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Abstract

Conflict-Based Search (CBS) is a leading two-level algorithm
for optimal Multi-Agent Path Finding (MAPF). The main
step of CBS is to expand nodes by resolving conflicts (where
two agents collide). Choosing the ‘right’ conflict to resolve
can greatly speed up the search. CBS first resolves conflicts
where the costs (g-values) of the resulting child nodes are
larger than the cost of the node to be split. However, the re-
cent addition of high-level heuristics to CBS and expanding
nodes according to f = g + h reduces the relevance of this
conflict prioritization method. Therefore, we introduce an ex-
panded categorization of conflicts, which first resolves con-
flicts where the f -values of the child nodes are larger than the
f -value of the node to be split, and present a method for iden-
tifying such conflicts. We also enhance all known heuristics
for CBS by using information about the cost of resolving cer-
tain conflicts with only a small computational overhead. Fi-
nally, we experimentally demonstrate that both the expanded
categorization of conflicts and the improved heuristics con-
tribute to making CBS even more efficient.

Introduction and Overview
Multi-Agent Path Finding (MAPF) is a coordination prob-
lem where the aim is to find a set of collision-free paths for
a team of mobile agents, each from its start location to its
designated target location. MAPF is a well-known and well-
studied topic with numerous real-world applications. For ex-
ample, MAPF is a core challenge automated warehouse lo-
gistics (Wurman, D’Andrea, and Mountz 2008), automated
parcel sortation (Kou et al. 2020), automated valet park-
ing (Okoso, Otaki, and Nishi 2019), computer games (Sil-
ver 2006) and a variety of other contexts (Ma et al. 2016).
Many optimal and suboptimal approaches for MAPF have
been proposed; a recent summary is given in (Felner et al.
2017).

In this work, we focus on optimal MAPF, where the goal
is to minimize the sum of path costs, and consider improve-
ment strategies for Conflict-Based Search (CBS) (Sharon
et al. 2015), a popular and successful MAPF solver. CBS can
be described as a two-level algorithm. The low level finds
optimal paths for the individual agents. If the paths of two
agents collide (i.e., are in conflict), the high level, via a split
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action, imposes constraints on the agents to avoid the colli-
sion, thus resolving the conflict. The search space of CBS
is therefore a binary Constraint Tree (CT), which the algo-
rithm explores in best-first order. CBS is complete, optimal
and often highly performant; e.g., recent variants (Li et al.
2019a,b,c) can solve MAPF problems with more than 100
agents.

CBS is very sensitive to the order in which conflicts are
chosen to be resolved. Boyarski et al. (2015b) introduced a
scheme for prioritizing conflicts. Highest in the suggested
priority ordering are cardinal conflicts, as resolving them
raises the cost for both child nodes. Next are semi-cardinal
conflicts, which raise the cost for only one child node, and
last are non-cardinal conflicts, which do not raise the cost
for either child node. This prioritization greatly speeds up
the search by decreasing the size of the CT, because child
nodes of higher costs are less likely to be expanded.

Later, Felner et al. (2018) and Li et al. (2019a) added
heuristics to CBS, which provided further performance im-
provements. Nodes of the CT are now prioritized based on
the sum of their cost and their heuristic value (f = g + h).

In this paper, we first propose an enhanced prioritization
function that allows CBS to distinguish between conflicts
that appeared equivalent when branching. We identify a set
of conflicts, called f -cardinal, which produce child nodes
with increased f -costs. We refer to conflicts that produce
child nodes with increased g-costs as g-cardinal. Next, we
propose a method for identifying f -cardinal conflicts and
a new conflict prioritization scheme where f -cardinal con-
flicts are resolved first, followed by other types of conflicts.
Then, we enhance all known heuristics for CBS by using in-
formation about the cost of resolving certain conflicts with
only a small computational overhead. Finally, we evaluate
both contributions experimentally. Our results indicate that
this new strategy and the new heuristics increase the effi-
ciency of current versions of CBS.

Background
In classical MAPF, the environment is a graph (usually a
grid), and time is discretized to time steps. In each time step,
an agent may traverse an edge to move from its vertex to an
adjacent vertex, or it may wait at its current vertex. Agents
have a vertex conflict if they are planned to occupy the same
vertex at the same time, and have an edge conflict if they
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are planned to traverse an edge in opposite directions at the
same time. Agents are usually assumed to stay at their target
when their plan ends until all agents have reached their tar-
get (Stern et al. 2019). An agent that has reached its target
and finished its plan at time step t and is staying at its tar-
get from time step t+ 1 onward will cause a vertex conflict
with any agent that passes through its target after time step
t. Such conflicts are called target conflicts (Li et al. 2020).1

The first non-trivial heuristic function for CBS is given by
the size of the minimum vertex cover (MVC) of the graph of
the (g-)cardinal conflicts for the node (Felner et al. 2018).
The (g-)cardinal conflict graph contains a vertex for each
agent in CT node N , and an edge exists between two ver-
tices iff the paths of the two corresponding agents have a
(g-)cardinal conflict in N . For the purposes of the examples
in the next two sections, we assume that the h-values are
computed with this heuristic, which we denote as CG.

Cardinal Conflicts Are Insufficient
The integration of heuristics into CBS reduced the effective-
ness of its conflict prioritization strategy. More specifically,
when a cardinal (resp. semi-cardinal) conflict is resolved, the
g-value of each child node (resp. one child node) is guaran-
teed to increase by 1 relative to its parent, but the f -value
might not increase due to a corresponding decrease in the
h-value. Currently, CBS does not distinguish between cardi-
nal (resp. semi-cardinal) conflicts that will raise the f -value
vs. those that will not, which diminishes the strength of the
prioritization scheme and affects the resulting size of the CT.
Consider, for example, a node with a single cardinal conflict.
This conflict allows us to set the h-value to 1, because if we
resolve that conflict, the g-value of the child nodes would in-
crease by at least 1. When we resolve that conflict, the child
nodes will have their g-value increased by 1 (or more), and
unless new cardinal conflicts are found or the g-value in-
creases by more than 1, the decrease in h at the child results
in the same f -value as the parent. Thus, we have the same
f -value as before, but two nodes to solve instead of one.

Distribution of ∆g, ∆h and ∆f in Practice
Perhaps the first questions to ask are how often different
combinations of f -value and g-value differences occur and
whether we should we implement an algorithm to detect
them. Hence, we first conduct a study to determine how
prevalent each combination is.

Figure 1 shows the breakdown of ∆g, ∆h and ∆f val-
ues of CT nodes relative to their parent when running a
modern CBS solver with the basic MVC heuristic, which
bypasses conflicts (see (Boyarski et al. 2015b)) and prior-
itizes (g-)cardinal conflicts, on the standard MAPF bench-

1 Li et al. (2020) suggest to resolve a target conflict at time t
by branching on the path length l of the agent that is at its target.
One child node receives a constraint that l > t, and the other child
node receives the constraint that l ≤ t, meaning all other agents
are constrained from passing through the agent’s target after time t.
This method is orthogonal to our work, as resolving target conflicts
in this way contributes to a smaller CT, but does not change the
minimum expected cost increases we discuss in this paper.

Figure 1: Distribution of ∆f values by map types, and their
∆g and ∆h components, using the CG heuristic.

mark suite from (Stern et al. 2019). The values are shown
separately for each map type (see the experimental results
section for more details).

The orange bars in Figure 1, where ∆g = 1 but ∆h = −1
(i.e., ∆f = 0) illustrate the potential for improvement in
CBS. In the previous versions of CBS, conflicts that result
in child nodes with values from the orange, teal, and green
bars, and some conflicts from the yellow bar, where ∆ ≥ 1,
would be prioritized for resolution in a CT node over con-
flicts that result in child nodes from blue or red bars. Yet re-
solving conflicts that result in child nodes with values from
the orange bar does not increase the f -value of the child
nodes, while resolving conflicts that result in child nodes
with values from red bars does. We will be much more in-
terested to resolve conflicts that result in ∆f > 0, as these
better represent an increase in the f -value of the child nodes.
Thus, the red bars, where ∆f = 1, are preferable to the or-
ange bars. As the figure shows, the portion of such conflicts
is substantial.

Different Types of Conflicts
We say that a CT node N is defined by a set of constraints,
denoted N.constraints, which restrict individual paths that
can be assigned to agents. The node also records its g-value
(the sum of individual path costs) as N.g. When using a
heuristic function, N stores in a similar way its correspond-
ing h- and f -values. We are now ready to expand the classi-
fication of conflicts from three distinct categories, as given
in (Boyarski et al. 2015b), to five possibly-overlapping cat-
egories, as follows:

(1) f -Cardinal conflict. A conflict C = 〈a1, a2, v, t〉 is
f -cardinal for a CT node N iff adding either of the two
constraints derived from C (namely, 〈a1, v, t〉, 〈a2, v, t〉)
toN.constraints and invoking the low-level search for the
constrained agent ai, the f -value of the resulting CT node
increases compared to N.f .

(2) Semi-f -Cardinal conflict. C = 〈a1, a2, v, t〉 is semi-
f -cardinal for a CT nodeN iff adding one of the two con-
straints derived from C to N.constraints increases N.f
but adding the other leaves N.f unchanged.

Categories (1-2) may overlap with categories (3-5):

(3) g-Cardinal conflict. A conflict C = 〈a1, a2, v, t〉 is
g-cardinal (previously simply called cardinal) for a CT
node N iff adding either of the two constraints derived
from C (〈a1, v, t〉, 〈a2, v, t〉) to N.constraints and invok-
ing the low-level on the constrained agent, the cost of its
path increases compared to its cost in N .
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Figure 2: Agents, their paths, and their conflicts
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Figure 3: The g-cardinal conflict graph for Figure 2, with
labels showing whether agents have finished their plan at
the time of the conflict

(4) Semi-g-cardinal conflict. C = 〈a1, a2, v, t〉 is semi-
g-cardinal (previously called semi-cardinal) for a CT
nodeN iff adding one of the two constraints derived from
C toN.constraints increasesN.g but adding the other one
leaves N.g unchanged.
(5) Non-g-cardinal conflict. A conflict C is non-g-
cardinal for a CT nodeN iff neither of the two constraints
derived from C increases N.g.

We propose that f -cardinal conflicts be resolved first, fol-
lowed by semi-f -cardinal, g-cardinal, semi-g-cardinal and
finally non-g-cardinal conflicts. Depending on ∆h, a g-
cardinal conflict may or may not also be f -cardinal or a
semi-f -cardinal, and a semi-g-cardinal conflict may or may
not also be semi-f -cardinal.

Figure 2 shows an example with 9 agents and their paths
in CT node N . Paths in red have no alternatives of the same
cost. Paths in green do. Figure 3 shows the g-cardinal con-
flict graph (Felner et al. 2018) for N . The conflict between
agents Y andZ occurs while Y is waiting at its target (unlike
the conflict between agents Y and X). The size of the MVC
of the g-cardinal conflict graph, and hence the h-value, is 2.
We examine different conflicts on this graph next.

The conflict between agents A and B is g-cardinal. Re-
solving it generates child nodes with ∆g = 1, and the size
of the MVC decreases by 1 (unless new cardinal conflicts
are caused by the new paths of agentsA andB). Thus, based
only on information from this conflict graph, the child nodes
have ∆h = −1 and ∆f = 0.

Had the conflict between agents Y and Z not been at Y ’s
target, the conflicts between Y and Z and between X and
Y would both have been semi-f -cardinal. Replanning X
to avoid the conflict with Y would have yielded ∆g = 1,

∆h ≥ 0, and ∆f ≥ 1. Similarly replanning Z for the
conflict (Y,Z). Replanning Y to avoid either the conflict
with X or the conflict with Z would have yielded ∆g = 1,
∆h ≥ −1, and ∆f ≥ 0.

The conflict between agents Y and Z is both f -cardinal
and g-cardinal (recall that Y is at its target). If it is resolved
in CT node N , the child node that constrains Y will have
∆g ≥ 2, because Y is forced away from its target. It will
have ∆h = −1, assuming the cost increase would allow Y
to also avoid the conflict withX (unless Y ’s new path causes
a new g-cardinal, in which case ∆h ≥ −1) and ∆f ≥ 1.
The child node that constrains Z will have ∆g = 1,∆h ≥ 0
because the MVC of the remaining g-cardinal conflict graph
would be of size (at least) 2 and ∆f ≥ 1. Thus, this conflict
is f -cardinal.

The conflict betweenX and Y is also both f -cardinal and
g-cardinal. If it is resolved in CT nodeN , the child node that
constrains agent X (to avoid the conflict between X and Y )
will have ∆g = 1, ∆h ≥ 0 and ∆f ≥ 1, similarly to the
child node that constrains Z in the previous paragraph. The
child node that constrains Y will have ∆g = 1, ∆h ≥ 0
because Y ’s cost would not increase enough to avoid the
conflict with Z, and ∆f ≥ 1.

f -Cardinal Conflicts
In this section, we propose a technique for identifying
f -cardinal conflicts. Our contributions generalize previous
conflict identification strategies, which focus only on g-
increases (Boyarski et al. 2015b).

Target Conflicts Are At Least Semi-f -Cardinal
When CBS resolves a target conflict in CT node N , in one
of the child nodes of N , a vertex constraint on an agent’s
target location is added at time step t′ that is later than time
step t when the agent is planned to reach its target. Such a
constraint will result in a cost increase of at least 2 (∆g ≥ 2),
because the earliest time step the agent’s plan can end in
is now t′ + 1 ≥ t + 2. Moreover, under the basic MVC
high-level heuristic (discussed further in the next section),
replanning the path of an agent can decrease a node’s h-
value by at most 1 (if its vertex was in the MVC), yielding
∆g ≥ 2, ∆h ≥ −1 and ∆f ≥ 1. Thus, target conflicts
are either f -cardinal or semi-f -cardinal under this heuristic.
Identifying such target conflicts is trivial.

Identifying f -Cardinal Conflicts
To identify f -cardinal conflicts in a CT node N , we first
identify g-cardinal conflicts in the usual way (see (Boyarski
et al. 2015b)). That is, for each agent that has a conflict,
we build an MDD that represents all of its paths that are
of the same cost as its current one. A conflict is g-cardinal
neither MDD of its constituent agents contain an alternative
that avoids the conflict at the time step of the conflict.

Then, we construct the g-cardinal conflict graph for N
and compute N ’s h-value to be the size of the MVC of the
graph. Finally, we iterate over all agents that have edges in
the g-cardinal conflict graph. For each such agentA, we tem-
porarily remove all of agent A’s edges and compute the size
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of the MVC of the remaining graph. This simulates the g-
cardinal conflict graph of the child node of N that would
be generated if one of A’s g-cardinal conflicts were cho-
sen to be resolved and the child node constrained agent A’s
path. The graph simulates the most optimistic scenario that
agent A’s new path causes no new g-cardinal conflicts and
avoids all of A’s current conflicts. If the size of the MVC
remains unchanged, than all g-cardinal conflicts that agent
A participates in are semi-f -cardinal (like agent X and the
X-Y -conflict in the example); and, all g-cardinal conflicts
that agent A participates in, and where the other conflicting
agent is at its target, are f -cardinal (like agent Z and the Y -
Z-conflict). Otherwise, the size of the MVC decreases and
thus the agent’s g-cardinal conflicts remain g-cardinal (but
are not f -cardinal in our scenario).

In our implementation, we compute the MVC using a
Mixed-Integer Programming (MIP) solver. When we sim-
ulate the MVC of child nodes, we ‘warm start’ the MIP
model, removing rows and incrementally adding them back
to the model as needed. MIP solvers retain information be-
tween consecutive runs on the same model, which speeds up
the process of identifying f -cardinal conflicts.

Non-Stable Conflicts
For any g-cardinal conflict identified at CT node N , the
conflict will remain g-cardinal at every node in the subtree
rooted atN unless resolved in an ancestor. We call such con-
flicts stable. Interestingly, f -cardinal conflicts are not sta-
ble, as such a conflict in CT node N might become semi-f -
cardinal in a child, despite not being resolved. Similarly, a
semi-f -cardinal conflict might become only g-cardinal in a
child node.

In Figure 3, if we resolve the conflict between X and Y ,
the conflict between Y and Z will become semi-f -cardinal
in the resulting child nodes, and if we resolve the conflict be-
tween Y and Z, the conflict between X and Y will become
only g-cardinal in the CT node where the path of Z was re-
planned (and might be avoided altogether in the CT node
where the path of Y was replanned). Due to this observa-
tion, when an f -cardinal conflict is identified in a CT node,
we propose to terminate the identification procedure and im-
mediately resolve this conflict. Of course, it is not worth-
while to perform additional work to possibly identify other
f -cardinal conflicts, as the f -cardinal status of these con-
flicts would have to be re-checked in the child nodes (since
the conflicts are not stable).

Improved Heuristics for CBS
Conflict prioritization affects which nodes CBS generates
and adds to the CT and therefore strongly influences both the
shape and the size of the CT and thus also the efficiency of
CBS. Complementary to this strategy is the CBS high-level
heuristic, which influences the order in which CT nodes will
be selected for expansion. In this section, we show how
to exploit information about expected g-increases, gathered
at the conflict classification stage, to improve all current
CBS high-level heuristics: CG (Felner et al. 2018), DG and
WDG (Li et al. 2019a). Our new and improved heuristics

A
1

1

Y1

1

2

1

B X Z

Figure 4: The g-cardinal conflict graph for figure 2, with
minimum expected g-increases labeled on the ends of edges

are strictly more informed than their baselines. They may be
used in conjunction with our newly proposed conflict prior-
itization scheme or independently of it.

The NVW-CG Heuristic
Figure 4 shows the g-cardinal conflict graph for the exam-
ple in Figure 2, with minimum expected g-increases from
resolving the g-cardinal conflicts labelled on the ends of the
edges2. Recall that the h-value of the basic MVC heuristic
for this graph is 2.

Our new Near Vertex-Weighted Cardinal Conflict Graph
Minimum Vertex Cover (NVW-CG) heuristic for the la-
belled graph assigns a non-negative integer value xi for each
vertex vi. The heuristic estimate is the sum of the minimum
assignment of values for the vertices that satisfies the fol-
lowing condition for edges: each edge e = (vi, vj) with
corresponding values (cei , cej ) on its ends is covered by
xi ≥ cei ∨ xj ≥ cej . For our example, the improved heuris-
tic estimate is 3: either A or B is assigned a value of 1, and
either X and Z are assigned a value of 1, or Y a value of 2.

Note that the 1 label on the side of Z is underestimating
the cost to really resolve the dependency between agents Y
andZ by replanning agentZ’s path. The near-vertex weights
only take into account the expected g-increases from resolv-
ing the current conflict. They are thus trivial to compute, but
miss some information. In our example, adding a constraint
on Y ’s target at time step 6 for agent Z would simply cause
agent Z to wait one time step before entering the same ver-
tex and creating a new f -cardinal conflict.

The NVW-DG Heuristic
The Dependency Graph Minimum Vertex Cover (DG)
heuristic computes the MVC of the pairwise dependency
graph (Li et al. 2019a), which generalizes the g-cardinal
conflict graph. DG edges exist iff all cost-minimal paths of
the corresponding two agents have any type of conflict be-
tween them (not necessarily g-cardinal). Thus, the DG can
have more edges than the CG, and the size of its MVC can be
larger. The Near Vertex-Weighted version of the DG heuris-
tic (NVW-DG) is computed as follows: add a weight to the
end of each edge in the DG, corresponding to the mini-
mum g-increase from resolving the conflict that the edge

2Resolving the conflict between agents Y and Z with length
constraints, as discussed earlier, actually increases the cost of the
path of agent Z by 2 when it is replanned, but that would only be
discovered when that child node is generated.
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Figure 5: Agents, their paths, and their conflicts

represents by replanning the agent that the vertex represents.
Then, compute a weighted minimum vertex cover that satis-
fies an additional condition: an edge is only considered cov-
ered by a weight on a vertex if the weight is at least the same
as the weight of the corresponding end of the edge.

The NVW-WDG Heuristic
The (Edge-)Weighted Dependency Graph Minimum Vertex
Cover (WDG) heuristic (Li et al. 2019a) is the most ad-
vanced heuristic for the high level of CBS to date. It con-
structs the Weighted Dependency Graph for the agents by
setting the weight of each edge between a pair of agents to
the difference between the cost of the optimal solution to
their 2-agent MAPF subproblem and the sum of the costs
of their current paths. Note the graphs used for the previ-
ous two basic heuristics are unweighted. Then, it calculates
the heuristic value h =

∑
i xi as a minimal edge-weighted

vertex cover of the resulting graph, that is, an assignment of
non-negative integers xi to each vertex (agent) vi so that, for
each edge (vi, vj) with cost wij , xi + xj ≥ wij .

Even this advanced heuristic can be enhanced with near-
vertex weights. Figure 6 shows the weighted dependency
graph for Figure 5 with minimum expected cost increases
labeling the ends of the edges. The weight of both edges is
2 because agents Q and R can circumnavigate agent P at its
target by taking one extra move down before reaching it and
one extra move up after passing it. The near-vertex weights
for P are 12 on the edge with Q and 6 on the edge with R,
because once an agent is forced away from its target, all of
the wait actions at its target are added to the cost of its path.
Similarly to the previous example, using length constraints
to resolve the conflict would increase the cost of the paths
of agents P and R by 2 when they are replanned, but that
information is not known at this stage. The WDG heuristic
gives a value of 2 here, assigning 2 to agent P . Yet, we know
that increasing the cost of the path of agent P by 2 would not
even resolve the current conflicts. The NVW-WDG heuristic
gives a value of 4 here, assigning 2 to Q and R.

Discussion
One might expect fewer f -cardinal conflicts to exist when
a more informed heuristic is used, because g-increases in
child nodes would often already be factored into the h-value

P12

w=21

6

w=2

1

Q R

Figure 6: The weighted dependency graph for 5, with ex-
pected g-increases labeled on the ends of edges

of the parent, leading to ∆g = −∆h. However, our exper-
iments found that the opposite was true. This may be ex-
plained by ‘bad choices’ of constraints that do not readily
lead to a conflict-free solution, leading to an unwarranted
g-increase in addition to an h-increase.

With a ‘good’ conflict prioritization strategy, CBS re-
solves only a minimal number of conflicts along each
branch before generating a feasible solution. With a ‘good’
heuristic function, CBS expands only a minimal number of
CT nodes globally on the way to the target. But, at each
expansion step CBS must still decide on what conflict to
base the generation of child nodes that would be added to
the CT. Suppose now that there exists one g-cardinal con-
flict at the root of the CT and many non-g-cardinal con-
flicts. The CG heuristic estimate at the root is therefore 1
(we use CG as an illustrative example; similar examples can
be constructed for any heuristic). From the perspective of the
heuristic, each non-g-cardinal conflict produces two succes-
sors with ∆g = 0 and ∆h = 0, and the g-cardinal conflict
produces two successors with ∆g = 1 and ∆h = −1. In
other words, it seems that the conflicts could be selected and
resolved in any order, since the result from each one appears
equally promising. If the g-cardinal conflict is resolved first,
the search may quickly find an optimal solution, guided only
by the high-level tie-breaking strategy. On the other hand,
if the g-cardinal conflict is always resolved last, the search
may generate a large CT and time out before expanding a
goal node. Thus, we see the two key reasons why conflict
prioritization is essential for CBS: (i) to keep the CT small
and (ii) to put optimal solutions within reach.

Experimental Results
All our experiments were run on a Linux machine with an
Intel Xeon CPU E5-2630 v2 running at 2.60GHz, with mem-
ory usage limited to 8GB. We used Gurobi 8.1.1 to solve the
MIP models of the MVCs of the various heuristics.

We experimented on the MAPF benchmark (Stern et al.
2019), which contains 32 grids of different types (city maps,
grids with random obstacles, mazes, warehouse maps, etc.),
each with 25 scenarios that specify the start and target lo-
cations for up to 7,000 agents. We increased the number of
agents on these scenarios until we reached the runtime limit
of 60 seconds. For higher numbers of agents, the solver was
considered to have failed implicitly.

The baseline solver in all of our experiments was only
aware of g-cardinal conflicts, used the CG heuristic, and im-
plemented bypassing conflicts (Boyarski et al. 2015a).
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#Solved #Solved (Hard)

Type #Instances CBS f -cardinal CBS f -cardinal

City 36,300 12,767 13,071 270 574
Empty 48,400 9,209 9,283 163 237
Games 121,000 20,745 21,721 806 1782
Mazes 48,400 2,584 2,728 117 261
Random 48,400 11,454 11,767 333 631
Rooms 36,300 3,986 4,231 149 394
Warehouse 48,400 17,357 17,627 249 519

Total 387,200 78,102 80,428 2,087 4,398

Table 1: Number of solved instances for CBS and CBS-f -
cardinal for all instances and for hard instances

Results for the New Conflict Prioritization
We ran two CBS solvers: The baseline solver prioritized g-
cardinal conflicts, and our improved solver identified and
prioritized f -cardinal conflicts. Both used the CG heuristic.
Solved instances: Table 1 shows the success rates for the
two solvers and each of the different map types. The num-
ber of problem instances from each type is also presented.
There were 387,200 problem instances and, for each one,
each solver either attempted to solve it or failed implicitly.
We further distinguish a subset of hard instances, which we
define as any problem instance where at least one solver
failed or required more than half of the allotted time to solve
(30 seconds).

There were 2,464 problem instances that were solved
only by our improved solver and 153 problem instances
that were only solved by the baseline solver. The improve-
ment is statistically significant (McNemar’s Test produces
χ2 = 2040.78). Prioritizing f -cardinal conflicts is espe-
cially beneficial on hard instances, where it more than dou-
bles the success rate.
Co-solved instances: Figure 7 shows the average runtime
and number of generated nodes by the two solvers of CBS,
over all instances from each map type that both solvers
solved successfully, as a function of the number of agents.
Our improved solver consistently generates fewer nodes and
runs faster. The error bars represent one standard deviation
from the mean for each number of agents. Our solver clearly
has lower standard deviations for both the runtimes and the
number of generated nodes. The time that it spent on identi-
fying f -cardinal conflicts was negligible.

Results for the New Heuristics
We compare the performance of CBS with the CG (Felner
et al. 2018), DG, WDG (Li et al. 2019a), NVW-CG, NVW-
DG, and NVW-WDG heuristics. All solvers compute the
heuristics lazily and use memoization (Li et al. 2019a) to
reduce runtime. The solver used by WDG for the 2-agent
subproblems was CBS with the same configuration, except
it runs with the CG heuristic, and applies rectangle reasoning
(Li et al. 2019c), a technique that further speeds up CBS.

Previous heuristic evaluations have only been performed
on a small number of scenarios. Here we examine 111,480

Type #Instances CG N-CG DG N-DG WDG N-WDG

City 19,322 12,599 12,615 15,664 15,634 15,835 15,972
Empty 12,197 9,104 9,106 11,659 11,626 11,561 11,541
Games 31,450 20,843 20,812 23,686 23,612 25,875 26,078
Mazes 3,699 2,766 2,759 2,779 2,774 2,928 2,950
Random 16,006 11,645 11,639 14,490 14,417 14,387 14,344
Rooms 5,710 4,190 4,169 4,528 4,489 4,825 4,844
Warehouse 23,096 17,124 17,117 20,616 20,569 20,765 20,780

Total 111,480 78,271 78,217 93,422 93,121 96,176 96,509

Table 2: Solved instances with the CG, NVW-CG, DG,
NVW-DG, WDG and NVW-WDG heuristics.

Type CG N-CG DG N-DG WDG N-WDG h∗

City 1.30 1.40 1.32 1.42 2.32 2.51 2.62
Empty 0.18 0.18 0.48 0.48 0.62 0.62 1.11
Games 1.86 1.96 1.89 1.99 3.41 3.60 3.99
Mazes 1.79 1.92 1.80 1.92 4.15 4.39 5.64
Random 1.27 1.35 1.52 1.61 2.88 3.09 3.79
Rooms 1.80 1.90 1.90 2.01 4.03 4.32 5.45
Warehouse 0.50 0.51 0.57 0.58 1.66 1.70 1.94

All 1.18 1.25 1.29 1.35 2.51 2.65 3.09

Table 3: Average h-values of the root node with each heuris-
tic and with h∗ for each map type, on co-solved instances.

instances. In total, 97,706 problem instances were success-
fully solved with at least one of the six heuristics. Table 2
shows the number of instances that were solved success-
fully by each solver for the different map types. Interest-
ingly, while improving the weaker heuristics does not im-
prove success rate, for WDG overall it does. We conjecture
this is because with this short time limit, the overhead of new
heuristic calculations does not pay off.

Table 3 shows the average h-value of the root CT node
on co-solved instances with each heuristic, as well as the
average optimal h-value (h∗). The average h-value of each
improved heuristic is better than its baseline. Table 4 shows
the average number of generated nodes of each solver on co-
solved instances, and the average time in milliseconds per
generated node, under 60-seconds, 300-seconds and 1800-
seconds time limits. Table 4 provides evidence to the fact
that the improved heuristics are more important for longer
runs.

Figure 8 shows again the breakdown of ∆g, ∆h, and
∆f values of CT nodes relative to their parent, this time
when running the same CBS solver with the NVW-WDG
heuristic. Note that new colours were added for cases where
∆h ≤ −2, which isn’t possible with the CG and DG heuris-
tics. Without prioritizing f -cardinal conflicts, conflicts from
the orange bars, where ∆g = 1 but ∆f = 0, would be pri-
oritized over conflicts from the teal bars, where ∆f = 1 but
∆g = 0.

Conclusions and Future Work
In this paper, we first expanded the concept of cardinal con-
flicts, a key concept in CBS, and demonstrated that prioritiz-
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Figure 7: Average runtime and generated nodes per map type for the subset of instances solved by both CBS and CBS-f -
cardinal.

Limit(s) #Instances CG NVW-CG DG NVW-DG WDG NVW-WDG

60 77,728 2.0,1.17ms 2.0,1.21ms 0.8,2.35ms 0.8,2.47ms 0.7,2.45ms 0.7,2.45ms
300 82,135 7.8,1.14ms 7.8,1.19ms 3.2,2.12ms 3.2,2.28ms 2.6,1.72ms 2.6,1.68ms

1800 85,735 31.8,1.16ms 31.7,1.22ms 9.4,2.63ms 9.3,2.80ms 7.3,1.90ms 7.1,1.78ms

Table 4: Average generated nodes in thousands and average time per node in ms using the CG, NVW-CG, DG, NVW-DG,
WDG and NVW-WDG heuristics for co-solved instance under three time limits.

Figure 8: Distribution of ∆f values by map type, and their
∆g and ∆h components, using the NVW-WDG heuristic.

ing the new category of f -cardinal conflicts substantially im-
proves performance. Second, we improved all current high-
level heuristics for CBS by exploiting information about
expected cost increases that arise from resolving conflicts.
Our experimental results demonstrate that our new heuris-
tics are the strongest known heuristics for CBS so far. We
demonstrated each enhancement separately on a large suite
of benchmarks – the largest comparative evaluation under-
taken for CBS specifically and MAPF more generally.

It remains future work to evaluate the joint improvement.

Other future work includes:

• Under Disjoint Splitting (Li et al. 2019b), only one of
the conflicting agents is constrained in both child nodes.
We plan to investigate how to choose an agent that yields
higher ∆f values in the child nodes.

• Li et al. (2020) define corridor conflicts, which occur
when two agents attempt to traverse a 1-width corridor
in opposite directions. One agent has to wait for the
other agent to fully traverse the corridor before entering
it, or use a different path. If the earliest times when the
agents can reach a corridor entrance are different, then
the amount of time they have to wait for the other agent
is also different. We plan to encode this asymmetry into a
near vertex-weighted heuristic, as we have done for target
conflicts.

• We plan to study admissible or inadmissible heuristics
for sub-optimal or bounded-sub-optimal CBS-based algo-
rithms (Barer et al. 2014). For example, non-g-cardinal
conflicts could be modeled as ε-cost edges in the heuristic
graph, to represent the amount of work needed to resolve
them.

Our code is available at https://github.com/eli-b/fcardinal.
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