
Theoretical Analyses of Multi-Objective Evolutionary Algorithms on Multi-Modal
Objectives

Benjamin Doerr,1∗ Weijie Zheng2∗

1Laboratoire d’Informatique (LIX), École Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
2 Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and

Engineering, Southern University of Science and Technology, Shenzhen, China
doerr@lix.polytechnique.fr, zhengwj13@tsinghua.org.cn

Abstract

Previous theory work on multi-objective evolutionary algo-
rithms considers mostly easy problems that are composed
of unimodal objectives. This paper takes a first step to-
wards a deeper understanding of how evolutionary algorithms
solve multi-modal multi-objective problems. We propose
the ONEJUMPZEROJUMP problem, a bi-objective problem
whose single objectives are isomorphic to the classic jump
functions benchmark. We prove that the simple evolutionary
multi-objective optimizer (SEMO) cannot compute the full
Pareto front. In contrast, for all problem sizes n and all jump
sizes k ∈ [4..n

2
− 1], the global SEMO (GSEMO) covers

the Pareto front in Θ((n − 2k)nk) iterations in expectation.
To improve the performance, we combine the GSEMO with
two approaches, a heavy-tailed mutation operator and a stag-
nation detection strategy, that showed advantages in single-
objective multi-modal problems. Runtime improvements of
asymptotic order at least kΩ(k) are shown for both strategies.
Our experiments verify the substantial runtime gains already
for moderate problem sizes. Overall, these results show that
the ideas recently developed for single-objective evolution-
ary algorithms can be effectively employed also in multi-
objective optimization.

Introduction
Many real-world applications contain multiple conflicting
objectives. For such problems, a single best solution can-
not be determined. Therefore, the task is to compute a set of
solutions each of which cannot be improved without wors-
ening in at least one objective (Pareto optima). With their
population-based nature, multi-objective evolutionary algo-
rithms (MOEAs) have been successfully applied here (Zhou
et al. 2011). Similar to the situation in the theory of single-
objective evolutionary algorithms, rigorous theoretical anal-
yses of MOEAs fall far behind their successful applications
in practice.

In order to reveal the working principles of MOEAs,
the research has resorted to multi-objective, especially bi-
objective, counterparts of well-analyzed single-objective

∗Both authors contributed equally to this work and both act as
corresponding authors.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

benchmark functions used in evolutionary computation the-
ory. For example, in the problems COCZ (Laumanns et al.
2002) and ONEMINMAX (Giel and Lehre 2010), the two
objectives are both (conflicting) variants of the classic ONE-
MAX benchmark. The classic benchmark LEADINGONES
was used to construct the LOTZ (Laumanns, Thiele, and
Zitzler 2004) and WLPTNO (Qian, Yu, and Zhou 2013)
problems. These multi-objective benchmark problems are
among the most intensively studied (Giel 2003; Doerr, Ko-
dric, and Voigt 2013; Doerr, Gao, and Neumann 2016; Bian,
Qian, and Tang 2018; Huang et al. 2019; Huang and Zhou
2020; Osuna et al. 2020). We note that these problems are
unimodal in the sense that from each set of solutions P a set
P ′ witnessing the Pareto front can be computed by repeat-
edly selecting a solution from P , flipping a single bit in it,
adding it to P , and removing dominated solutions from P .
They are thus relatively easy to solve.

As in the theory of single-objective evolutionary com-
putation, multi-modal problems are much less understood
also in the theory of evolutionary multi-objective optimiza-
tion. We defer a detailed discussion of the state of the art
to Section Related Works and state here only that, to the
best of our knowledge, there is not a single work discussing
in detail how MOEAs cope with multimodality.1 There are
works that contain multimodal problems, but they are us-
ing these problems mainly to study other research questions
or the multimodality is only minor (Brockhoff et al. 2007;
Friedrich, Hebbinghaus, and Neumann 2010; Qian, Tang,
and Zhou 2016; Li et al. 2016).

Our Contributions. This paper aims at a deeper un-
derstanding how MOEAs cope with multi-objective prob-
lems with natural, well-analyzed, multi-modal objectives.
In the theory of single-objective evolutionary computation,
the class of JUMP function is a natural and intensively used
multi-modal function class (Droste, Jansen, and Wegener
2002) that has inspired many interesting results including
that larger mutation rates, crossover, and estimation of dis-
tribution algorithms help in the optimization of multi-modal

1To prevent misunderstandings, let us stress that by multi-
modality, we refer to the fact that the optimization problems re-
garded are multi-modal, that is, have non-trivial local optima.
Our work is not concerned with multi-modal optimization, which
means finding all local optima of a problem.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12293

functions (see, e.g., Doerr et al. 2017; Dang et al. 2018;
Hasenöhrl and Sutton 2018). Hence, in this paper, we design
a bi-objective counterpart of the JUMP function with prob-
lem size n and jump size k, called ONEJUMPZEROJUMPn,k.
It consists of one JUMP function w.r.t. the number of ones
and one JUMP function w.r.t. the number of zeros. We com-
pute its disconnected Pareto front in Theorem 5.

We prove for all n and k ∈ [2..n2] that the simple
evolutionary multi-objective optimizer (SEMO) cannot find
the Pareto front (Theorem 7), but that the global SEMO
(GSEMO) finds the Pareto front in O((n − 2k)nk) itera-
tions in expectation (Theorem 8). We show a matching lower
bound of Ω((n − 2k)nk) for k ∈ [4..n2 − 1] (Theorem 9).
Here and in the remainder, the asymptotic notation only
hides constants independent of n and k.

We also consider two approaches that showed advan-
tages in single-objective multi-modal problems. Via the
heavy-tailed mutation proposed by Doerr, Le, Makhmara,
and Nguyen (2017), we improve the expected run-
time of the GSEMO by a factor of kΩ(k) to O((n −
2k)(en)k/kk+0.5−β), where β > 1 is the power-law dis-
tribution parameter (Theorem 11). Via a suitable adapta-
tion of the stagnation detection strategy from (Rajabi and
Witt 2020) to multi-objective optimization, we obtain an
expected runtime of O((n − 2k)(en)k/kk), again a kΩ(k)

factor improvement over the classic GSEMO and reducing
the runtime guarantee for the heavy-tailed GSEMO by a
(small) factor of Ω(kβ−0.5), see Theorem 12. Our experi-
ments show that these are not only asymptotic differences,
but that roughly a factor-5 speed-up with heavy-tailed muta-
tion and a factor-10 speed-up with stagnation detection can
be observed already for jump size k = 4 and problem sizes
n between 10 and 50.

Basic Definitions
A multi-objective optimization problem consists of maxi-
mizing multiple objectives simultaneously. This paper con-
siders the maximization of bi-objective pseudo-Boolean
problems f = (f1, f2) : {0, 1}n → R2.

For any two search points x and y, we say that
• x weakly dominates y, denoted by x � y, if and only if
f1(x) ≥ f1(y) and f2(x) ≥ f2(y);

• x dominates y, denoted by x � y, if and only if f1(x) ≥
f1(y) and f2(x) ≥ f2(y) and at least one of the inequali-
ties is strict.

We call x ∈ {0, 1}n Pareto optimal if and only if there is no
y ∈ {0, 1}n such that y � x. All Pareto optimal solutions
compose the Pareto set. The set of the function values of the
Pareto set is called the Pareto front. For most multi-objective
problems the objectives are at least partially conflicting and
thus there is usually not a single Pareto optimum. Since a
priori it is not clear which of several incomparable Pareto
optima to prefer, the most common target is to compute the
Pareto front, that is, compute a set P of solutions such that
f(P) := {f(x) | x ∈ P} is the Pareto front. This is our
objective in this work as well. We note that if the Pareto front
is excessively large, then one has to resort to approximating
it in a suitable manner, but this will be not our problem here.

We will use |x|1 and |x|0 to denote the number of ones
and zeros of the search point x ∈ {0, 1}n. We use [a..b] to
denote the set {a, a+ 1, . . . , b} for a, b ∈ Z and a ≤ b.

Related Works
Brockhoff, Friedrich, Hebbinghaus, Klein, Neumann, and
Zitzler (2007) proposed the PLOM, PLZM, and PLATEAUS
functions and used them to show that adding objectives can
be both beneficial and detrimental. Friedrich, Hebbinghaus,
and Neumann (2010) designed the PL function, which con-
tains a larger plateau in one objective. They demonstrated
that individuals generated from the solutions on the Pareto
front may reset the undirected random walk on the plateau,
which makes the multi-objective problem much harder than
the two single objectives. In order to investigate the effect of
mixing low-level heuristics, Qian, Tang, and Zhou (2016)
designed the ZPLG and SPG functions (also containing
plateaus), and showed that mixing fair selection w.r.t. the
decision space and the objective space is beneficial for
ZPLG, and that mixing 1-bit and 2-bit mutation is efficient
for SPG. In the first theoretical study of decomposition-
based MOEAs, Li, Zhou, Zhan, and Zhang (2016) besides
analyses on classic unimodal multi-objective problems also
defined two multi-modal problems and showed that the
MOEA/D can solve both, whereas the two variants of the
SEMO can only solve one of the two.

As is visible from this description, the few theoretical
works in which a multi-modal multi-objective problem is
regarded do this not with the intention of understanding
how MOEAs cope with multimodality, but they use their
multi-objective example problems to demonstrate particu-
lar strengths or weaknesses of different algorithms (that are
not directly related to multimodality). Consequently, these
multi-modal problems also are rather artificial as can be seen
from the following description of the (only) three example
problems which contain at least one multi-modal objective
(where by multi-modal we mean that there is at least one
local optimum that is separated by points of lower fitness
from any global optimum). We note that in all these three
examples, only one objective is multi-modal.

Definition 1 (ZPLG (Qian, Tang, and Zhou 2016)). The
function ZPLG(x) : {0, 1}n → R× [0..2] is defined by

(n+ 1, 1), if x = 1i0n−i, i ∈ [1.. 34n− 1];

(n+ 2 + i, 0), if x = 1
3
4n+2i0

1
4n−2i, i ∈ [0.. 18n];

(|x|0, 2), else.

Definition 2 (SPG (Qian, Tang, and Zhou 2016)). The func-
tion SPG(x) : {0, 1}n → R× {0, 1} is defined by

(−1, 0), if x = 1i0n−i, i mod 3 = 1, i ∈ [1..n];

(in, 0), if x = 1i0n−i, i mod 3 ∈ {0, 2}, i ∈ [1..n];

(|x|0, 1), else.

Definition 3 (DEC-OBJ-MOP (Li et al. 2016)). The func-
tion DEC-OBJ-MOP(x) : {0, 1}n → R2 is defined by

(n+ 1− |x|0 mod n+ 1, n+ |x|0 mod n+ 1).

12294

We note that the first objective of ZPLG has modals on
x = 1

3
4n+2i0

1
4n−2i, i ∈ [0.. 18n], the first objective of SPG

has modals on x = 0n and x = 1i0n−i, i mod 3 = 0, i ∈
[1..n], and the second objective of DEC-OBJ-MOP has two
modals on x ∈ {0n, 1n}.

We note that there are also works on true combinato-
rial problems (e.g., Neumann 2007; Friedrich, Hebbinghaus,
and Neumann 2010; Qian, Yu, and Zhou 2013, 2015; Qian,
Zhang, Tang, and Yao 2018; Feng, Qian, and Tang 2019;
Roostapour, Neumann, Neumann, and Friedrich 2019; Qian,
Bian, and Feng 2020; Roostapour, Bossek, and Neumann
2020), some of which are multi-modal, but again these con-
sider a particular optimization problem and give little gen-
eral insight on how MOEAs cope with multimodality.

The ONEJUMPZEROJUMP Problem
To study via mathematical means how MOEAs cope with
multimodality, we now define and analyze a class of bi-
objective functions of scalable difficulty. This is strongly in-
fluenced by the single-objective JUMP function class pro-
posed in (Droste, Jansen, and Wegener 2002), which is in-
tensively used in the theory of single-objective evolutionary
computation and which gave rise to many interesting results
including that larger mutation rates help in the optimiza-
tion of multi-modal functions (e.g., Doerr et al. 2017), that
crossover can help to cope with multimodality (e.g., Jansen
and Wegener 2002; Dang et al. 2018), and that estimation-
of-distribution algorithms and the (1 + (λ, λ)) GA can sig-
nificantly outperform classic evolutionary algorithms on
multi-modal problems (e.g., Hasenöhrl and Sutton 2018;
Doerr 2019; Antipov, Doerr, and Karavaev 2020; Antipov
and Doerr 2020).

We recall that for all n ∈ N and k ∈ [1..n], the jump func-
tion JUMPn,k : {0, 1}n → R is defined by JUMPn,k(x) =
k+|x|1, if |x|1 ∈ [0..n−k]∪{n} and JUMPn,k(x) = n−|x|1
otherwise. Hence for k ≥ 2, this function has a valley of
low fitness around its optimum, which can be crossed only
by flipping k bits (or accepting solutions with very low fit-
ness). We define the ONEJUMPZEROJUMPn,k function as a
bi-objective counterpart of the function JUMPn,k.
Definition 4 (ONEJUMPZEROJUMPn,k). Let n ∈ N and
k = [1..n]. The function ONEJUMPZEROJUMPn,k =
(f1, f2) : {0, 1}n → R2 is defined by

f1(x) =

{
k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else;

f2(x) =

{
k + |x|0, if |x|0 ≤ n− k or x = 0n,

n− |x|0, else.

Hence the first objective is just the classic JUMPn,k func-
tion. The second objective has a fitness landscape isomor-
phic to this function, but the roles of zeros and ones are ex-
changed, that it, f2(x) = JUMPn,k(1n − x). Figure 1 dis-
plays these two functions and in particular the two modals
on |x|1 = n − k and x = 1n for the first objective and two
modals on |x|1 = k and x = 0n for the second objective.

The following theorem determines the Pareto set and front
of the ONEJUMPZEROJUMPn,k function. As Figure 1 sug-

0 10 20 30 40 50
0

10

20

30

40

50

60

F
u
n
c
ti

o
n
 V

a
lu

e

OneJumpZeroJump, (n,k)=(50,10)

f
1

f
2

Figure 1: The values of two objectives in
ONEJUMPZEROJUMPn,k with respect to |x|1, the number
of ones in the search point x.

10 20 30 40 50 60
10

20

30

40

50

60
The Pareto front of OneJumpZeroJump, (n,k)=(50,10)

Figure 2: The Pareto front for the ONEJUMPZEROJUMPn,k
function with (n, k) = (50, 10).

gests, the Pareto set consists of an inner region of all search
points x with |x|1 ∈ [k..n − k] and the two extremal points
1n and 0n, as visualized in Figure 2.
Theorem 5. The Pareto set of the ONEJUMPZEROJUMPn,k
function is S∗ = {x | |x|1 ∈ [k..n − k] ∪ {0, n}}, and the
Pareto front is F ∗ = {(a, 2k+n−a) | a ∈ [2k..n]∪{k, n+
k}}.

For reasons of space, all mathematical proofs are omit-
ted in this extended abstract. They can be found in the
preprint (Doerr and Zheng 2020).

From Theorem 5, we easily obtain in the following corol-
lary a general upper bound on the size of any set of solutions
without pair-wise weak domination, and thus also on the size
of the population in the algorithms discussed in this work.
Corollary 6. Consider any set of solutions P such that x 6�
y w.r.t. ONEJUMPZEROJUMPn,k for all x, y ∈ P and x 6= y.
Then |P | ≤ n− 2k + 3.

SEMO Cannot Optimize
ONEJUMPZEROJUMP Functions

The simple evolutionary multi-objective optimizer (SEMO),
proposed by Laumanns et al. (2002), is a well-analyzed basic
benchmark algorithm in multi-objective evolutionary the-
ory (Qian, Yu, and Zhou 2013; Li et al. 2016). It is a multi-
objective analogue of the randomized local search (RLS) al-

12295

Algorithm 1 SEMO

1: Generate x ∈ {0, 1}n uniformly at random and P ←
{x}

2: loop
3: Uniformly at random select one individual x from P
4: Generate x′ via flipping one bit chosen uniformly at

random
5: if there is no y ∈ P such that x′ � y then
6: P = {z ∈ P | z � x′} ∪ {x′}
7: end if
8: end loop

Algorithm 2 GSEMO

1: Generate x ∈ {0, 1}n uniformly at random and P ←
{x}

2: loop
3: Uniformly at random select one individual x from P
4: Generate x′ via independently flipping each bit value

of x with probability 1/n
5: if there is no y ∈ P such that x′ � y then
6: P = {z ∈ P | z � x′} ∪ {x′}
7: end if
8: end loop

gorithm, which starts with a random individual and tries to
improve it by repeatedly flipping a single random bit and
accepting the better of parent and this offspring. As a multi-
objective algorithm trying to compute the full Pareto front,
the SEMO naturally has to work with a non-trivial popula-
tion. This is initialized with a single random individual. In
each iteration, a random parent is chosen from the popula-
tion. It generates an offspring by flipping a random bit. The
offspring enters the population if it is not weakly dominated
by some individual already in the population. In this case,
any individual dominated by it is removed from the popula-
tion. The details of SEMO are shown in Algorithm 1.

In the following Theorem 7, we show that the
SEMO cannot cope with the multimodality of the
ONEJUMPZEROJUMPn,k function, since with one-bit flips
alone it cannot traverse the valleys of low fitness.
Theorem 7. For all n, k ∈ N with k ∈ [2..bn2 c], the SEMO
cannot optimize the ONEJUMPZEROJUMPn,k function.

Runtime Analysis for the GSEMO
As the previous section showed, to deal with multi-modal
problems a mutation-based algorithm needs to be able to
flip more than single bits. The global SEMO (GSEMO), pro-
posed by Giel (2003), is a well-analyzed MOEA that has this
ability. Generalized from the (1 + 1) EA algorithm, it uses
the standard bit-wise mutation, that is, each bit is flipped in-
dependently with the same probability of, usually, 1/n. The
details are shown in Algorithm 2.

The standard bit-wise mutation in GSEMO ensures a
Θ(n−k) probability of reaching the outer solution 0n or 1n

from one closest inner solution. Together with the probabil-
ity Ω(1/n) of selecting such an inner solution via Corol-

lary 6, we obtain that the GSEMO can find the full Pareto
front and does so in expected time O(nk+1).
Theorem 8. Let n ∈ N≥2 and k ∈ [1..bn2 c].
The expected runtime of the GSEMO optimizing
the ONEJUMPZEROJUMPn,k function is at most
e(n− 2k + 3)(3

2n
k + 2n lndn2 e+ 3).

We finally show that this bound is very tight. For conve-
nience, we only consider the case k ≥ 4, but we are con-
vinced that similar bounds can be shown also for k = 2 and
k = 3.
Theorem 9. Let n ∈ N≥8 and k ∈ [4..n2 − 1].
The expected runtime of the GSEMO optimizing the
ONEJUMPZEROJUMPn,k function is at least 3

2e(n − 2k +

1)nk nk

(n−1)k

(
1− 1

nn/4−2 − 2
nn−2k − e+3

n −
4e(lnn+1)
nk−3

)
.

GSEMO with Heavy-Tailed Mutation
In the previous section, we have shown that the GSEMO can
optimize our multi-modal optimization problem, but sim-
ilar to the single-objective world (say, the optimization of
JUMP functions via simple evolutionary algorithms (Droste,
Jansen, and Wegener 2002)), the runtime increases signifi-
cantly with the distance k a solution on the Pareto front can
have from all other solutions on the front. As has been dis-
cussed in (Doerr et al. 2017), increasing the mutation rate
can improve the time it takes to jump over such gaps. How-
ever, this work also showed that a deviation from the optimal
mutation rate can be costly: A small constant-factor devia-
tion from the optimal rate k/n leads to a performance loss
exponential in k. For this reason, a heavy-tailed mutation op-
erator was proposed. Compared to using the optimal (usually
unknown) rate, it only loses a small polynomial factor (in k)
in performance.

We now equip the GSEMO with the heavy-tailed muta-
tion from Doerr et al. (2017) and observe similar advantages.
We use the following discrete power-law distribution.

Definition 10 (Power-law distribution Dβ
n/2). Let n ∈ N≥2

and β > 1. Let Cβn/2 :=
∑n/2
i=1 i

−β . We say a random vari-

able ξ follows the power-low Dβ
n/2, written as ξ ∼ Dβ

n/2, if

for all α ∈ [1..n/2], we have Pr[ξ = α] =
(
Cβn/2

)−1

α−β .

The heavy-tailed mutation operator proposed by Doerr
et al. (2017), in the remainder denoted by MUTβ(·), in each
application independently samples a number α from the
power-law distribution Dβ

n/2 and then uses standard bit-
wise mutation with mutation rate α/n, that is, flips each
bit independently with probability α/n. Equipping the stan-
dard GSEMO with this mutation operator MUTβ gives Al-
gorithm 3, which we call GSEMO-HTM.

GSEMO-HTM on ONEJUMPZEROJUMPn,k

We now analyze the runtime of the GSEMO-HTM on
ONEJUMPZEROJUMPn,k.
Theorem 11. The expected runtime of the GSEMO-HTM
optimizing the ONEJUMPZEROJUMPn,k function is at most
(n− 2k + 3)O(kβ−0.5)Cβn/2

nn

kk(n−k)n−k .

12296

Algorithm 3 The GSEMO-HTM algorithm with power-law
exponent β > 1

1: Generate x ∈ {0, 1}n uniformly at random, and P ←
{x}

2: loop
3: Uniformly at random select one individual x from P

4: Sample α from Dβ
n/2 and generate x′ via indepen-

dently flipping each bit value of x with probability α/n
5: if there is no y ∈ P such that x′ � y then
6: P = {z ∈ P | z � x′} ∪ {x′}
7: end if
8: end loop

Comparing Theorem 8 and Theorem 11, we could know
the asymptotic expected runtime of the GSEMO-HTM on
ONEJUMPZEROJUMPn,k is smaller than that of the GSEMO
with the factor around kk+0.5−β/ek.

GSEMO with Stagnation Detection
In this section, we discuss how to adapt the stagnation detec-
tion strategy proposed by Rajabi and Witt (2020) to multi-
objective optimization. We obtain a variant of the GSEMO
that has a slightly better asymptotic performance on ONE-
JUMPZEROJUMP than the one with heavy-tailed mutation.
However, we also speculate that this strategy may have dif-
ficulties with plateaus of constant fitness.

The Stagnation Detection Strategy of Rajabi and
Witt
Rajabi and Witt (2020) proposed the following strategy to
adjust the mutation rate during the run of the (1 + 1) EA. We
recall that the (1 + 1) EA has a population size of one, that
is, it generates in each iteration one offspring via mutation
and accepts this if it is at least as good as the parent. The
classic mutation operator for this algorithm is standard bit-
wise mutation with mutation rate 1/n, that is, the offspring
is generated by flipping each bit of the parent independently
with probability 1/n.

The main idea of their approach is the following. Assume
that the (1 + 1) EA for a longer time, say at least 10n lnn
iterations, has not accepted any new solution. Then with
high probability, it has generated (and rejected) all Ham-
ming neighbors of the parent. Consequently, there is no use
to generate these solutions again and the algorithm should
better concentrate on solutions further away from the par-
ent. This can be achieved conveniently by increasing the
mutation rate (say, to 2

n ; this reduces significantly the rate
of Hamming neighbors produced, but Hamming neighbors
can still be generated, which is important in case we were
unlucky so far and missed one of them).

More generally and more precisely, in the self-adjusting
mutation rate strategy based on stagnation detection the
(1 + 1) EA maintains a counter (“failure counter”) that
keeps track of how long the parent individual has not given
rise to a better offspring. This counter determines the current

mutation rate. This dependency is governed by a safety pa-
rameter R which is recommended to be at least n. Then for
r = 1, 2, . . . in this order the mutation rate r/n is used for

Tr := d2(enr)r ln(nR)e (1)

iterations. When a strictly improving solution is found, the
counter is reset to zero (and consequently, the mutation rate
starts again at 1

n).
Rajabi and Witt show that the (1 + 1) EA with this strat-

egy optimizes JUMPn,k with k = o(n) in time Ω((enk)k(1−
k2

n−k)) and O((enk)k). In particular, for k = o(
√
n), a tight

(apart from constant factors independent of k and n) bound
of Θ((enk)k) is obtained. This is faster than the runtime
of Θ(kβ−0.5(enk)k) proven in (Doerr et al. 2017) for the
(1 + 1) EA with heavy-tailed mutation with power-law ex-
ponent β > 1 by a factor of kβ−0.5. For the recommended
choice β = 1.5, this factor is Θ(k).

Adaptation of the Stagnation Detection Strategy to
Multi-Objective Optimization
As the (1 + 1) EA is an algorithm without a real population,
it is clear that certain adaptations are required to use the stag-
nation detection strategy in multi-objective optimization.

Global or Individual Failure Counters The first question
is how to count the number of unsuccessful iterations. The
following two obvious alternatives exist.

Individual counters: From the basic idea of the stagnation
detection strategy, the most natural solution is to equip each
individual with its own counter. Whenever an individual is
chosen as parent in the GSEMO, its counter is increased by
one. New solutions (but see the following subsection for an
important technicality of what “new” shall mean) entering
the population start with a counter value of zero.

A global counter: Algorithmically simpler is the approach
to use only one global counter. This counter is increased in
each iteration. When a new solution enters the population,
the global counter is reset to zero.

We suspect that for many problems, both ways of count-
ing give similar results. The global counter appears to be
wasteful in the sense that when a new individual enters the
population, also parents that are contained in the population
for a long time re-start generating offspring with mutation
rate 1

n despite the fact that they have, with very high prob-
ability, already generated as offspring all solutions close by.
On the other hand, often these “old individuals” do not gen-
erate solutions that enter the population anyway, so that an
optimized choice of the mutation rate is less important.

For the ONEJUMPZEROJUMP problem, it is quite clear
that this second effect is dominant. A typical run starts with
some individual in the middle region of the Pareto front. In
relatively short time, the whole middle region is covered,
and for this it suffices that relatively recent solutions gener-
ate a suitable Hamming neighbor as offspring. The runtime
is dominated by the time to find the two extremal solutions
and this will almost always happen from the closest parent
in the middle region of the front. For this reason, we analyze
in the following the simpler approach using a global counter.

12297

Dealing with Indifferent Solutions One question that be-
comes critical when using stagnation detection is how to
deal with indifferent solutions, that is, which solution to put
or keep in the population in the case that an offspring y has
the same (multi-objective) fitness as an individual x already
in the population. Since f(x) = f(y), we have x � y
and y � x, that is, both solutions do an equally good job
in dominating others and thus in approximating the Pareto
front. In early works, e.g. (Laumanns et al. 2002) propos-
ing the SEMO algorithm, such later generated indifferent
solutions do not enter the population. This is partially jus-
tified by the fact that in many of the problems regarded in
these works, search points with equal fitness are fully equiv-
alent for the future run of the algorithm. We note that our
ONEJUMPZEROJUMP problem also has this property, hence
all results presented so far are valid regardless of how indif-
ferent solutions are treated.

When non-equivalent search points with equal fitness ex-
ist, it is less obvious how to deal with indifferent solutions.
In particular, it is clear that larger plateaus of constant fit-
ness can be traversed much easier when a new indifferent
solution is accepted as this allows to imitate a random walk
behavior on the plateau (Brockhoff et al. 2007). For that rea-
son, and in analogy to single-objective optimization (Jansen
and Wegener 2001), it seems generally more appropriate
to let a new indifferent solution enter the population, and
this is also what most of the later works on the SEMO and
GSEMO algorithm do (Friedrich, Hebbinghaus, and Neu-
mann 2010; Friedrich, Horoba, and Neumann 2011; Qian,
Tang, and Zhou 2016; Li et al. 2016; Bian, Qian, and Tang
2018; Osuna et al. 2020).

Unfortunately, it is not so clear how to handle indiffer-
ent solutions together with stagnation detection. In princi-
ple, when a new solution enters the population, the failure
counter has to be reset to zero to reset the mutation rate to
1/n. Otherwise, the continued use of a high mutation rate
would prohibit finding good solutions in the direct neigh-
borhood of the new solution. However, the acceptance of
indifferent solutions can also lead to unwanted resets. For
the ONEJUMPZEROJUMP problem, for example, it is easy
to see by mathematical means that in a typical run, it will
happen very frequently that an indifferent solution is gen-
erated. If this enters the population with a reset of a global
failure counter (or an individual counter), then the regular
resets will prevent the counters to reach interesting values.
In a quick experiment for n = 50, k = 4, and a global
counter, the largest counter value ever reached in this run of
over 500,000,000 iterations was 5. Consequently, this SD-
GSEMO was far from ever increasing the mutation rate and
just imitated the classic GSEMO.

For that reason, in this work we regard the GSEMO with
stagnation detection only in the variant that does not accept
indifferent solutions, and we take note of the fact that thus
our positive results on the stagnation detection mechanism
will not take over to problems with non-trivial plateaus of
constant fitness.

Adjusting the Self-Adjustment In the (1 + 1) EA with
stagnation detection, Rajabi and Witt (2020) increased the

Algorithm 4 SD-GSEMO with safety parameter R

1: Generate x ∈ {0, 1}n uniformly at random, P ← {x}
2: r ← 1 and u← 0
3: loop
4: Uniformly and randomly select x from P
5: Generate x′ via independently flipping each bit value

of x with probability r/n
6: u← u+ 1
7: if there is no y ∈ P such that x′ � y then
8: P = {z ∈ P | z � x′} ∪ {x′}
9: r ← 1 and u← 0

10: end if
11: if u > 2|P |(enr)r ln(nR) then
12: r ← min{r + 1, n2 } and u← 0
13: end if
14: end loop

mutation rate from r
n to r+1

n once the rate r
n has been used

for Tr iterations with Tr as defined in (1). This choice en-
sured that any particular target solution in Hamming dis-
tance r is found in this phase with probability at least
1 − (nR)−2, see the proof of Lemma 3.1 in (Rajabi and
Witt 2020). Since in a run of the GSEMO with current pop-
ulation size |P | each member of the population is chosen as
parent only an expected number of Tr/|P | times in a time
interval of length Tr, we need to adjust the parameter Tr.
Not surprisingly, by taking

T̃r = d2 |P | (enr)r ln(nR)e, (2)
that is, roughly |P |Tr, the probability to generate any par-
ticular solution in Hamming distance r in phase r is at least

1−
(

1− 1

|P |

(r
n

)r (
1− r

n

)n−r)2|P |(en)r ln(nR)/rr

≥ 1− 1

(nR)2
,

which is sufficient for this purpose. Note that the population
size |P | changes only if a new solution enters the population
and in this case the mutation rate is reset to 1

n . Hence the
definition of T̃r, with the convention that we suppress |P | in
the notation to ease reading, is unambiguous.

The GSEMO with Stagnation Detection: SD-GSEMO
Putting the design choices discussed so far together, we
obtain the following variant of the GSEMO, called SD-
GSEMO. Its pseudocode is shown in Algorithm 4.

SD-GSEMO on ONEJUMPZEROJUMPn,k

We now analyze the runtime of the SD-GSEMO on the
ONEJUMPZEROJUMP function class. This will show that
its expected runtime is by a small polynomial (in k) fac-
tor smaller than the one of the heavy-tailed GSEMO (which
was a factor of kΩ(k) smaller than the one of the GSEMO).
Theorem 12. The expected runtime of the SD-GSEMO op-
timizing the ONEJUMPZEROJUMPn,k function is at most
(n− 2k+ 3)(enk)k(3

2 + (4k
n + 12

nk) ln(nR)) + 3e(n− 2k+
3)(n lnn+ 2(n− 2) ln(nR)).

12298

Assume that, as suggested in (Rajabi and Witt 2020), the
control parameter R is set to n. Then the dominating ele-
ment of the upper bound in Theorem 12 becomes (n− 2k+
3)(enk)k(3

2 + 8(kn + 3
nk) lnn). Hence if k = O(n

lnn), then
the runtime of SD-GSEMO on ONEJUMPZEROJUMPn,k is
O((n− 2k)(enk)k).

Experiments
To understand the performance of the algorithms discussed
in this work for concrete problems sizes (for which an
asymptotic mathematical analysis cannot give definite an-
swers), we now conduct a simple experimental analysis.
Since the SEMO cannot find the Pareto front, we did not
include it in this investigation. We did include the variant
of the SD-GSEMO, denoted by SD-GSEMO-Ind, in which
each individual has its own failure counter (see the discus-
sion in Section GSEMO with Stagnation Detection). Our
experimental settings are the same for all algorithms.

• ONEJUMPZEROJUMPn,k: jump size k = 4 and problem
size n = 10, 14, . . . , 50.

• β = 1.5 as suggested in (Doerr et al. 2017) for the power-
law distribution in GSEMO-HTM.

• R = n for SD-GSEMO and SD-GSEMO-Ind as sug-
gested in (Rajabi and Witt 2020).

• 20 independent runs for each setting.

Figure 3 shows the mean number of function evalua-
tions of GSEMO, GSEMO-HTM, SD-GSEMO, and SD-
GSEMO-Ind on the ONEJUMPZEROJUMPn,k function. To
see how the experimental results compare with our bounds,
we also plot (i) the curve 1.5e(n − 2k)nk corresponding to
the bounds for the GSEMO in Theorems 8 and 9, (ii) the
curve (n− 2k)(en)k/kk−1 for the GSEMO-HTM with β =
1.5; since the leading constant in Theorem 11 is implicit,
we chose a constant such that the curve matches the experi-
mental data, and (iii) the curve 1.5(n− 2k)(en)k/kk corre-
sponding to the upper bound of SD-GSEMO with R = n in
Theorem 12.

We clearly see that these curves, in terms of shape and,
where known, in terms of leading constants, match well the
estimates of our theoretical runtime results. We also see, as
predicted by informal considerations, the similarity of the
performance of the SD-GSEMO and the SD-GSEMO-Ind.
Finally, our experiments show that the different runtime be-
haviors are already visible for moderate (and thus realis-
tic) problem sizes and not only in the asymptotic sense in
which they were proven. In particular, we observe a perfor-
mance improvement by a factor of (roughly) 5 through the
use heavy-tailed mutation and by a factor of (roughly) 10
with the stagnation detection strategy.

Conclusion and Outlook
To increase the under-developed theoretical understanding
how MOEAs cope with multimodality, we defined a class
of bi-objective benchmark functions of scalable difficulty,
ONEJUMPZEROJUMPn,k. We proved that the SEMO cannot
compute the full Pareto front. In contrast, for all problem

10 14 18 22 26 30 34 38 42 46 50

10
4

10
6

10
8

10
10

F
it

n
e
ss

 E
v

a
lu

a
ti

o
n
s

Runtime for solving OneJumpZeroJump with k=4

GSEMO

GSEMO-HTM

SD-GSEMO

SD-GSEMO-Ind

1.5e(n-2k)n
k

(n-2k)(en)
k
/k

k-1

1.5(n-2k)(en)
k
/k

k

Figure 3: The mean number of function evaluations (with
the first and third quartiles) of GSEMO, GSEMO-HTM, SD-
GSEMO, and SD-GSEMO-Ind on ONEJUMPZEROJUMPn,k
with k = 4 and n = 10 : 4 : 50 in 20 independent runs.

sizes n and jump sizes k ∈ [4..n2 − 1], the GSEMO covered
the Pareto front in Θ((n− 2k)nk) iterations in expectation.

This paper also introduced two approaches that showed
advantages in single-objective multi-modal problems into
the toolbox of MOEAs. One is to use a heavy-tailed mu-
tation operator in the GSEMO, the other is to self-adapt
the mutation rate based on a stagnation detection strategy in
the GSEMO. For both approaches we proved a runtime im-
provement over the standard GSEMO by a factor of kΘ(k),
with the self-adjusting GSEMO slightly ahead by a small
polynomial factor in k. Our experiments confirmed this per-
formance ranking already for moderate problem sizes, with
the self-adjusting GSEMO more ahead than what the asymp-
totically small advantage suggests. On the downside, adapt-
ing the stagnation detection mechanism to MOEAs needs
taking several design choices, among which the question
how to treat indifferent solutions could be difficult for prob-
lems having larger plateaus of constant fitness.

Overall, this work suggests that the recently developed
ideas to cope with multimodality in single-objective evo-
lutionary optimization can be effective in multi-objective
optimization as well. In this first work in this direction,
we only concentrated on mutation-based algorithms. The
theory of evolutionary computation has also observed that
crossover and estimation-of-distribution algorithms can be
helpful in multi-modal optimization. Investigating to what
degree these results extend into multi-objective optimization
is clearly an interesting direction for future research.

Also, we only covered very simple MOEAs in this work.
Analyzing more complex MOEAs such as the successful
decomposition-based MOEA/D (Zhang and Li 2007; Li
et al. 2016; Huang et al. 2019; Huang and Zhou 2020) would
be highly interesting. This would most likely require an
adaptation of our benchmark problem. Since the difficult-to-
find extremal points of the front are just the solutions of the
single-objective sub-problems, and thus the two problems
that naturally are part of the set of subproblems regarded by
the MOEA/D, this algorithm might have an unfair advantage
on the ONEJUMPZEROJUMP problem.

12299

Acknowledgments
This work was supported by a public grant as part of the
Investissement d’avenir project, reference ANR-11-LABX-
0056-LMH, LabEx LMH.

This work was also supported by Guangdong Ba-
sic and Applied Basic Research Foundation (Grant No.
2019A1515110177); Guangdong Provincial Key Laboratory
(Grant No. 2020B121201001), the Program for Guangdong
Introducing Innovative and Enterpreneurial Teams (Grant
No. 2017ZT07X386); Shenzhen Peacock Plan (Grant No.
KQTD2016112514355531); and the Program for Univer-
sity Key Laboratory of Guangdong Province (Grant No.
2017KSYS008).

References
Antipov, D.; and Doerr, B. 2020. Runtime Analysis of a
Heavy-Tailed (1+(λ, λ)) Genetic Algorithm on Jump Func-
tions. In Parallel Problem Solving From Nature, PPSN 2020,
Part II, 545–559. Springer.

Antipov, D.; Doerr, B.; and Karavaev, V. 2020. The (1 +
(λ, λ)) GA is even faster on multimodal problems. In Ge-
netic and Evolutionary Computation Conference, GECCO
2020, 1259–1267. ACM.

Bian, C.; Qian, C.; and Tang, K. 2018. A general approach
to running time analysis of multi-objective evolutionary al-
gorithms. In International Joint Conference on Artificial In-
telligence, IJCAI 2018, 1405–1411. IJCAI.

Brockhoff, D.; Friedrich, T.; Hebbinghaus, N.; Klein, C.;
Neumann, F.; and Zitzler, E. 2007. Do additional objectives
make a problem harder? In Genetic and Evolutionary Com-
putation, GECCO 2007, 765–772. ACM.

Dang, D.; Friedrich, T.; Kötzing, T.; Krejca, M. S.; Lehre,
P. K.; Oliveto, P. S.; Sudholt, D.; and Sutton, A. M. 2018.
Escaping local optima using crossover with emergent diver-
sity. IEEE Transactions on Evolutionary Computation 22:
484–497.

Doerr, B. 2019. A tight runtime analysis for the cGA on
jump functions: EDAs can cross fitness valleys at no extra
cost. In Genetic and Evolutionary Computation Conference,
GECCO 2019, 1488–1496. ACM.

Doerr, B.; Gao, W.; and Neumann, F. 2016. Runtime anal-
ysis of evolutionary diversity maximization for ONEMIN-
MAX. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2016, 557–564. ACM.

Doerr, B.; Kodric, B.; and Voigt, M. 2013. Lower bounds
for the runtime of a global multi-objective evolutionary al-
gorithm. In IEEE Congress on Evolutionary Computation,
CEC 2013, 432–439. IEEE.

Doerr, B.; Le, H. P.; Makhmara, R.; and Nguyen, T. D. 2017.
Fast genetic algorithms. In Genetic and Evolutionary Com-
putation Conference, GECCO 2017, 777–784. ACM.

Doerr, B.; and Zheng, W. 2020. Theoretical Analyses of
Multi-Objective Evolutionary Algorithms on Multi-Modal
Objectives. arXiv preprint arXiv:2012.07231 .

Droste, S.; Jansen, T.; and Wegener, I. 2002. On the analysis
of the (1+1) evolutionary algorithm. Theoretical Computer
Science 276: 51–81.

Feng, C.; Qian, C.; and Tang, K. 2019. Unsupervised feature
selection by Pareto optimization. In AAAI Conference on
Artificial Intelligence, AAAI 2019, volume 33, 3534–3541.
AAAI.

Friedrich, T.; Hebbinghaus, N.; and Neumann, F. 2010.
Plateaus can be harder in multi-objective optimization. The-
oretical Computer Science 411(6): 854–864.

Friedrich, T.; Horoba, C.; and Neumann, F. 2011. Illustra-
tion of fairness in evolutionary multi-objective optimization.
Theoretical Computer Science 412(17): 1546–1556.

Giel, O. 2003. Expected runtimes of a simple multi-
objective evolutionary algorithm. In IEEE Congress on Evo-
lutionary Computation, CEC 2003, volume 3, 1918–1925.
IEEE.

Giel, O.; and Lehre, P. K. 2010. On the effect of populations
in evolutionary multi-objective optimisation. Evolutionary
Computation 18(3): 335–356.

Hasenöhrl, V.; and Sutton, A. M. 2018. On the runtime
dynamics of the compact genetic algorithm on jump func-
tions. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2018, 967–974. ACM.

Huang, Z.; and Zhou, Y. 2020. Runtime analysis of somatic
contiguous hypermutation operators in MOEA/D frame-
work. In AAAI Conference on Artificial Intelligence, AAAI
2020, volume 34, 2359–2366. AAAI.

Huang, Z.; Zhou, Y.; Chen, Z.; and He, X. 2019. Running
time analysis of MOEA/D with crossover on discrete opti-
mization problem. In AAAI Conference on Artificial Intelli-
gence, AAAI 2019, volume 33, 2296–2303. AAAI.

Jansen, T.; and Wegener, I. 2001. Evolutionary algorithms
- how to cope with plateaus of constant fitness and when
to reject strings of the same fitness. IEEE Transactions on
Evolutionary Computation 5: 589–599.

Jansen, T.; and Wegener, I. 2002. The analysis of evolu-
tionary algorithms – a proof that crossover really can help.
Algorithmica 34: 47–66.

Laumanns, M.; Thiele, L.; and Zitzler, E. 2004. Running
time analysis of multiobjective evolutionary algorithms on
pseudo-boolean functions. IEEE Transactions on Evolution-
ary Computation 8(2): 170–182.

Laumanns, M.; Thiele, L.; Zitzler, E.; Welzl, E.; and Deb, K.
2002. Running time analysis of multi-objective evolutionary
algorithms on a simple discrete optimization problem. In
International Conference on Parallel Problem Solving from
Nature, PPSN 2002, 44–53. Springer.

Li, Y.-L.; Zhou, Y.-R.; Zhan, Z.-H.; and Zhang, J. 2016. A
primary theoretical study on decomposition-based multiob-
jective evolutionary algorithms. IEEE Transactions on Evo-
lutionary Computation 20(4): 563–576.

Neumann, F. 2007. Expected runtimes of a simple evolu-
tionary algorithm for the multi-objective minimum spanning

12300

tree problem. European Journal of Operational Research
181(3): 1620–1629.
Osuna, E. C.; Gao, W.; Neumann, F.; and Sudholt, D.
2020. Design and analysis of diversity-based parent selec-
tion schemes for speeding up evolutionary multi-objective
optimisation. Theoretical Computer Science 832: 123–142.
Qian, C.; Bian, C.; and Feng, C. 2020. Subset selection
by Pareto optimization with recombination. In AAAI Con-
ference on Artificial Intelligence, AAAI 2020, 2408–2415.
AAAI.
Qian, C.; Tang, K.; and Zhou, Z.-H. 2016. Selection hyper-
heuristics can provably be helpful in evolutionary multi-
objective optimization. In International Conference on Par-
allel Problem Solving from Nature, PPSN 2016, 835–846.
Springer.
Qian, C.; Yu, Y.; and Zhou, Z.-H. 2013. An analysis on
recombination in multi-objective evolutionary optimization.
Artificial Intelligence 204: 99–119.
Qian, C.; Yu, Y.; and Zhou, Z.-H. 2015. Subset selection
by Pareto optimization. In Advances in Neural Information
Processing Systems, NIPS 2015, 1774–1782. Curran Asso-
ciates, Inc.
Qian, C.; Zhang, Y.; Tang, K.; and Yao, X. 2018. On Multi-
set Selection With Size Constraints. In AAAI Conference on
Artificial Intelligence, AAAI 2018, 1395–1402. AAAI.
Rajabi, A.; and Witt, C. 2020. Self-Adjusting Evolution-
ary Algorithms for Multimodal Optimization. In Genetic
and Evolutionary Computation Conference, GECCO 2020,
1314–1322. ACM.
Roostapour, V.; Bossek, J.; and Neumann, F. 2020. Runtime
analysis of evolutionary algorithms with biased mutation for
the multi-objective minimum spanning tree problem. In Ge-
netic and Evolutionary Computation Conference, GECCO
2020, 551–559. ACM.
Roostapour, V.; Neumann, A.; Neumann, F.; and Friedrich,
T. 2019. Pareto optimization for subset selection with dy-
namic cost constraints. In AAAI Conference on Artificial
Intelligence, AAAI 2019, volume 33, 2354–2361. AAAI.
Zhang, Q.; and Li, H. 2007. MOEA/D: A multiobjec-
tive evolutionary algorithm based on decomposition. IEEE
Transactions on Evolutionary Computation 11(6): 712–731.
Zhou, A.; Qu, B.-Y.; Li, H.; Zhao, S.-Z.; Suganthan, P. N.;
and Zhang, Q. 2011. Multiobjective evolutionary algo-
rithms: A survey of the state of the art. Swarm and Evo-
lutionary Computation 1(1): 32–49.

12301

