clique. A graph is chordal if, and only if, it
has a PEO (Fulkerson and Gross 1965).
Lemma 1. A topological ordering τ of the vertices of a
UCCG G represents an AMO if, and only if, it is the reverse
of a perfect elimination ordering.

Perfect elimination orderings can be computed in linear
time with the Lexicographic BFS algorithm (Rose, Tarjan,
and Lueker 1976) to which we will refer as LBFS. A mod-
ified version of this algorithm is presented as Algorithm 1.
When called with K = ∅ (and ignoring the lines 7-10), it
coincides with a normal LBFS. The modifications and the
meaning of K will become clear later on.

input : A UCCG G = (V,E) and a clique K ⊆ V .
output: CG(K).

1 S ← sequence of sets initialized with (K,V \K)
2 τ ← empty list, L← ∅
3 while S is non-empty do
4 X ← first non-empty set of S
5 v ← arbitrary vertex from X
6 Add vertex v to the end of τ .
7 if v is neither in a set in L nor in K then
8 L← L ∪ {X}
9 Output the undirected components of G[X].

10 end
11 X ← X \ {v}
12 Denote the current S by (S1, . . . , Sk).
13 Replace each Si by Si ∩N(v), Si \N(v).
14 Remove all empty sets from S .
15 end

Algorithm 1: A modified version of the lexicographic
BFS (Rose, Tarjan, and Lueker 1976) for computing the
set CG(K). If the algorithm is executed with K = ∅, the
algorithm performs a normal LBFS with corresponding
traversal ordering τ , which is the reverse of a PEO.

LBFS runs in linear time (i. e., O(|V | + |E|)) when S is
implemented as a doubly-linked list with a pointer to each
vertex and the beginning of each set. The algorithm can be
viewed as a fine-grained graph traversal compared to classi-
cal breadth-first search (BFS), where the vertices are visited

only by increasing distance to the start vertex. LBFS keeps
this property, but introduces additional constraints on the or-
dering τ , in which the vertices are visited (τ is called an
LBFS ordering). These constraints guarantee that τ is the re-
verse of a PEO. Hence, by Lemma 1, τ represents an AMO.
Corollary 1. Every LBFS ordering τ of the vertices of a
UCCG G represents an AMO.

It holds even further that each AMO can be represented
by at least one LBFS ordering.
Lemma 2. Every AMO of a UCCG G can be represented
by an LBFS ordering.

Each LBFS ordering starts with a maximal clique, be-
cause as long as there is a vertex which can enlargen the
current clique, the first set of S is made up solely of such
vertices.
Lemma 3. Every LBFS ordering starts with a maximal
clique.

These observations lead to the first idea in our algorithm
for #AMO. We have seen that every AMO can be repre-
sented by an LBFS ordering (Lemma 2) and every LBFS
ordering starts with a maximal clique (Lemma 3). It follows:
Corollary 2. Every AMO can be represented by a topologi-
cal ordering which starts with a maximal clique.

This means that for us, it is sufficient to consider topolog-
ical orderings that start with a maximal clique. Therefore,
we generalize the definition of s-orientations: We consider
permutations π of a clique K, as each π(K) represents a
distinct AMO of the subgraph induced by K.
Definition 1. Let G = (V,E) be a UCCG, K be a clique in
G, and let π(K) be a permutation of K.

1. The π(K)-orientation of G, also denoted Gπ(K), is the
union of all AMOs ofG that can be represented by a topo-
logical ordering beginning with π(K).

2. Let GK denote the union of π(K)-orientations of G over
all π, i. e., let GK =

⋃
π G

π(K).
3. Denote by CG(π(K)) the undirected connected compo-

nents of Gπ(K)[V \ K] and let CG(K) denote the undi-
rected connected components of GK [V \K].
Figure 1 shows an example π(K)-orientation of G: For

a graph G in (a), a clique K = {1, 2, 3, 4}, and a per-
mutation (4, 3, 2, 1), graph G(4,3,2,1) is presented in (c). It
is the union of two DAGs which are AMOs of G, whose
topological orderings begin with 4, 3, 2, 1. The first DAG
can be represented by topological ordering 4, 3, 2, 1, 5, 6, 7
and the second one by 4, 3, 2, 1, 6, 5, 7. In Fig. 1, we also
compare the (4, 3, 2, 1)-orientation with an s-orientation, for
s = 4, shown in (b). The undirected components of the
orientations are indicated by the colored regions. By orient-
ing whole cliques at once, we get significantly smaller undi-
rected components in the resulting π(K)-orientation than in
the s-orientation (e. g., {5, 6} compared to {1, 2, 3, 5, 6}).
Finally, (d) illustrates graph G{1,2,3,4}.

The undirected components of the π(K)-orientation are
chordal graphs, which can be oriented independently, yield-
ing the following recursive formula:

12200

1 2

3 4

5 6

7(a)

1 2

3 4

5 6

7(b)

1 2

3 4

5 6

7(c)

1 2

3 4

5 6

7(d)

Figure 1: For a UCCG G in (a), the figure shows G(4) in (b),
G(4,3,2,1) in (c), and G{1,2,3,4} in (d). The undirected com-
ponents in G(4) and G(4,3,2,1) are indicated by the colored
regions and the vertices put at the beginning of the topo-
logical ordering by a rectangle (all edges from the rectangle
point outwards). Edges inside the rectangle in (c) are dashed,
as they have no influence on the further edge directions out-
side the rectangle.

Lemma 4. The undirected connected components in
CG(π(K)) are chordal and it holds that:

#AMO(Gπ(K)) =
∏

H∈CG(π(K))

#AMO(H).

The crucial observation is that the undirected compo-
nents CG(π(K)) are independent of the permutation π. This
means no matter how the vertices {1, 2, 3, 4} are permuted,
if the whole clique is put at the beginning of the topological
ordering, no further edge orientations will be influenced. In-
formally, this is because all edges from the cliqueK to other
vertices are directed outwards no matter the permutation π.
We formalize this observation in the following:
Proposition 1. Let G be a UCCG and K be a clique of
G. For each permutation π(K) it is true that all edges of
Gπ(K) coincide with the edges of GK , excluding the edges
connecting the vertices in K. Hence, CG(π(K)) = CG(K)
and it holds that:∑

π overK

#AMO(Gπ(K)) = |K|!×
∏

H ∈ CG(K)

#AMO(H).

This is the key property that allows us to efficiently deal
with whole cliques at once, instead of considering single ver-
tices one-by-one. As each permutation π(K) represents a
distinct AMO of G[K], this formula indeed computes the
number of AMOs, which can be represented by a topolog-
ical ordering with clique K at the beginning. However, we
are not done yet, as there are some further obstacles we need
to overcome in order to obtain a polynomial-time algorithm
for #AMO, which are dealt with in the following sections.

Before that, we leverage the connection between AMOs
and LBFS orderings one more time, to propose a linear-time
algorithm for computing CG(K) – the full Algorithm 1. This
algorithm performs an LBFS and, whenever a vertex could
be picked for the first time, the corresponding first set in S is
appended to L and the undirected components of the set are
output (lines 7-10). For instance, after the vertices in K are

visited, we have S = ({5, 6}, {7}). As {5, 6} is currently
the first set of S and vertices 5 and 6 are not in any set in L
yet (L is still empty), the set {5, 6} is appended to L and
5− 6 is output as an element of CG(K).

Theorem 1. For a chordal graph G and a clique K, Algo-
rithm 1 computes CG(K) in time O(|V |+ |E|).

Sketch of Proof. When a set is appended to L, each vertex
of this set could have been the next chosen vertex in line 5.
Thus, all edges between the vertices in a set in L may occur
as either u → v (if u is chosen next) or as u ← v (if v is
chosen next) in an AMO having K at the beginning of the
LBFS ordering. As a π(K)-orientation of G is the union of
all corresponding AMOs, we have u− v.

If, on the other hand, u and v are neighbors but not in the
same set in L, the edge between them is oriented u → v
in GK , assuming u is visited before v. This is due to an
inductive argument, which shows that u → v follows from
iterative application of the first Meek rule.

Both cases dealt with in the proof sketch can be seen in
Fig. 1. The edge 5 − 6 remains undirected as either vertex
could be chosen first, while we have 5 → 7, because of the
application of the first Meek rule to→ 5− 7.

We note that this algorithm could also be used for finding
the UCCGs of the s-orientations of a chordal graph in lin-
ear time, which improves upon prior work (He, Jia, and Yu
2015; Ghassami et al. 2019; Talvitie and Koivisto 2019).

4 Counting AM-Orientations with
Minimal Separators and Maximal Cliques

Using the insights from the previous section, we would like
to count the AMOs of a chordal graph G with the following
recursive procedure based on Proposition 1: Pick a maximal
clique K, consider all its permutations at once, and take the
product of the recursively computed number of AMOs of
the UCCGs of CG(K). By Corollary 2, we will count every
AMO in this way, if we compute the sum over all maxi-
mal cliques. Unfortunately, we will count some orientations
multiple times, as a single AMO can be represented by mul-
tiple topological orderings. For instance, assume we have
two maximal cliques K1 and K2 with K1 ∩ K2 = S such
that K1 \ S is separated from K2 \ S in G[V \ S]. A topo-
logical ordering that starts with S can proceed with either
K1 \ S or K2 \ S and result in the same AMO.

Example 1. Consider the following chordal graph (left)
with maximal cliques K1 = {1, 2, 3} and K2 = {2, 3, 4}. A
possible AMO of the graph is shown on the right.

1

2

3

4 1

2

3

4

The AMO has two topological orderings: τ1 = (3, 2, 1, 4)
and τ2 = (3, 2, 4, 1) starting with K1 and K2, respectively.
Hence, if we count all topological orderings starting withK1

and all topological orderings starting withK2, we will count

12201

the AMO twice. However, τ1 and τ2 have 3, 2 as common
prefix and K1 ∩K2 = {2, 3} is a minimal separator of the
graph – a fact that we will use in the following. �
Lemma 5. Let α be an AMO of a chordal graph G and τ1,
τ2 be two topological orderings that represent α. Then τ1
and τ2 have a common prefix S ∈ ∆(G) ∪Π(G).

Note that this lemma implies that all topological orderings
that correspond to an AMO have a common prefix, which is
a minimal separator or maximal clique.

The combinatorial function φ, as defined below, plays an
important role to avoid overcounting.
Definition 2. For a set S and a collection R of subsets of S,
we define φ(S,R) as the number of all permutations of S
that do not have a set S′ ∈ R as prefix.
Example 2. Consider the set S = {2, 3, 4, 5} and the col-
lection R =

{
{2, 3}, {2, 3, 5}

}
. Then φ(S,R) = 16 since

there are 16 permutations of {2, 3, 4, 5} that neither start
with {2, 3} nor {2, 3, 5} – e. g., (3, 2, 4, 5) and (2, 5, 3, 4)
are forbidden as they start with {2, 3} and {2, 3, 5}, respec-
tively; but (3, 5, 4, 2) is allowed. �

In this paper, we always consider sets S ∈ ∆(G) ∪Π(G)
and collections R ⊆ ∆(G). Therefore, we can use the ab-
breviation φ(S) = φ

(
S, {S′ | S′ ∈ ∆(G) ∧ S′ (S }

)
.

Proposition 2. Let G be a UCCG. Then:

#AMO(G) =
∑

S∈∆(G)∪Π(G)

φ(S)×
∏

H ∈ CG(S)

#AMO(H).

Sketch of Proof. By Lemma 5, every AMO can be repre-
sented by a topological ordering that starts with a vertex set
S ∈ ∆(G)∪Π(G). The definition of φ(S) and an induction
over the product yields the claim.

Example 3. We consider the following chordal graph with
two minimal separators and three maximal cliques:

G =
1 2 3

4 5 6

∆(G) =
{
{2, 3}, {2, 3, 5}

}
Π(G) =

{
{1, 2, 3}, {2, 3, 4, 5},
{2, 3, 5, 6}

}
To compute #AMO(G) using Proposition 2, we need the fol-
lowing values. Note that the resulting subgraphs H are triv-
ial, except for the case S = {2, 3} and S = {1, 2, 3}. In
these cases, we obtain the induced path on {4, 5, 6}, which
has three possible AMOs.

S ∈ ∆(G) ∪Π(G) φ(S)
∏

H∈CG(S)

#AMO(H)

{2, 3} 2 3
{2, 3, 5} 4 1
{1, 2, 3} 4 3
{2, 3, 4, 5} 16 1
{2, 3, 5, 6} 16 1

Using Proposition 2 we can compute #AMO(G) as follows:
#AMO(G) = 2 · 3 + 4 · 1 + 4 · 3 + 16 · 1 + 16 · 1 = 54.

We remark that we do not have discussed how to com-
pute φ(S) yet – for this example, this can be done by naive
enumeration. In general, however, this is a non-trivial task.
We tackle this issue in the next section. �

5 The Clique-Picking Algorithm
In the previous section, we showed how to count AMOs by
using minimal separators in order to avoid overcounting. It
is rather easy to check that we can compute φ(S,R) in time
exponential in |R| using the inclusion-exclusion principle.
However, our goal is polynomial time and, thus, we have to
restrict the collection R.
Lemma 6. Let S be a set and R = {X1, . . . , X`} be a
collection of subsets of S with X1 (X2 (· · · (X`. Then:

φ(S,R) = |S|!−
∑̀
i=1

|S \Xi|! · φ(Xi, {X1, . . . , Xi−1}).

Observe that this formula can be evaluated in polynomial
time with respect to |S| and `, as all occurring subproblems
have the form φ(Xi, {X1, . . . , Xi−1}) and, thus, there are
at most ` of them. The goal of this section is to develop a
version of Proposition 2 based on this lemma.

To achieve this goal, we rely on the strong structural prop-
erties that chordal graphs entail: A rooted clique tree of a
UCCG G is a triple (T, r, ι) such that (T, r) is a rooted
tree and ι : VT → Π(G) a bijection between the nodes of
T and the maximal cliques of G such that {x | v ∈ ι(x) }
is connected in T for all v ∈ VG. In slight abuse of no-
tation, we denote, for a set C ⊆ VG, by ι−1(C) the sub-
tree {x | C ⊆ ι(x) }. We denote the children of a node v
in a tree T by childrenT (v). It is well-known that (i) every
chordal graph has a rooted clique tree (T, r, ι) that can be
computed in linear time, and (ii) a set S ∈ VG is a mini-
mal separator if, and only if, there are two adjacent nodes
x, y ∈ VT with ι(x) ∩ ι(y) = S (Blair and Peyton 1993).

We wish to interleave the structure provided by the clique
tree with a formula for computing #AMO. For this sake, let
us define the forbidden prefixes for a node v in a clique tree.
Definition 3. Let G be a UCCG, T = (T, r, ι) a rooted
clique tree of G, v a node in T and r = x1, x2, . . . , xp = v
the unique r-v-path. We define the set FP(v, T) to contain
all sets ι(xi) ∩ ι(xi+1) ⊆ ι(v) for 1 ≤ i < p.
Lemma 7. We can order the elements of the set FP(v, T)
as X1 (X2 (· · · (X`.

By combining the lemma with Lemma 6, we deduce that
φ(ι(v),FP(v, T)) can be evaluated in polynomial time for
nodes v of the clique tree. We are left with the task of devel-
oping a formula for #AMO in which all occurrences of φ are
of this form. It is quite easy to come up with such formulas
that count every AMO at least once – but, of course, we have
to ensure that we count every AMO exactly once.

To ensure this property, we introduce for every AMO α a
partial order≺α on the maximal cliques. Then we prove that
there is a unique minimal element with respect to this order,
and deduce a formula for #AMO that counts α only “at this
minimal element”. To get started, we need a technical defi-
nition and some auxiliary lemmas that give us more control
over the rooted clique tree.
Definition 4. An S-flower for a minimal separator S is a
maximal set F ⊆ {K | K ∈ Π(G) ∧ S ⊆ K } such that⋃
K∈F K is connected in G[V \ S]. The bouquet B(S) of a

minimal separator S is the set of all S-flowers.

12202

Example 4. The {2, 3}-flowers of the graph from Exam-
ple 3 are {{1, 2, 3}} and {{2, 3, 4, 5}, {2, 3, 5, 6}}. �
Lemma 8. An S-flower F is a connected subtree in a rooted
clique tree (T, r, ι).
Lemma 9. For any minimal separator S, the bouquet B(S)
is a partition of ι−1(S).

Since for a S ∈ ∆(G) the subtree ι−1(S) of (T, r, ι) is
connected, Lemma 8 and Lemma 9 give rise to the following
order on S-flowers F1, F2 ∈ B(S): F1 ≺T F2 if F1 contains
a node on the unique path from F2 to the root of T .
Lemma 10. There is a unique least S-flower in B(S) with
respect to ≺T .

The lemma states that for every AMO α there is a flower
F at which we want to count α. We have to be sure that this
is possible, i. e., that a clique in F can be used to generate α.
Lemma 11. Let α be an AMO such that every topological
ordering that represents α has the minimal separator S as
prefix. Then every F ∈ B(S) contains a clique K such that
there is a τ ∈ top(α) starting with K.

We use ≺T to define, for a fixed AMO α, a partial or-
der ≺α on the set of maximal cliques, which are at the be-
ginning of some τ ∈ top(α), as follows: K1 ≺α K2 if, and
only if, (i) K1 ∩ K2 = S ∈ ∆(G), (ii) K1 and K2 are in
S-flowers F1, F2 ∈ B(S), respectively, and (iii) F1 ≺T F2.
Proposition 3. Let G be a UCCG and T = (T, r, ι) be a
rooted clique tree of G. Then:

#AMO(G) =
∑
v ∈ VT

φ(ι(v),FP(v, T))×
∏

H ∈ CG(ι(v))

#AMO(H).

Sketch of Proof. First, prove that for every AMO α there is
a unique least K ∈ Π(G) with respect to ≺α. Let x be the
node of the clique tree with ι(x) = K, we deduce that α
is counted in φ(ι(x),FP(x, T)), but is blocked in all other
nodes y by some set in FP(y, T).

Algorithm 2 evaluates this formula, utilizing memoization
to avoid recomputations. Traversing the clique tree with a
BFS allows for simple computation of FP.
Theorem 2. For an input UCCGG, Algorithm 2 returns the
number of AMOs of G.
Example 5. We consider a rooted clique tree (T, r, ι) for
the graph G from Example 3. The root is labeled with r,
function ι maps the nodes to the maximal cliques and the
edges are associated with the minimal separators.

r {1, 2, 3}

{2, 3, 4, 5}

{2, 3, 5, 6}

{2, 3}

{2, 3, 5}

φ
(
{1, 2, 3}, ∅

)
φ
(
{2, 3, 4, 5},

{
{2, 3}

})
φ
(
{2, 3, 5, 6},

{
{2, 3}, {2, 3, 5}

})
= 6

= 20

= 16

Algorithm 2 traverses the tree T from the root r to the
bottom and computes the values shown at the right. The
only case in which we obtain a non-trivial subgraph is for
S = {1, 2, 3} (an induced path on {4, 5, 6}). Therefore:

#AMO(G) = 6 · 3 + 20 · 1 + 16 · 1 = 54. �

input : A UCCG G = (V,E).
output: #AMO(G).

1 function count(G, memo)
2 if G ∈ memo then
3 return memo[G]
4 end
5 T = (T, r, ι)← a rooted clique tree of G
6 sum← 0
7 Q← queue with single element r
8 while Q is not empty do
9 v ← pop(Q)

10 push(Q, children(v))
11 prod← 1
12 foreach H ∈ CG(ι(v)) do
13 prod← prod · count(H,memo)
14 end
15 sum← sum + prod · φ(ι(v),FP(v, T))
16 end
17 memo[G] = sum
18 return sum
19 end

Algorithm 2: The Clique-Picking algorithm computes
the number of acyclic moral orientations of a UCCG G.

Since clique trees can be computed in linear time (Blair
and Peyton 1993), an iteration of the algorithm runs in poly-
nomial time due to Lemma 6 and 7. We prove in the next
section that Algorithm 2 performs at most 2 · |Π(G)| − 1 re-
cursive calls, which implies that it runs in polynomial time.

6 The Complexity of #AMO
We analyze the run time of the Clique-Picking algorithm
by bounding the number of connected chordal subgraphs
that we encounter. The following proposition shows that this
number can be bounded by O(|Π(G)|). Recall that we have
|Π(G)| ≤ |V | in chordal graphs and, thus, we only have to
handle a linear number of recursive calls.
Proposition 4. Let G be a UCCG. The number of distinct
UCCGs explored by count is bounded by 2|Π(G)| − 1.

Sketch of Proof. We observe that there is a bijection be-
tween S-flowers ofG and distinct UCCGs. The linear bound
follows, as a separator S, that has a bouquet of size k, is as-
sociated with k − 1 edges of the clique tree. Therefore, we
have at most |Π(G)| − 1 − (k − 1) other separators and
the maximum number of flowers is obtained if the quotient
k/(k − 1) is maximized – which is the case for k = 2.

We are now able to bound the run time of Clique-Picking:
Theorem 3. The Clique-Picking algorithm runs in time
O
(
|Π(G)|2 · (|V |+ |E|)

)
.

Sketch of Proof. The algorithm exploresO(|Π(G)|) distinct
UCCGs by Proposition 4. For each UCCG we compute a
clique tree, and for all nodes v ∈ VT the set CG(ι(v)) and the
value φ(ι(v),FP(v, T)). Both can be done in timeO(|V |+
|E|) by Theorem 1 and by using the formula from Lemma 6.

12203

16 32 64 128 256 512 1024 2048 4096

5

10

15

20

25

30

#cliques

density

6

0.50

10

0.40

19

0.31

33

0.22

66

0.14

126

0.09

231

0.05

441

0.03

841

0.02

Number of Vertices

Average Time
in Minutes

timeout

cp

am

tw
li

16 32 64 128 256 512 1024 2048 4096

5

10

15

20

25

30

#cliques

density

6

0.66

11

0.67

21

0.67

46

0.65

86

0.67

168

0.68

340

0.67

688

0.66

1364

0.67

Number of Vertices

Average Time
in Minutes

timeout

cp

am

tw
li

Figure 2: Experimental results for the solvers Clique-Picking (cp), AnonMAO (am), TreeMAO (tw), and LazyIter (li) on random
chordal graphs with n = 16, 32, . . . , 4096 vertices. For the left plot, we used graphs generated with the subtree intersection
method and density parameter k = log n; the right plot contains the results for random interval graphs. At the bottom, we
present the number of maximal cliques as well as the graph density |E|/

(|V |
2

)
.

As one would expect, the Clique-Picking algorithm can –
with slight modifications – also be used to sample Markov
equivalent DAGs uniform at random. Hence, this problem
can be solved in polynomial time, too.

Theorem 4. There is an algorithm that, given a connected
chordal graph G, uniformly samples AMOs of G in time
O(|V |+ |E|) after an initial O(Π(G)2 · |V | · |E|) setup.

Sketch of Proof. We sample the AMOs recursively: Draw a
clique K proportional to the number of AMOs counted at
this clique; uniformly draw a permutation of K that does
not start with a forbidden prefix; recurse on subgraphs.

We summarize the findings of this section:3

Theorem 5. The problems #AMO and uniform sampling
from a Markov equivalence class are in P.

The following theorem shows that Theorem 5 is tight in
the sense that counting Markov equivalent DAGs that en-
code additional background knowledge (e. g., that are repre-
sented as so-called PDAGs or MPDAGs) is not in P under
standard complexity-theoretic assumptions.

Theorem 6. The problem of counting the number of AMOs
is #P-complete for PDAGs and MPDAGs.

7 Experimental Evaluation of Clique-Picking
We evaluate the practical performance of the Clique-Picking
algorithm by comparing it to three state-of-the-art algo-
rithms for #AMO. AnonMAO (Ganian, Hamm, and Talvitie
2020) is the best root-picking method; TreeMAO (Talvitie

3Additionally, we remark that the size of interventional Markov
equivalence classes can also be computed in polynomial time.

and Koivisto 2019) utilizes dynamic programming on the
clique tree; and LazyIter (AhmadiTeshnizi, Salehkaleybar,
and Kiyavash 2020) combines techniques from intervention
design with dynamic programming.

Figure 2 shows the run time of the four algorithms on
random chordal graphs – details of the random graph gen-
eration and further experiments can be found in the supple-
mentary material4. We chose the random subtree intersec-
tion method (left plot in Fig. 2) as it generates a broad range
of chordal graphs (Seker et al. 2017); and we complemented
these with random interval graphs (right plot) as AnonMAO
runs provably in polynomial time on this subclass of chordal
graphs (Ganian, Hamm, and Talvitie 2020).

The Clique-Picking algorithm outperforms its competi-
tors in both settings. For the subtree intersection graphs, it
solves all instances in less than a minute, while the other
solvers are not able to solve instances with more than 1024
vertices. The large instances of the interval graphs are more
challenging, as they are denser and have more maximal
cliques. However, Clique-Picking is still able to solve all in-
stances, while the best competitor, AnonMAO, can not han-
dle graphs with 256 or more vertices.

8 Conclusion
We presented the first polynomial-time algorithm for count-
ing and sampling Markov equivalent DAGs. Our novel
Clique-Picking approach utilizes the clique tree without ap-
plying cumbersome dynamic programming on it. As a result,
the algorithm is not only of theoretical but also of high prac-
tical value, being the fastest algorithm by a large margin.

4The source code and the supplementary material are available
at https://github.com/mwien/CliquePicking.

12204

Acknowledgements
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) grant LI634/4-2.

The authors thank Paula Arnold for her help in setting up
the experiments.

References
AhmadiTeshnizi, A.; Salehkaleybar, S.; and Kiyavash, N.
2020. LazyIter: A Fast Algorithm for Counting Markov
Equivalent DAGs and Designing Experiments. In Pro-
ceedings of the 37th International Conference on Machine
Learning, ICML ’20.

Andersson, S. A.; Madigan, D.; and Perlman, M. D. 1997. A
Characterization of Markov Equivalence Classes for Acyclic
Digraphs. The Annals of Statistics 25(2): 505–541.

Blair, J. R.; and Peyton, B. 1993. An Introduction to Chordal
Graphs and Clique Trees. In Graph Theory and Sparse Ma-
trix Computation, 1–29. Springer.

Chickering, D. M. 2002a. Learning Equivalence Classes of
Bayesian-Network Structures. Journal of Machine Learning
Research 2: 445–498.

Chickering, D. M. 2002b. Optimal Structure Identification
With Greedy Search. Journal of Machine Learning Research
3: 507–554.

Dirac, G. A. 1961. On Rigid Circuit Graphs. Abhandlungen
aus dem Mathematischen Seminar der Universität Hamburg
25(1): 71–76.

Fulkerson, D.; and Gross, O. 1965. Incidence Matrices and
Interval Graphs. Pacific Journal of Mathematics 15(3): 835–
855.

Ganian, R.; Hamm, T.; and Talvitie, T. 2020. An Efficient
Algorithm for Counting Markov Equivalent DAGs. In Proc-
cedings of the 34th Conference on Artificial Intelligence,
AAAI 20, 10136–10143.

Ghassami, A.; Salehkaleybar, S.; Kiyavash, N.; and Barein-
boim, E. 2018. Budgeted Experiment Design for Causal
Structure Learning. In Proceedings of the 35th International
Conference on Machine Learning, ICML ’18, 1719–1728.

Ghassami, A.; Salehkaleybar, S.; Kiyavash, N.; and Zhang,
K. 2019. Counting and Sampling from Markov Equivalent
DAGs Using Clique Trees. In Proccedings of the 33th Con-
ference on Artificial Intelligence, AAAI 19, 3664–3671.

Gillispie, S. B.; and Perlman, M. D. 2002. The Size Distri-
bution for Markov Equivalence Classes of Acyclic Digraph
Models. Artificial Intelligence 141(1/2): 137–155.

Hauser, A.; and Bühlmann, P. 2012. Characterization
and Greedy Learning of Interventional Markov Equivalence
Classes of Directed Acyclic Graphs. Journal of Machine
Learning Research 13: 2409–2464.

He, Y.; Jia, J.; and Yu, B. 2015. Counting and Exploring
Sizes of Markov Equivalence Classes of Directed Acyclic
Graphs. Journal of Machine Learning Research 16(79):
2589–2609.

He, Y.-B.; and Geng, Z. 2008. Active Learning of Causal
Networks with Intervention Experiments and Optimal De-
signs. Journal of Machine Learning Research 9(Nov):
2523–2547.

Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian Networks: The Combination of Knowl-
edge and Statistical Data. Machine Learning 20(3): 197–
243.

Koller, D.; and Friedman, N. 2009. Probabilistic Graphical
Models - Principles and Techniques. MIT Press. ISBN 978-
0-262-01319-2.

Maathuis, M. H.; Kalisch, M.; and Bühlmann, P. 2009. Esti-
mating High-Dimensional Intervention Effects from Obser-
vational Data. The Annals of Statistics 37(6A): 3133–3164.

Madigan, D.; Andersson, S. A.; Perlman, M. D.; and Volin-
sky, C. T. 1996. Bayesian Model Averaging and Model
Selection for Markov Equivalence Classes of Acyclic Di-
graphs. Communications in Statistics–Theory and Methods
25(11): 2493–2519.

Meek, C. 1995. Causal Inference and Causal Explana-
tion with Background Knowledge. In Proceedings of the
11th Conference on Uncertainty in Artificial Intelligence,
UAI ’95, 403–410.

Meek, C. 1997. Graphical Models: Selecting Causal and
Statistical Models. Ph.D. thesis, Carnegie Mellon Univer-
sity.

Pearl, J. 2009. Causality. Cambridge University Press.
ISBN 978-0521895606.

Perkovic, E.; Textor, J.; Kalisch, M.; and Maathuis, M. H.
2017. Complete Graphical Characterization and Construc-
tion of Adjustment Sets in Markov Equivalence Classes of
Ancestral Graphs. Journal of Machine Learning Research
18: 220:1–220:62.

Rose, D. J.; Tarjan, R. E.; and Lueker, G. S. 1976. Algorith-
mic Aspects of Vertex Elimination on Graphs. SIAM Journal
on Computing 5(2): 266–283.

Seker, O.; Heggernes, P.; Ekim, T.; and Taskin, Z. C. 2017.
Linear-Time Generation of Random Chordal Graphs. In
Proccedings of the 10th International Conference on Algo-
rithms and Complexity, CIAC 17, volume 10236, 442–453.

Shanmugam, K.; Kocaoglu, M.; Dimakis, A. G.; and Vish-
wanath, S. 2015. Learning Causal Graphs with Small Inter-
ventions. In Processing of the 28th Annual Conference on
Neural Information Processing Systems, NIPS ’15, 3195–
3203.

Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Causation,
Prediction, and Search, Second Edition. MIT Press. ISBN
978-0-262-19440-2.

Talvitie, T.; and Koivisto, M. 2019. Counting and Sam-
pling Markov Equivalent Directed Acyclic Graphs. In Proc-
cedings of the 33th Conference on Artificial Intelligence,
AAAI 19, 7984–7991.

12205

van der Zander, B.; and Liśkiewicz, M. 2016. Separators
and Adjustment Sets in Markov Equivalent DAGs. In Pro-
ceedings of the 30th Conference on Artificial Intelligence,
AAAI ’16, 3315–3321.
Verma, T.; and Pearl, J. 1990. Equivalence and Synthesis
of Causal Models. In Proceedings of the 6th Annual Con-
ference on Uncertainty in Artificial Intelligence, UAI ’90,
255–270.
Verma, T.; and Pearl, J. 1992. An Algorithm for Deciding if
a Set of Observed Independencies has a Causal Explanation.
In Proceedings of the 8th Annual Conference on Uncertainty
in Artificial Intelligence, UAI ’92, 323–330.

12206

