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Abstract

Graph partition is a key component to achieve workload
balance and reduce job completion time in parallel graph
processing systems. Among the various partition strategies,
edge partition has demonstrated more promising performance
in power-law graphs than vertex partition and thereby has
been more widely adopted as the default partition strategy
by existing graph systems. The graph edge partition problem,
which is to split the edge set into multiple balanced parts to
minimize the total number of copied vertices, has been widely
studied from the view of optimization and algorithms. In this
paper, we study local search algorithms for this problem to
further improve the partition results from existing methods.
More specifically, we propose two novel concepts, namely
adjustable edges and blocks. Based on these, we develop a
greedy heuristic as well as an improved search algorithm
utilizing the property of the max-flow model. To evaluate
the performance of our algorithms, we first provide adequate
theoretical analysis in terms of the approximation quality. We
significantly improve the previously known approximation
ratio for this problem. Then we conduct extensive experi-
ments on a large number of benchmark datasets and state-
of-the-art edge partition strategies. The results show that our
proposed local search framework can further improve the
quality of graph partition by a wide margin.

Introduction
Graph partition plays a key role in performance improve-
ment for massive graph processing systems. In a distributed
graph system, such as Google Pregel (Malewicz et al. 2010),
GraphX (Gonzalez et al. 2014), and GraphLab (Low et al.
2012), the original graph may be too large to fit in memory
and has to be partitioned into multiple parts which are pro-
cessed in parallel by multiple machines. The quality of graph
partition is often measured by two important performance
criteria. One is workload balance which expects the sizes of
the partitioned parts to be as equal as possible. The goal is
to reduce the overall job completion time (JCT) in parallel
systems, where the bottleneck is caused by the slowest job.
The other is communication overhead whose objective is to
minimize the connection among the parts. It is challenging
to compute the optimal partition as the problem has been
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proven to be NP-Hard (Goemans and Williamson 1995;
Feder et al. 1999).

Vertex partition is a popular model in which the workload
of each part is evaluated by its number of vertices and
the communication overhead between two parts is evaluat-
ed by their connecting edges in the original graph. In the
past decades, there have been significant efforts devoted to
this problem, including both theoretical results (Andreev
and Racke 2006; Feldmann 2013) and heuristic algorithms.
However, the performance of vertex partition models may
degrade for parallel algorithms to handle power-law graphs
(Gonzalez et al. 2012). In fact, most natural graphs follow
a skewed degree distribution similar to the power-law distri-
bution (Faloutsos, Faloutsos, and Faloutsos 1999; Newman,
Strogatz, and Watts 2001). We can observe that in real-
world graphs, a small fraction of vertices may connect to
a large part of the graph. For example, celebrities in a social
network attract a huge number of followers. This property
brings non-trivial challenges to vertex partitioners, includ-
ing workload balance, partitioning, communication, storage,
and computation (Gonzalez et al. 2012).

To address the issue of power-law distribution, edge par-
tition was introduced to partition the graph based on edge
sets (Gonzalez et al. 2012). A vertex is allowed to ap-
pear in multiple parts sharing this vertex. The workload
of edge partition is evaluated by the number of edges in
each part while the communication overhead is evaluated
by the replication factor, which indicates the average time
of each vertex appearing in all the parts. Edge partition
is more efficient in power-law graphs, and several parallel
graph processing systems, including PowerGraph (Gonzalez
et al. 2012), Spark GraphX (Gonzalez et al. 2014) and Chaos
(Roy et al. 2015), have adopted edge partition as the default
partition strategy.

Contributions
In this paper, we focus on edge partition. Instead of propos-
ing a new edge partition method, we adopt local search
techniques to further improve the partition results from ex-
isting methods. We will prove several structural properties of
edge partition and introduce two novel concepts named ad-
justable edges and blocks. Based on these concepts, we de-
velop two types of effective local search algorithms, namely
LS-G and LS-F, which are complementary to state-of-the-
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art approaches. From the initial partition solutions derived
from existing partition methods, our local search algorithms
can further improve the solution by neighborhood operators.
LS-G is a fast greedy heuristic and LS-F leverages the max-
flow model to yield partitions with higher quality. In theory,
we present theoretical analysis in terms of the approxima-
tion quality and provide improved approximation ratios for
this problem. In practice, our experiments are conducted on
multiple large-scale benchmark datasets and results show
that the solutions derived from state-of-the-art edge partition
methods can be further improved by a wide margin.

Preliminaries
Let G = (V,E) stand for an undirected graph with n = |V |
vertices andm = |E| edges. The neighbor set of a vertex v is
denoted byN(v) = {u | u, v ∈ E} and the neighbor set of a
vertex set S is denoted by N(S). For a subgraph or an edge
set G′, we use V (G′) to denote the set of vertices appearing
in G′ and E(G′) to denote the set of edges appearing in
G′. For an edge subset E′ ⊆ E, we use G[E′] to denote
the subgraph induced from the edge set E′, i.e., the graph
(V (E′), E′).

Given a graph G = (V,E), a k-edge partition divides E
into k disjoint groups, denoted by P = {E1, E2, · · · , Ek},
where Ei ∩ Ej = ∅, ∀i 6= j and

⋃
1≤i≤k Ei = E. A k-edge

partition P is α-balanced if each part Ei in P satisfies:

|Ei| ≤
⌈
α
|E|
k

⌉
.

The replication factor of a k-edge partition P , denoted by
RF (P ), is defined as follows:

RF (P ) =
1

|V |

k∑
i=1

|V (Ei)|.

Given a graph G = (V,E) and two constants k and α, the
EDGE PARTITION PROBLEM (EPP) is to find an α-balanced
k-edge partition P such that the replication factor RF (P ) is
minimized.

Adjustable Edges and Blocks
In this section, we first introduce some basic structural con-
cepts that will be used in our local search strategies. As
mentioned above, our algorithms are local-search algorithm-
s based on a given k-edge partition. So next, we always
assume that a k-edge partition P = {E1, E2, · · · , Ek}
is given, which can be obtained by known algorithms or
a random assignment. Based on a given k-edge partition,
we will move some edges from one part to other parts to
decrease the communication load (replication factor), and in
the meanwhile keep each part under the workload balance
constraint.

For the VERTEX PARTITION PROBLEM, a local-search
strategy is easy to develop. We can move a vertex subset
from one part to another part as long as the receiving part is
still under the required workload balance and the number of
crossing edges among the parts can be decreased. However,
the local search strategy in EDGE PARTITION PROBLEM

is more complicated because to decrease the replication
factor, we are often required to move a subset of edges from
one part to multiple different parts simultaneously. In this
paper, we will present novel and effective strategies for edge
movements. Before that, we first introduce the concept of
adjustable edge which is important to understand our local
search algorithms.
Definition 1 (Reachability). Let P = {E1, E2, · · · , Ek}
be a k-edge partition. A part Ei is reachable for an edge
(u, v) if Ei contains both of the two endpoints of the edge,
i.e., u, v ∈ V (Ei).
Definition 2 (Adjustable Edge). LetP = {E1, E2, · · · , Ek}
be a k-edge partition. An edge (u, v) ∈ Ei is called an
adjustable edge if there exists Ej such that j 6= i and its two
endpoints u, v ∈ V (Ej).

For an adjustable edge, we may be able to move it to
another reachable part without increasing the replication
factor. A simple approach is to treat the movement of the
adjustable edge as a possible way to find better solution.
. However, the replication factor can only be strictly de-
creased when the adjustable edge has a degree-1 endpoint
in G[Ei]. In this case, the degree-1 endpoint will disappear
from G[Ei] after removing the edge, and thus reduce the
total number of vertices

∑k
i=1 |V (Ei)|. Unfortunately, the

number of degree-1 endpoints is limited, which restricts the
optimization space for local search. Our strategy is to find
further cases in which the replication factor can be strictly
decreased by moving adjustable edges to other reachable
parts. Based on the idea, we present another key structure
called block.
Definition 3 (Block). Let P = {E1, E2, · · · , Ek} be a k-
edge partition and E∗ be the set of adjustable edges. Each
connected component in the subgraph G[Ei]−E∗ is called
a block of Ei. A block consists of a single vertex is called a
vertex block.

Our local search is designed to move a block from one
part to another part. In detail, we first move all the adjustable
edges incident on this block to other reachable parts. Note
that this step will not increase the replication factor. After
that, if we move a block C from part Ei to another part Ej ,
we can decrease the replication factor by

1

|V |
|V (C) ∩ V (Ej)|.

Fig. 1 shows an example of block movement that can
reduce the replication factor. Consider a block C in part E1

connecting 3 adjustable edges e1, e2, e3. In the first step,
we move e1 and e3 to part E2, e2 to part E3, and the
replication factor remains the same. In the next step, we
move the whole block C from part E1 to part E4. Since
V (E1)∩V (E4) = {v1, v2}, we reduce 2 duplicate vertices.

Different ways to move adjustable edges and blocks will
generate different algorithms. We need to consider how and
when to move adjustable edges and blocks under the balance
constraint. In this paper, we will give two ideas to do these
adjustable operations, one is based on a greedy idea and one
is based on the max flow technique.
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(a) Before moving block C

(b) After moving block C

Figure 1: An example of block movement, where the black
part containing three vertices v1, v2 and v3 is the block C,
solid edges mean edges in the block, dashed edges mean
adjustable edges, and dotted edges mean other edges.

A Fast Algorithm: LS-G
In this section, we introduce a simple and fast local-search
algorithm. We first introduce the most important ingredient,
the sub-algorithm for the adjustment operation for a single
block, and then we present the whole algorithm.
Greedy Adjustments. Let C be a block in part Ei. We
use A(C) to denote the set of adjustable edges incident on
C in the subgraph G[Ei], i.e., A(C) = {(a, b)|(a, b) ∈
Ei is an adjustable edge ∧ |{a, b} ∩ V (C)| = 1}. For a
block C in Ei, the algorithm first checks whether C can be
moved to another part Ej 6= Ei to decrease the replication
factor. After successfully moving C, then we consider the
adjustable edges in A(C) in random order. For each ad-
justable edge e ∈ A(C), we check whether it can be moved
to a reachable part different from Ei. If any step of the
algorithm cannot be executed, then we undo all the moving
operations in the algorithm. The algorithm to check whether
a block C in Ei can be moved to another part is denoted by
RA(C) and its pseudocode is shown in Algorithm 1.

In an adjustment operation, we move all adjustable edges
in A(C) to other parts and then move the whole block
to another part to decrease the replication factor. For the
special case that the block is a vertex block, the second step
of moving the block can be omitted since the vertex will
automatically disappear in Ei after removing all adjustable
edges incident on it. In our implementation, we first move
the whole block C (the edges in C) to another part Ej and
then consider moving the adjustable edges in A(C). It may
be more effective to check the feasibility: when C contains
several edges, it may be hard to find a partEj to “receive” all
the edges together under the balance constraints, while the
edges in A(C) can be moved to different parts separately.

Algorithm 1 RA(C)

1: if there are some Ej 6= Ei such that |Ej | ≤ dα |E|k e −
|V (C)| and V (Ej) ∩ V (C) 6= ∅ then

2: Let Ej′ be a part satisfying the condition such that
|V (Ej′) ∩ V (C)| is maximized

3: Ei ← Ei \ E(C) and Ej′ ← Ej′ ∩ E(C)
4: else
5: goto Step 15
6: end if
7: for each adjustable edge e ∈ A(C) do
8: if there is a reachable part Ej 6= Ei such that |Ej | <

dα |E|k e then
9: Ei ← Ei \ {e} and Ej ← Ej ∩ {e}

10: else
11: goto Step 15
12: end if
13: end for
14: return yes
15: Undo all the moving operations and return no

Algorithm 2 LS-G

Require: a graph G = (V,E) with an α-balanced k-edge
partition P = {E1, . . . , Ek} of the edge set E.

Ensure: an α-balanced k-edge partition.
1: all parts of P are marked ‘b’
2: while there is a part Ei marked ‘b’ do
3: mark Ei with ‘w’
4: compute and order all blocks Ci1, Ci2, . . . , Cili in Ei

5: for j = 1 to li do
6: call the algorithm RA(Cij)
7: for any changed part during RA(Cij), mark it ‘b’
8: end for
9: end while

10: return P = {E1, . . . , Ek}

The Algorithm LS-G. The whole algorithm, named LS-
G, is shown in Algorithm 2. It scans the parts from an
initial solution of any existing edge partition method. For
each part Ei, we identify the adjustable edges as well as
the blocks. Then, we apply RA(C) to deal with each block
as the adjustment operation. The blocks within a part are
processed in non-decreasing order of their sizes. Note that
edge movement will not trigger block reconstructions based
on the following lemma.
Lemma 1. Given a k-edge partitionP = {E1, E2, · · · , Ek}
of the edge set of graph G = (V,E). Let C be a block
in part Ei ∈ P and e ∈ Ei be an edge not in C. Let
P ′ = {E′1, E′2, · · · , E′k} be the new edge partition obtained
by moving e to another part Ej 6= Ei, where E′l = El for
l ∈ {1, 2, . . . , k} \ {i, j}. Then C is still a block in E′i of the
new partition P ′.

Proof. Since we only move an edge in Ei \E(C) to another
part Ej , we know that C is still a connected subgraph in
G[Ei]. For any edge (a, b) in E(C) ∩ E′i ⊆ E(C) ∩ Ei,
it is an adjustable edge in P before moving e and there is
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a part Ei0 6= Ei such that a, b ∈ V (Ei0). Note that after
moving e to Ej , no matter if Ei0 = Ej or not, no vertex
in V (Ei0) will be removed, i.e., V (E′i0) ⊆ V (Ei0). So part
Ei0 is still a reachable part for (a, b) and then (a, b) is still
an adjustable edge. Thus, C is still a block in E′i of the new
partition P ′.

Lemma 1 implies that after movingC together withA(C)
from a part Ei to other parts, any other block in Ei is still a
block in the new edge partition. We do not need to compute
new blocks in Ei after the operators.

An Algorithm Based on Max Flow: LS-F
In this section, we introduce an algorithm with a more
sophisticated technique for adjustment operation based on
blocks. The aforementioned algorithm RA(C) is fast. How-
ever, as it heuristically moves blocks one at a time, it may
fail to move certain blocks (due to the constraints). To search
for more domains, we suggest the following adjustment
algorithm based on the max-flow model. This algorithm
considers several different blocks together in each iteration
to find better movements for adjustable edges. To ensure
that we can move several blocks simultaneously, we need
the following definitions.

Independent Block Set. The strategy of our algorithm
recommends us to seek for some blocks which do not affect
each other when moving together. Based on this motivation,
we present important structures about blocks called indepen-
dent block set as our adjustment operation. We will move all
blocks in an independent block set simultaneously.

Definition 4 (Independent Block Set). Let P be a k-edge
partition of a graph G. Two blocks Ci and Cj in P are
called independent if they are from the same part of P or the
shortest distance between V (Ci) and V (Cj) in G is at least
two. A set of blocks C = {C1, C2, . . . , Cl} is independent if
any pair of blocks in it are independent.

In the above definition, we set the distance between two
blocks is at least two. So no two blocks in an independent set
intersect, and the adjustable edges incident on two blocks in
an independent set are different. Thus, for a set of indepen-
dent blocks, we can move all the adjustable edges incident
on all blocks in the set to other parts simultaneously without
increasing the replication factor. After this, we may reduce
the replication factor by moving these blocks.

Adjustments Based on Max Flow. Given an independent
block set C, we consider whether we can move together
all adjustable edges in ∪C∈CA(C) from its own part to
other reachable parts under the balance constraints. Since
we consider moving all adjustable edges incident on a set
of blocks together, we may be able to reach more search
domains and find better results. This is the advantage of this
method, compared with the previous greedy method which
only considers one block each time.

We use a max flow model to solve the problem of moving
adjustable edges incident on a set of blocks together under
the balance constraints. We construct a directed graph H =
(VH , AH) and reduce our problem to the problem of finding

a maximum flow in H from the source vsource to the sink
vsink. The graph H = (VH , AH) is constructed as follows,
where VH = Vedge ∪ Vpart ∪ {vsource, vsink}.
• Introduce two vertices, the source vsource and the sink
vsink.

• For each adjustable edge e ∈
⋃

C∈C A(C), introduce a
vertex ve with an arc−−−−−−→vsourceve from the source vsource to
ve of capacity c(vsourceve) = 1. The set of vertices cor-
responding to edges in

⋃
C∈C A(C) is denoted by Vedge.

• For each part Ei of P , introduce a vertex vEi
with an

arc −−−−−→vEi
vsink from vEi

to the sink vsink of capacity
c(vEi

vsink) = ∆i, where ∆i is the remaining capacity
for part Ei to reach the bound of the balance constraint.

• For each vertex ve ∈ Vedge, add an arc −−−→vevEi
from ve to

vEi of capacity c(vevEi) = 1 for each reachable part Ei

of e except the original part containing e.

In the above model, we have not given the precise defini-
tion of ∆i but it does not cause trouble in understanding the
model. In fact, we will let ∆i = dα |E|k e−|E

∗
i |. Here we use

E∗i instead of Ei because we still need to save some space
for moving blocks. Assume that two blocks C1 and C2 ∈ C
will be moved to Ei, then we will let E∗i = Ei ∪ C1 ∪ C2.
However, we no longer know which block will be moved
to which part. To fix this and simplify the algorithm, in
our algorithm, we will first determine the ’destination part’
for each block before moving the adjustable edges. We will
select the destination part as the part after moving the block
to where the replication factor is minimized.

Let f be a maximum flow in H , which can be computed
by standard max-flow algorithms. For a block C ∈ C, if for
any edge e ∈ A(C) it holds that f(−−−−−−→vsourceve) = 1, i.e.,
there is an individual flow going through the arc −−−−−−→vsourceve
in f , then we let the indication function I(C) = 1; otherwise
let I(C) = 0. Let C′ be the set of blocks with I(C) = 1.

We claim that based on the flow f we can move all
adjustable edges in A(C) for all blocks in C′ to other parts
without breaking the balance constraints. For each block
C ∈ C′, the algorithm moves each adjustable edge e ∈ A(C)
to part Ej for f(−−−→vevEi) = 1, i.e., there is an individual
flow going through the arc −−−→vevEi in f . In fact, for a vertex
vEi ∈ Vpart, the flow on the arc−−−−−→vEivsink is at most ∆i, thus
the number of adjustable edges moving to Ei will not break
the balance constraint even no edge moves out from Ei and
all edges in E∗i \ Ei move to Ei.

We will use MF(C) to denote the above algorithm based
on the maximum flow in H . Note that MF(C) only moves
edges in A(C) for blocks C with I(C) = 1 and keeps
unchanged for blocks C with I(C) = 0. In fact, we will
also undo the moving of blocks C with I(C) = 0.

Algorithm LS-F. The algorithm is to iteratively deal with
an independent block set by calling MF(C). Two concerns
are mainly resolved: the generation of independent sets of
blocks and the algorithm termination condition. We do not
need to find a maximum independent set of blocks because
it is hard to compute and not very helpful in our heuristic
algorithm. In our algorithm, we find an independent set of
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blocks containing at most one block from each part by a
greedy method. We first pick an arbitrary block in the first
part, and then iteratively try to pick a block from the next
part that is independent with all picked blocks. Note that
there may be many different independent block sets and it
is time-consuming to consider all of them. In fact, it will be
a rare case that we can not find an independent block set of
size at least two after a large number of iterations. So we set
the stop condition of our algorithm as a running time bound
or a maximum number of rounds.

Approximation Ratio
We first provide theoretical analysis for EDGE PARTITION
PROBLEM in terms of the approximation quality. The
previous known approximation ratio for this problem is
O(dmax

√
log k log n), which was first proved on graphs

with some restrictions in (Bourse, Lelarge, and Vojnovic
2014) and then extended to general graph in (Li et al. 2017).
In this section, we will show an approximation ratio of
min{k, d̃}, where d̃ is the average degree of the graph. Note
that d̃ ≤ dmax. The new result significantly improves the
previous approximation ratio. We will also consider the
lower bounds on the approximation ratio of our algorithms.
Lemma 2. Any feasible edge partition P of a graph
G = (V,E) is an approximation solution with ratio at most
min{k, d̃}.

Proof. Each vertex can be copied at most k times in any
feasible edge partition since there are only k parts. So it is
trivially to get the approximation ratio of k.

Each edge appears only once in a feasible edge partition
and then it can contribute at most 2 vertices. So it always
holds that

∑k
i=1 |V (Ei)| ≤ 2|E|. Thus,

RF (P ) ≤ 2|E|
|V |

= d̃.

On the other hand, the optimal replication factor can be 1
(when no vertex is copied).

Thus we get a bound min{k, d̃} for the ratio.

The result in the above lemma does not rely on any
algorithm. Any feasible solution will hold the approximation
ratio. Next, we consider the approximation ratio related to
our algorithms. Our algorithms will move adjustable edges
and blocks to decrease the replication factor. We show that
when the edge partition does not have any adjustable edges
the approximation ratio k in Lemma 2 can be improved.
Lemma 3. For a feasible edge partition P of a graph G =
(V,E), if P does not have any adjustable edges, then it is an

approximation solution with ratio ≤ min
{
d̃, t( |It||V | + 1)

}
,

where t = k+1
2 , Vt = {v|v ∈ V ∧ |N(v)| > t} and It is a

maximum independent set in the induced graph G[Vt].

Proof. By Lemma 2, we know that the approximation ratio
is not greater than d̃. We only need to consider t( |It||V | + 1).

Let P = {E1, E2, . . . , Ek} be a feasible edge partition
having no adjustable edges. For a vertex v, we use pv to

(a) An optimal partition

(b) A partition without adjustable edges

Figure 2: An example to achieve the ratio d̃.

denote the number of parts in P containing v. Let V> =
{v ∈ V |pv > t} and V≤ = V \ V>.

We can see that V> is an independent set, otherwise, there
are two vertices u, v ∈ V> such that pu + pv > 2t = k + 1,
which implies that u and v will appear in at least two same
parts and then edge (u, v) would be adjustable. Since V> is
an independent set, we have that |V>| ≤ |It|. So it holds that

RF (P ) =
1

|V |

∑
v∈V>

pv +
∑
v∈V≤

pv


≤ 1

|V |

(
k|V>|+

k + 1

2
|V≤|

)
<

1

|V |

(
(k + 1)|It|+

k + 1

2
(|V | − |It|)

)
= t

(
|It|
|V |

+ 1

)
.

Note that when the graph is sparse, the number of vertices
in Vt may not be large, and then the maximum independent
set in G[Vt] will be small. For this case, the ratio t( |It||V | + 1)

will be strictly smaller than k.
The condition in Lemma 3 is not easy to achieve. But at

least Lemma 3 implies that the solution quality may be better
when there are fewer adjustable edges.

On the other hand, we show that the approximation ratio d̃
cannot be improved even when there are no adjustable edges.
We give an example of the 1-balanced k-partition problem
(k = p(p−1)/2 for some integer p), where the ratio d̃ holds.
The graph contains k independent cliques, each of which
has exactly k edges. In the optimal solution, each connected
component is partitioned to one part and then each vertex
appears in exactly one part. We can also construct a solution,
where each part takes exactly one edge from each connected
component. Then each vertex appears in exactly (p−1)/2 =

d̃ parts. Furthermore, in this partition, there is no adjustable
edge. Please see Figure 2 for an illustration of k = 3.
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(a) An optimal partition

(b) A partition without adjustable edges

Figure 3: An example to achieve the ratio O(k).

We then show the approximation ratio O(k) is also
tight when no adjustable edges exist. Note, although
the approximation ratio t( |It||V | + 1) we proved above is
slightly better than k, this ratio still belongs to O(k) since
|It| may be as large as |V |. We still use an example of
the 1-balanced k-partition to illustrate this tight result.
The graph consists of k independent complete bipartite
subgraphs K1

k2,k,K
2
k2,k, . . . ,K

k
k2,k, where each subgraph

Ki
k2,k has exactly k2 vertices on one side denoted by

U i = {ui1, ui2, . . . , uik2} and k vertices on the other side
denoted by V i = {vi1, vi2, . . . , vik}. Similar to the previous
case, in the optimal solution, each connected component is
partitioned into one part and then each vertex appears in
exactly one part. We can also construct a solution without
any adjustable edges: for each subgraph Ki

k2,k, we pick
all incident edges of vij to part j. Then each vertex in
V i appears in k parts while each vertex in U i appears in
1 part. Totally, the replication factor of this partition is
k2+1
k+1 = O(k). Please see Fig. 3 for an illustration of k = 2.

Computational Experiments
We evaluate the performance of our proposed algorithms
LS-G and LS-F. Our objective is to minimize the replication
factor (RF), which will be regarded as the quality measure.
Comparing Algorithms. We consider initial edge partitions
generated by the following four algorithms: METIS (Karyp-
is and Kumar 1998), NE (Zhang et al. 2017), SHEEP (Margo
and Seltzer 2015) and SPAC (Li et al. 2017). The recent
dSPAC (Schlag et al. 2019) is only a parallelized version of
SPAC, and it generates the same edge partition as SPAC. We
will show the results obtained by our LS-G and LS-F with
initial edge partitions generated by them. The algorithm after
running our local search algorithm A on the initial partition
generated by B is denoted by B+A, where A can be LS-G or
LS-F, and B can be METIS, NE, SHEEP, or SPAC.
Environment. Our algorithms are implemented in C++ and

Figure 4: The average improvement for LS-F and the pro-
portion of best results among the four initial partitions.

compiled with g++ version 5.4.0 with -O3 option.1 These
experiments are carried out under Ubuntu 16.04.3 LTS, us-
ing an Intel Core i5-7200U CPU at 2.50GHZ and 8GB
RAM. For algorithms involving randomness, we run them
for 10 times and report the average RF.
Datasets. We use real datasets from the Network Data
Repository online (Rossi and Ahmed 2015), which is a
well-known network repository containing a large number
of networks in several different domains. We select 1872
graphs from that repository after discarding datasets that are
not in any graph format or of small sizes (less than 1,000
edges) since it is less interesting to partition small graphs
in a distribution system. We ensure that these selected
graphs can cover both a wide range of size levels (from
thousand edges to more than 17 million edges) and various
domains (including 19 different domains: from real-life
social graphs to manually generated graphs). The detailed
information about these 1872 selected graphs can be found
in our GitHub repository1, which also contains our source
code and some detailed experimental results.
Average Evaluations. First, we present the average results
on the 1872 datasets with the default setting k = 64 and
α = 1.1. Overall, we get an average improvement of 12.07%
for LS-G and 13.20% for LS-F. Although LS-F get more av-
erage improvements, LS-G uses less average running time.
We show the performance of LS-F with different initial par-
titions in Fig. 4, where also give the proportion of best results
among all results with four initial partitions. The detailed
performance of LS-G and the running time are omitted here
due to the limited space. The improvements on NE are not
significant. However, for most instances, the performance of
METIS+LS-G and METIS+LS-F is much better than that
of NE+LS-G and NE+LS-F. For LS-F, about 42.51% best
results are obtained by using initial partitions of METIS.
Detailed Comparisons. To give clear comparisons, we se-
lect four instances from the 1872 instances as examples to
illustrate the details. The four instances are selected from
different domains with different size levels: coauthors-dblp
(540486, 15245729) from “collaboration networks”, grid-
yeast (6008, 156945) from “biological networks”, Texas84
(36364, 1590651) from “Facebook networks”, and lastfm

1Our code is put in https://github.com/fafafafafafafa7/LS
Algorithm
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Figure 5: The results with different values of k.

grid-yeast coauthors-dblp lastfm Texas84
METIS 76,321 870,709 1,172,995 587,398
SHEEP 40,107 567,944 226,445 477,879
SPAC 10,997 139,119 395,783 64,399
NE 642 1534 238 127

Table 1: The number of blocks.

(1191805, 4519330) from “social networks”. The two num-
bers in the brackets are the numbers of vertices and edges.

Most previous algorithms, say METIS, NE, SHEEP, and
SPAC, fixed the balance value α = 1.1. We also take this
setting and show the results under different values of k in
Fig. 5. As k grows, LS-G and LS-F can consistently and ef-
fectively enhance the results produced by initial algorithms.

To make a full understanding of our local search methods,
we also do break-down analysis by visualizing the effect of
our local search methods. We show in Table 1 the number
of blocks in the initial partitions generated by different edge
partitioners. We can see that METIS generates much more
blocks than the other three algorithms, which as a conse-
quence enlarges the search space of METIS. The number of
blocks generated by NE is small. So for initial partitions gen-
erated by NE, our local search algorithms can only improve
a small part, as shown in Fig. 4.

Fig. 6 shows the number of blocks of different sizes before
and after applying LS-G and LS-F on METIS. More than
95% blocks are of size at most 20. Most of the blocks with
medium or large sizes have been removed by our algorithms.
On these instances, LS-F reduces more blocks and generates
a better result than LS-G. We can also see that the number of
size-1 blocks drops sharply. The number of adjustable edges

Figure 6: The number of blocks before and after applying
LS-G and LS-F on METIS.

incident on size-1 blocks may be small and then it may be
easy to be reduced by our algorithms.

Further Applications and Discussion
There are two frequently used computation tasks in graph-
parallel computation: PageRank (Brin and Page 1998) and
triangle counting (Zhang et al. 2017; Xie et al. 2014). We
run these two tasks on the above four selected instances.
Compared with initial edge partitions obtained by METIS,
SHEEP, SPAC, and NE, our local search algorithms improve
the running time for most cases (except NE on grid-yeast)
with an average speedup of 9.23% for LS-G (resp., 10.60%
for LG-F) in task PageRank; and with an average speedup
of 8.00% for LS-G (resp., 7.92% for LG-F) in task triangle
counting. Note that although our algorithms always get im-
proved edge partitions, the running time of some concrete
computation tasks under better partitions may not always be
improved. The reason should be that different computation
tasks within some components may become worse even the
partition is improved.

GraphX is a well known graph-parallel computation sys-
tem (Gonzalez et al. 2014). It has some built-in edge parti-
tion algorithms, which cannot be exported from the system,
and then we are unable to apply our local search algorithms
on them directly. Compared with the results obtained by the
built-in algorithms of GraphX, our local search algorithms
(with METIS, SHEEP, SPAC, and NE) can get an aver-
age speedup of 30.82% (the running time of computation
tasks after giving the partition). Further applications of our
algorithms in graph analytic systems are worthy of deep
study. Anyway, this paper gives some structural properties
and efficient algorithms together with theoretically proved
approximation ratios for an important optimization problem.
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