
Segmentation of Tweets with URLs and its Applications to Sentiment Analysis

Abdullah Aljebreen, 1 Weiyi Meng, 2 Eduard Dragut, 1

1 Temple University
2 Binghamton University

aaljebreen@temple.edu, meng@binghamton.edu, edragut@temple.edu

Abstract

An important means for disseminating information in social
media platforms is by including URLs that point to external
sources in user posts. In Twitter, we estimate that about 21%
of the daily stream of English-language tweets contain URLs.
We notice that NLP tools make little attempt at understanding
the relationship between the content of the URL and the text
surrounding it in a tweet. In this work, we study the struc-
ture of tweets with URLs relative to the content of the Web
documents pointed to by the URLs. We identify several seg-
ment classes that may appear in a tweet with URLs, such as
the title of a Web page and the user’s original content. Our
goals in this paper are: introduce, define, and analyze the seg-
mentation problem of tweets with URLs, develop an effective
algorithm to solve it, and show that our solution can benefit
sentiment analysis on Twitter. We also show that the problem
is an instance of the block edit distance problem, and thus an
NP-hard problem.

Introduction
Many applications built upon Twitter data require a robust
understanding of user exchanged messages (aka tweets),
such as named entity recognition (NER) (Li et al. 2015; Rit-
ter et al. 2011; Schneider, Mukherjee, and Dragut 2018),
event detection and summarization (Hughes and Palen
2009), and sentiment analysis (SA) (Gezici et al. 2013;
Yang, Dragut, and Mukherjee 2020). The length restriction
on tweets encourages users to employ unconventional writ-
ing techniques when creating tweets. Thus, tweet analysis
remains challenging despite more than a decade long re-
search effort (Li et al. 2015; Kong et al. 2014).

This paper presents, to our knowledge, the first attempt to
understand the text structure in a tweet that contains URLs.
We refer to these tweets as URLtweets throughout the pa-
per. We show that about 1 in 5 English-language tweets con-
tains a URL (see the section “Tweets with URLs”). Another
study (Suh et al. 2010) shows that 56.7% of retweets are
to URLtweets. Since URLtweets represent a significant por-
tion of the overall Twitter stream traffic, we contend that this
class of tweets deserves its own attention. In this work, we
introduce the problem of URLtweets segmentation, analyze
its complexity, give an algorithm to solve it, and show that

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Tweet (1)
[Tu]

Bloomberg rips Trump: ‘Totally incompe-
tent’ https://t.co/...

Tweet (2)
[TBu]

Bloomberg rip #Trump: ‘#Totallyincompe-
tent’. . . . New York billionaires, #Michael-
Bloomberg . . . https://t.co/...

Tweet (3)
[TBUu]

Bloomberg rips Trump: ‘Totally incompe-
tent’ . . . This is a person who should not be
the #President . . . We’re paying the price for
. . . https://t.co/...

Figure 1: Example of URLtweets, showing segmentation
patterns (in square brackets on the left) and text segments
marked as follows: boldface for title, underline for body and
italic for user

the proposed segmentation can improve sentiment analysis
on tweets.

First, we aim to show that the text of such tweets can be
naturally partitioned into segments, substrings, that relate to
the content of the web page pointed to by the URL, which
we will refer to as URLdoc. We define three classes of tweet
segments: title segment, denoted by T (this segment over-
laps with a large portion of the title of the URLdoc); body
segment, denoted by B (the segment is an excerpt from the
body of the URLdoc); and user segment, denoted by U (the
segment is the user’s utterance). We denote the presence of
URL in a tweet by u. Figure 1 shows several examples of
URLtweets with their segments and patterns. In Tweet (1),
for instance, the entire text of the tweet, “Bloomberg rips
Trump: ‘Totally incompetent’ ”, is the title of the URLdoc.
In Tweet (2), the title is followed by an excerpt from the
body of the URLdoc. In Tweet (3), there are both title and
body segments, and a user’s original utterance, “We’re pay-
ing the price for . . . ”.

There are several challenges in the tweet segmentation
problem that we will describe later in the paper. One chal-
lenge is when substrings of the title or the body are replaced
with active Twitter-specific markups like in Tweet (2) (Fig-
ure 1). In that tweet “Trump” and “Totally Incompetent” are
replaced by #Trump and #Totallyincompetent, respectively.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12480

Title: Comcast raises bid for Sky to $34 billion, tops Fox’s
offer

Tweet (4)
[Tu]

Comcast raises bid for Sky to $34 billion,
tops Fox’s offer https://t.co/...

Tweet (5)
[Tu]

#Comcast raises bid for #Sky to $34 billion,
tops #Fox’s offer https://t.co/...

Tweet (6)
[Tu]

Comcast raises bid for Sky to $34 billion
http://t.co/...

Title: ‘Knives are too sharp and filing them down is solution
to soaring violent crime’, judge says

Tweet (7)
[Tu]

Judge Says ‘Knives are too sharp and fil-
ing them down is solution to soaring violent
crime’ https://t.co/...

Figure 2: Examples of two sets of URLtweets, with the orig-
inal title of the URLdoc shown before each set.

The above examples illustrate the kind of edits users may
perform on URLtweets and suggest that the segmentation
problem is an instance of the approximate string matching
problem. This is traditionally solved with variants of the edit
distance problem (Levenshtein 1966). However, many user
edits are block operations, in which a whole substring of the
input is edited. For example, Tweet (7) in Figure 2 shows
an example where the substring “judge says” in the title is
moved from the end of the title to the beginning of the title
in the tweet (perhaps, the user seeks to change the tone of
the message). In the section “Problem Analysis”, we give
a thorough analysis of the URLtweet segmentation prob-
lem by mapping it to various instances of the string block
edit distance problem (SBED) and show that the problem is
NP-hard when treated as SBED problem (Shapira and Storer
2002).

Second, we demonstrate that our segmentation procedure
benefits sentiment analysis on tweets. Our belief is that the
value of Twitter text mining lies in the users’ original ut-
terances. Hence, it is important to separate a user’s own
thoughts in a tweet from the pieces of text that are copied
from Web documents. Without such a proper annotation of
the ownership of the pieces of text in a tweet, the outcome of
some NLP tasks may be difficult to interpret or even wrongly
interpreted. We explore the benefit of segmentation to sen-
timent analysis in the sections “Sentiment Analysis” and
“Case Study: Sentiment Analysis”.

Motivation

In this section, we give quantitative evidence about the need
to treat URLtweets as first-class citizens in NLP applications
on Twitter. We first show that they represent an important
portion of the Twitter traffic. Then, we show the potential
improvement gain of sentiment analysis tools when the seg-
mentation proposed in this paper is performed prior to their
execution.

Tweet (8)
[TuU]

He needed a kidney. A classmate from
50 years ago whom he barely knew . . .
https://t.co/... the way love is.

Unsegmented: Negative User’s segment: Positive

Tweet (9)
[BUu]

They’re making a mistake because I have a gut,
and my gut. . . (Guess who!) Read the rest of the
story . . . https://t.co/...

Unsegmented: Negative User’s segment: Neutral

Figure 3: Example of two URLtweets with their polarities,
showing the erroneous polarities when ignoring segments.
The markups are the same as in Figure 1.

Tweets with URLs
Our goal here is to estimate the proportion of tweets with
URLs in the Twitter stream, which we refer to as pu. We re-
lied on our own crawling instead of estimations by previous
research because we needed a more recent estimation using a
large sample that is uniformly distributed over a time range.
We conduct two studies toward this goal: (YM) a 12-month
long sampling (Jan 2018 - Jan 2019) and (MD) 1-month long
sampling (Nov 2018). In both studies, we used Twitter4J1 to
collect a random sample of the general stream of English-
Language tweets without specifying any keywords, topics,
or geographic regions. In YM, we crawled 400k tweets twice
every month, for a total of 9.6 million tweets, and found that
pu lies between 0.205 to 0.206 with 95% confidence. In the
MD study, we crawled 200k tweets daily for a month, for a
total of 6 million tweets. This study gives an estimate of pu
in the interval 0.204 to 0.205 with 95% confidence, which
shows that the outcome of the YM study holds when chang-
ing the sampling frequency. We thus infer that about 100M
of the 500M daily tweets2 are URLtweets. Hence, we con-
tend that URLtweets require their own suite of NLP tools.
This work is an effort, the first to our knowledge, toward
this goal.

Sentiment Analysis
SA is the NLP task most often applied to Twitter streams
(Gezici et al. 2013; Vanzo, Croce, and Basili 2014). Know-
ing which parts of a tweet are copied from an external source
and which parts express the original opinion of the user is
critical in opinion mining. Tweet segmentation as proposed
in this work is beneficial to SA for at least two reasons. First,
a large fraction of URLtweets, about 40% in our dataset (see
the section “Experiments”), does not contain a user segment.
Hence, one may choose not to run them through an SA tool.
Second, existing SA tools may predict misleading polarities
for the URLtweets that contain other segments besides user
segments. We explain the reason below using the two tweets
in Figure 3. Consider Tweet (8), which has the title of the
article, the URL, and the user’s own utterance. We tested
two SA tools (StanfordCoreNLP, BERT) (Socher et al. 2013;

1http://twitter4j.org
2https://www.internetlivestats.com/twitter-statistics/

12481

The

Policeman,

tall fast policeman

Stop the robbery,

stopped the robbery

fast.

String s:

String t:

Figure 4: Example of substring families in two strings.

Müller, Salathé, and Kummervold 2020) on it and they both
give a negative polarity for the text of this tweet. However,
when we input only the user utterance, that we extract man-
ually, they both give the correct user’s sentiment: positive.
Tweet (9) in Figure 3 has the pattern: body, user utterance,
and URL. Again, the SA tools wrongly produce negative po-
larity for this tweet, whereas the user does not overtly ex-
press an opinion. If we input the correct user segment to the
tools they both give neutral. In both cases existing tools are
mislead by the text of the URLdoc, title or body, that does
not belong to the user. We give a large scale experimental
study in the section “Case Study: Sentiment Analysis”.

Problem Definition
Background
We begin with some basic definitions to aid introducing the
problem. A string is a sequence of elements, letters, from a
finite set, alphabet, denoted by Σ. Given strings: s, z, x, w
and v, we say the following: s is denoted by s = s1s2 . . . sk,
where each si is a letter; |s| = k is the length of s; s is
called empty string when |s| = 0; s is a substring of x when
it satisfies x = wsv, and when w or v are empty, s is also a
prefix or suffix of x, respectively. Finally, we define a k-block
substring family of a string s as a set Fk(s) containing k
substrings of s. If the substrings in Fk(s) do not overlap, we
say the family is disjoint. If each character of s is contained
in some substring, we say the family represents a cover of s.
For example, consider the strings s and t in Figure 4, each
with their substring family annotated using the boxes. The
substring family of t is a cover and not disjoint, while that
of s is not a cover and it is disjoint.

Edit Operations: We have stated that a Twitter user may
perform a number of operations on excerpts from URLdoc
before posting them in their tweet. These operations include
the usual operations used to define traditional edit distance –
insert letter (ins) and delete letter (del): the former turns
a string s = s1s2 to s1as2 and the latter s′ = s1as2 to s for
any letter a ∈ Σ and strings s1, s2. The replace operation
of a single letter with another can be simulated by insert and
delete. For example, in Figure 2 we show in Tweet (4) a
tweet that makes an exact copy of the title of a document. In
Tweet (5), the user makes several insert edits to the title, e.g.,
changing “Comcast” to “#Comcast”. In Tweet (2) (Figure
1), the user performs both an insert and a delete on “Totally
incompetent” to transform it into “#Totallyincompetent”.

Users also tend to perform bulk operations, where an en-
tire substring (block) is edited at once. There are several
block operations defined in the literature, such as block
insert (b-ins), block delete (b-del) and block move
(b-mv), which transform a string s = s1s2s3 to s1s2s3s4,

s1s3 and s3s2s1, respectively (Ganczorz et al. 2018). We ex-
emplify b-del and b-mv on the example tweets in Figure
2. In Tweet (6) the user performs a block delete to remove
the tail of the title. In Tweet (7), we show an example of
a block move (“Judge Says”), from the end of the title to
the beginning. We adhere to the notation in (Ganczorz et al.
2018) and denote byEDOp(s, t) the minimal number of op-
erations, from the set of allowed edits Op, that transform
string s to string t.

Definitions
The input to our problem is a URLtweet with one or more
URLs in addition to regular text. We describe such tweets
with the pattern t0|1(ut0|1)m, m > 0, where u stands for
the occurrence of a URL and t for the occurrence of a piece
of text. In our dataset, the two most dominant patterns are
tu and tut, with 66% and 21% occurrences, respectively.
Only 5% of URLtweets contain more than one URL. Hence,
without loss of generality, and for ease of presentation, we
assume that each URLtweet has only one URL. We use α
and du to refer to URLtweets and their associated URLdocs,
respectively. We seek to solve the following problem:
User Utterance Problem (UUP): Find all the substrings in
α that represent a user’s utterance.

We say substrings because the user’s own content in a
tweet may not be one continuous sequence of characters in
the tweet, but rather interleaved with other pieces of text that
are excerpts from the URLdoc. It is difficult to separate the
substrings that pertain to a user’s own thoughts from the rest
in a tweet. It is easier to detect the parts in the tweet that
originate from the URLdoc.

Let s be a substring of t, where t is defined as above.
We label s as a URLdoc segment if: (i) s is a (non-trivial)
substring of URLdoc and (ii) any other substrings: xs, sx,
or xsx of t are not substrings of URLdoc (x ∈ Σ). The
complement problem of UUP is:

Complement UUP (UUP): Find all URLdoc segments in α.
If we are able to solve UUP, then we can obtain a user’s

own utterance (if any) by removing those URLdoc segments
from α. There are two ways to look at the problem: (1) from
URLtweet to URLdoc, and (2) from URLdoc to URLtweet.
The latter gives a more intuitive view of the problem as one
can imagine that the user constructs the URLtweet from the
URLdoc by discarding large pieces (entire paragraphs) of
the URLdoc, keeping parts of the URLdoc (as illustrated in
Figure 5), and adding her own words.

The classic edit distance model – where a comparison
between two given strings, s and t, is performed by com-
puting the cost of the character-level operations needed to
transform string s into t (Ann et al. 2010) – is not suitable
to model URLdoc to URLtweet user editing. The issue is
that this model disregards the structure of du into phrases
and paragraphs. For example, consider Tweet (7) in Figure
2 where the only difference between its copy of the title and
the original title is the movement of the last two words to
the beginning. With the traditional edit distance, the cost of
transforming it into the title gives a cost of 10 operations

12482

Does the world belong to them
or to us?

Does the world belong to them or to us?

 https://www...

The Billionaire Election:

Let’s face it. You’re unlikely to
become one of the billionaires.
But you can choose whether to
resign yourself to living in their
country — or to remind them
that they live in yours.

 https://www...
Does the world belong
to them or to us?

The Billionaire Election

Let’s face it. You’re unlikely to
become one of the billionaires.
But you can choose whether to
resign yourself to living in their
country — or to remind them
that they live in yours.

Let’s face it. You’re unlikely to become one of the billionaires. But you can choose whether to resign yourself to living in
their country — or to remind them that they live in yours.

Figure 5: Example of tweet with a URL (left) and a snap-
shot of the corresponding web document (right). Notice the
3 annotated segments and their positions in the document.

which is too high and not reflective of the similarity between
the two strings. The cost is only one operation when we use
blocks of substrings since the only required operation is one
block move and that captures the high-level structure of the
text (Lopresti and Tomkins 1997). We argue that this model
is a more appropriate computational model for our problem.

Let us define the goal of UUP more formally given the
previous constraints. Our goal is to choose the substring
families Fk(du) = {d1u, ..., dku}, Fk(α) = {α1, ..., αk} and
a function m : Fk(du) ←→ Fk(α) such that m(diu) =
αj , i, j ∈ [1..k], and diu and αj are not both empty strings.
We say that

1. if |diu| > 0 and |αj | > 0 then blocks diu and αj match.
2. if |αj | = 0 then user “deletes” block diu.
3. if |diu| = 0 then user “inserts” block αj .

There are three aspects we need to discuss further in the
formal definition of UUP: (1) matching, (2) the k that gives
the desired outcome, and (3) the overlap/disjoint properties
of the k-block substring families Fk(du) and Fk(α).

Matching
The above formulation of UUP assumes that a user performs
exact copies from a URLdoc to a URLtweet. This helps give
an intuitive understanding of our goals in this work. As dis-
cussed earlier in the paper and exemplified in Tweets (2) and
(3) in Figure 1, users may choose to edit the copied text from
URLdoc before posting the URLtweet. We need to treat the
detection of URLdoc segments in a tweet as a problem of ap-
proximate string matching. Hence, we require an underlying
distance function that returns the cost of aligning a substring
of du with a substring of α. In practice, one may use the tra-
ditional string edit distance. However, our approach and its
complexity do not change, when using other functions.

Optimization Goal
There are exponentially many k-block families for both du
and α. The questions are which one of them gives the desired
outcome and how to find it. Intuitively, our goal is two-fold:
(1) to cover as much of the content of URLTweet as possi-
ble with substrings from URLdoc (i.e., detect the copies in
URLtweet that are from URLdoc) and (2) for each matching

pair of block substrings, the distance between the two should
be small. Therefore, we seek to find the k-block families for
both du and α with the following property:

min
k

min
Fk(du),Fk(α)

min
m

{
k · cblock +

k∑
i=1

dist(diu,m(diu))
}

We can assume a unit cost for the block operations in the
above equation, cblock, without loss of generality in our
problem. This is the model followed by the general string
block-edit distance (SBED). SBED includes other block
moves that we do not see applicable in our settings such as
block uncopy and block reversal (Muthukrishnan and Sahi-
nalp 2000). The SBED model is flexible enough and can
capture similarity both at low-level (characters) and high-
level (blocks), by allowing matched blocks to be further
edited with character operations. There are many cases of
the problem in general (Ganczorz et al. 2018; Lopresti and
Tomkins 1997; Shapira and Storer 2002), some of which
have tractable solutions, while others are hard and require
approximate algorithms. We will analyze them in the next
section to determine which one of them fits UUP.

Problem Analysis
Cover: We consider first the substring family of URLtweet.
As illustrated in Figures 1 and 2, besides copying content
from a URLdoc, a user may include original content in the
URLtweet. Hence, Fk(α) need not be a cover since we do
not require that every substring of Fk(α) has a correspon-
dent in Fk(du). On the other hand, Fk(du) can be either
a cover and not a cover, depending on whether we seek to
match the title or the body, respectively.

Disjoint: We assert that the substring families of
URLtweets and URLdoc have to be disjoint. Allowing the
blocks of a URLtweet to overlap when matching them to
those of a URLdoc is counter-intuitive since each piece of
copied text originates from a single location in the URLdoc.
And, vice-versa, allowing blocks of a URLdoc to overlap
corresponds to a user having multiple copies of a piece of
text from URLdoc in her URLtweet (i.e., she has redundant
text in her tweet). When tweets contain such ”redundancy,”
it is our observation that the redundant parts originate in seg-
ments of different classes, for example, a nontrivial portion
of the title is repeated in the body.

We conclude that among the multiple SBED models (Lo-
presti and Tomkins 1997), only two are viable models to
capture the URLtweet segmentation problem, namely C̄D-
CD and C̄D-C̄D. The first one is more suitable when dis-
covering title segments while the second one is more suit-
able to model body segments of a URLtweet. Both varia-
tions of the problem are NP-complete (Lopresti and Tomkins
1997). Hence, we state that:

Lemma 1 UUP is NP-complete.

A number of polynomial approximation solutions have
been proposed in the literature (Cormode and Muthukrish-
nan 2007; Ganczorz et al. 2018), the most recent of which
is in (Ganczorz et al. 2018). We build our algorithm on
the approximation greedy algorithm in (Shapira and Storer

12483

Algorithm 1: The pseudo code of the main function
of our algorithm.

1 match(du, α)
2 label lcs(du, α) as lcsblock
3 dpu, α

p= the prefixes of lcsblock in du and α
4 match (dpu, α

p)
5 dsu, α

s= the suffixes of lcsblock in du and α
6 match (dsu, α

s)
7 trim non-lcsblock prefixes/suffixes in α
8 return du, α
9 check(du, α)

10 if similarity(du, α) ≥ threshold then
11 return α as a segment of du
12 else
13 du, α=reduce (du, α)
14 match (du, α)
15 end

2002). This has a number of desirable properties, including
that when only block deletion and block copy are allowed,
this gives an O(1) approximation of the distance. Although,
our problem is hard in general, most of the encountered in-
stances are not as complex as those treated by SBED, e.g.,
computational biology.

Segmentation Method
In this section, we present an efficient segmentation algo-
rithm that produces the required segments of URLtweets in
a polynomial run-time. In this segmentation method, we ex-
pect two text inputs: a URLtweet (a tweet with one URL
along with pieces of text) and a URLdoc (the web docu-
ment corresponding to the URL in the URLtweet, which we
retrieve beforehand). Before the segmentation step, we nor-
malize the text of the URLtweets and URLdocs, e.g., remov-
ing the URL from the URLtweet, trimming extra spaces and
newline characters, and omitting special characters except
for the pound # and at @ symbols, because of their special
meanings in tweets and their importance to the segmenta-
tion process. We note that emojis and other characters we
removed in this cleaning stage may be important signals for
some downstream NLP tasks. Hence, once each segment’s
boundaries are detected, we restore the content of each seg-
ment to its original content as it appeared in the raw tweet.

The Greedy Algorithm
Our algorithm commences with the text of the URLtweet,
α, and the URLdoc du, which can be either the title or the
body, and attempt to extract the correct segments within α.
Finding body segments is more expensive than finding title
segments in URLtweet. In the worst case, we need to scan
an entire (long) Web document when looking for a body seg-
ment. Therefore, it is computationally beneficial to look for
the title segment first, remove it from the URLtweet, and
then scan the URLtweet minus the title segments for the
presence of body segments B. We label the remaining seg-
ments, if any, as user utterance.

Tweet
a)

Fired officer is charged with third degree mur-
der after George Floyd’s death. #BlackLivesMatter
#GeorgeFloyd: Absolute Chaos in #Minneapolis
as Protests Grow Across1 #US The New York
Times

Title George Floyd Updates Absolute Chaos in Min-
neapolis as Protests Grow Across1 US The New
York Times

Tweet
b)

George Floyd1s death. #BlackLivesMatter
#GeorgeFloyd: Absolute Chaos in2 #Minneapolis
as Protests Grow Across3 #US The New York
Times4

Title George Floyd1 Updates Absolute Chaos in2 Min-
neapolis as Protests Grow Across3 US The New
York Times4

Tweet
c)

s death. #BlackLivesMatter #GeorgeFloyd: Abso-
lute Chaos in1 #Minneapolis as Protests Grow
Across2 #US The New York Times3

Title George Floyd Updates Absolute Chaos in1 Min-
neapolis as Protests Grow Across2 US The New
York Times3

Tweet
d)

George1Floyd2: Absolute Chaos in3

#Minneapolis as Protests Grow Across4
#US The New York Times5

Title George1 Floyd2 Updates Absolute Chaos in3 Min-
neapolis as Protests Grow Across4 US The New
York Times5

Figure 6: An example of applying Algorithm 1 as discussed
in the section “The Greedy Algorithm”

Our algorithm relies upon finding the longest common
substrings (LCS) between α and du to detect the desired
URLdoc segments. Utilizing LCS is both effective and ef-
ficient in approximate string matching (Shapira and Storer
2002). Their algorithm reduces the two given strings to
shorter strings by replacing repeatedly a longest common
substring by a new single character. The traditional edit dis-
tance is then applied on the new strings (Shapira and Storer
2011). We use this technique (i.e. the repeated tagging of
LCS between two strings) in our proposed algorithm and
add a few heuristics to help the matching process in coping
with character usage specific to Twitter, such as the use of
hashtags pound # and at-user at @.

The pseudocode in Algorithm 1 depicts the main proce-
dure of our approach which consists of two steps: match
and check. The goal is to obtain a single du-segment from
an α, assuming that du is the title in this case. The first por-
tion of the algorithm is the match function on which we em-
ploy a solution for the Longest Common Substring problem
(LCS) to construct a candidate segment. In the check part,
we check if the candidate is acceptable, according to our
measures. If not, we reconfigure its limits, trying to improve

12484

Uu 35.0%

Tu 26.1%

Bu 10.6%

uUu 9.0%

TuU 5.3%

TUu 3.7%

BUu 3.2%

BuU 2.2%

Others 4.8%

Uu Tu Bu UuU TuU TUu BUu BuU Others

4.8%
2.2%3.2%3.7%5.3%

9%10.6%

26.1%

35%

Figure 7: Summary of the most common tweet patterns

its quality. We use a running example (Figure 6) to describe
these two steps in more detail.

In line 2, we look for the longest common substring be-
tween α and du and mark it as a single lcsblock, which we
highlight in bold in Figure 6-a. Next, in lines 3 and 5, we
refer to the remaining parts of the texts (before and after
lcsblock) as prefixes and suffixes. In lines 4 and 6, we recur-
sively look for additional lcsblocks between the remaining
prefixes and suffixes. The recursive calls continue until we
find all possible lcsblocks (Figure 6-b). Next, we trim α by
removing substrings before and after the first and last dis-
covered lcsblocks. (line 7, Figure 6-b).

In the second part of the algorithm, we check the validity
of the candidate segment, α, using our similarity measure
(lines 10-11) and if it is valid, we return it. If not, we proceed
to modify α using reduce. In reduce, we check the first and
last lcsblocks and remove the shortest one (line 13, Figure
6-c). Then, we callmatch on the reduced α (line 14). In this
new call, we look for more lcsblocks in the trailing substring
of α (Underlined substrings in Figure 6-c). We continue the
iteration match-check/reduce until either we find a valid seg-
ment (Figure 6-d) or end up with strings that are too short to
result in meaningful segments.

The polynomial computational complexity of our pro-
posed algorithm follows from the algorithm introduced by
Shapira and Storer 2002. Our heuristics to cope with char-
acters specific to tweets do not add to the its running time.

Lemma 2 The running time of Algorithm 1 is O(|du| · |α|)

Experiments
We present an extensive empirical evaluation of our ap-
proach in this section to show (i) the effectiveness of our
segmentation algorithm and (ii) its benefit to sentiment anal-
ysis on tweets.

Data
We use the data collected in the YM study – the year-long
crawl. It has 9.6M tweets. Our collection of tweets is ran-
domly sampled from English-language tweets and not asso-
ciated with any specific topic or region. We keep only the
URLtweets from this data set, yielding about 2M tweets.
The final data set contains about 1M tweets after further fil-
tering. We filter out the following tweets: (i) tweets with no

text (just URLs), (ii) tweets with very short pieces of text –
less than three words, (iii) tweets with inaccessible URLs,
and (iv) tweets with URLs that point to web pages with only
media content or very short main text (aka body text).

Segmentation Patterns
We report the discovered patterns according to the output of
our algorithm on the entire set of 1M tweets. We observe
82 different patterns. The top-8 most frequent patterns (Fig-
ure 7) cover 95.2% of all tweets. Notice that not all tweets
include user original content U ; only about 59.62% of them
do. On the other hand 37.58% of the tweets contain title seg-
ments T and 17.61% have body segmentsB. Note that these
percentages add up to more than 100% because some tweets
are of multiple patterns, e.g., some tweets have both T (ti-
tle) and U (user content). This observation can greatly help
online NLP systems in practice because they may decide to
omit tweets without user comment. This may also improve
the overall sentiment analysis accuracy, which we show in
the section “Case Study: Sentiment Analysis”.

Segmentation Experiments
This is our main empirical study on segmentation. We seek
to evaluate the performance of our entire segmentation ap-
proach. This evaluation is challenging since we do not have
a set of ground truth labels. We conduct a “hard” evaluation
of segmentation: if the algorithm labels incorrectly at least
one of the three possible text segments for a tweet, the tweet
is marked as incorrect. Given a large number of tweets we
approximate the accuracy via sampling: with (i) simple ran-
dom sampling and (ii) stratified random sampling. Accord-
ing to (Yilmaz, Kanoulas, and Aslam 2008), stratified sam-
pling can unitize a better accuracy estimation from incom-
plete judgments. We draw 1,000 sample tweets in both cases,
about 0.1% of the entire set of URLtweets in our dataset.
The estimated accuracy is a sample proportion. With 95%
confidence, we expect the accuracy, π̂, to be in the inter-
val [0.882, 0.919]. We manually investigate the 1,000 tweets
and get π̂ = 0.901. In (ii), we use 9 classes corresponding to
the top-8 patterns and others. The manual inspection gives
the proportion estimate π̂ = 0.898, which falls into the con-
fidence interval [0.879, 0.917] at 95% confidence level.

The stratified sample is useful. The results also show that
patterns withB or bothB andU segments are the most chal-
lenging patterns, such as Bu, BUu, and BuU , with esti-
mated accuracies of 77.67%, 79.31% and 75.11%, respec-
tively. We believe that the source of this issue is the simi-
larity between B and U . In many cases, the user input can
be similar to the content of the URL. On the other hand,
Tu, TuU and Uu have the highest accuracies of 99.57%,
97.92% and 88.21%, respectively.

Case Study: Sentiment Analysis
We observe that most SA tools remove URLs from tweets
before conducting SA. This blind removal indicates that SA
tools lose any relationship between the pieces of text in
URLtweets that belong to the user and those copied from
URLdocs. Our goal in this section is to show via large scale
studies the benefit of tweet segmentation in SA.

12485

Tweet (10)
[Bu]

Lady Gaga is clearly delighted at the gift of a
grey horse, delivered on Monday to her Mal-
ibu, California, home... https://t.co/...

Tweet (11)
[BUu]

”I didn’t go round slagging off Tony Blair” -
KLbut he did with Gordon Brown:https://t.co/...

Figure 8: Two tweets from the SemEval-2017 dataset. Tweet
(10) is positive and Tweet (11) is neutral.

Datasets. We run our SA experiments on two datasets:
(1) URLtweets-100k: We select 100k tweets from our dataset
presented in the section “Data”. All of these tweets contain
at least one U segment. (2) SemEval is a collection of 60k
labeled tweets for the SemEval tasks (2013-2017) (Rosen-
thal, Farra, and Nakov 2017). It contains about 7k tweets
with valid URLs, 2,523 of which have mixed segments (i.e.
U segments and T/B segments).

SA Tools. We use the following Sentiment Analysis tools
in this study: (1) StanfordCoreNLP-SA: It is part of the
Stanford NLP suite (Socher et al. 2013). (2) BERT-covid:
a transformer-based model, pre-trained on a large corpus
of tweets on the COVID-19 topic. This model shows a no-
ticeable performance gains even when working with general
tweets compared to the standard BERT (Devlin et al. 2019;
Müller, Salathé, and Kummervold 2020).

Study A. In this study, our goal is to look for signals of
influence on the polarity of URLtweets when applying the
segmentation. We use URLtweets-100k dataset. We compare
the sentiment of the original (raw) tweets against that of the
extracted user utterances using StanfordCoreNLP-SA tool
(Socher et al. 2013). In this experiment, 79.39% of the orig-
inal tweets receive positive/negative sentiment. But, only
29.71% of user segments receive positive/negative polarity,
and that shows a large discrepancy between the intended
user opinion and the opinion derived from the raw tweet.

Study B. In this study, we seek to show that the change
in the URLtweets polarity after the segmentation is an im-
provement to the outcome of SA tools. Consider the follow-
ing two tweets in Figure 8 from the SemEval dataset. Tweet
(10) has polarity positive, although the user simply cites a
passage from the article. In other words, Tweet (10) includes
no user segment. So, we contend that it should be neutral.
Tweet (11) has polarity neutral, but we believe that the user
sentiment is negative.

We use the labeled SemEval dataset in this experiment and
apply an SA tool before and after removing the non-user
segments. The results show an increase in the F1 score from
0.687 to 0.734 when using BERT-covid tool. We believe that
the actual improvement may be higher, since the human la-
beled polarities are misguided by the mixed sentiments in
some URLtweets as we showed earlier in this section.

Related Work
Text segmentation has different meanings across research
communities. For instance, NLP text segmentation is the

task of dividing a document into segments, such that each
segment is a homogeneous text units which might in-
clude NLP tasks such as part-of-speech tagging, named
entity recognition, and chunking (Hearst 1994; Kozima
1993; Utiyama and Isahara 2001; Lafferty, McCallum, and
Pereira 2001; Zhang et al. 2019, 2018). In Data Mining and
Database communities, text segmentation is the task of par-
titioning an input text (usually extracted from Web pages re-
turned by search engines) into structured records of a target
schema before loading them into a database (Agichtein and
Ganti 2004; Borkar, Deshmukh, and Sarawagi 2001; Bing,
Lam, and Gu 2011; Lu et al. 2013; Dong, Dragut, and Meng
2019). There is also the problem of segmenting scientific
literature, which aims to identify and mark the underlying
structure of scientific papers and abstracts (Hirohata et al.
2008), e.g., identify and classify sentences into sections such
as Introduction, Method, Result, and Conclusion. Another
example is a segmenting task for tweets that aims to parti-
tion a tweet into consecutive word n-grams (Li et al. 2015),
where a segment may denote an entity mention or a “seman-
tically meaningful unit”.

In our segmentation task the segmentation of a tweet
is performed with respect to a document which precludes
an outright use of supervised techniques, including the
deep neural network ones (Akhundov, Trautmann, and Groh
2018), because such methods require a large amount of la-
beled data (difficult to obtain in practice), and one still needs
to compare the tweet content against that of the document.

Many works explore the tweet-specific features (at- men-
tions, hashtags, and URLs) in a variety of tasks. For ex-
ample, they are employed in developing part-of-speech tag-
ging for tweets (Gimpel et al. 2011), labeling emotions in
tweets (Hasan, Agu, and Rundensteiner 2014), determining
users’ geo-locations (Compton, Jurgens, and Allen 2014),
and predicting the popularity of a tweet (Suh et al. 2010;
Jenders, Kasneci, and Naumann 2013). However, these ef-
forts primarily make use of at-mentions and hashtags, and
not of URLs. For example, hashtags are used primarily in
topic related tasks to collect relevant tweets (Ray Chowd-
hury, Caragea, and Caragea 2019). We found that only few
researchers recognize and exploit the advantage of tweets
with URLs in mainstream tasks. For example, the work by
Plank et. al. 2014 uses the rich linguistic context in URLs as
a distant supervision in their POS tagging in Twitter.

Conclusions
In this paper, we introduced the problem of segmenting
tweets with URLs with respect to the content of the docu-
ments pointed to by the URLs. We analyzed the complexity
of the problem and showed that it is an NP-hard problem. We
gave a greedy algorithm with a proven linear approximation
of the ideal solution. We defined three types of segments:
document title, document body, and user content. The pro-
posed segmentation algorithm achieved an accuracy of about
90%. We presented a case study on SA of URLtweets and
showed that omitting non-user text from tweets can improve
sentiment analysis accuracy. Future work includes an addi-
tional study on the benefit of the proposed segmentation on
other NLP applications.

12486

Acknowledgments
This work was supported in part by the U.S. National Sci-
ence Foundation BIGDATA 1546480 and 1546441 grants.

References
Agichtein, E.; and Ganti, V. 2004. Mining Reference Tables
for Automatic Text Segmentation. In SIGKDD, 20–29.

Akhundov, A.; Trautmann, D.; and Groh, G. 2018. Sequence
Labeling: A Practical Approach. CoRR abs/1808.03926.

Ann, H.-Y.; Yang, C.-B.; Peng, Y.-H.; and Liaw, B.-C. 2010.
Efficient Algorithms for the Block Edit Problems. Inf. Com-
put. 208(3): 221–229.

Bing, L.; Lam, W.; and Gu, Y. 2011. Towards a Unified
Solution: Data Record Region Detection and Segmentation.
In CIKM, 1265–1274.

Borkar, V.; Deshmukh, K.; and Sarawagi, S. 2001. Auto-
matic Segmentation of Text into Structured Records. In SIG-
MOD, 175–186.

Compton, R.; Jurgens, D.; and Allen, D. 2014. Geotagging
One Hundred Million Twitter Accounts with Total Variation
Minimization. In IEEEBig Dat), 393–401.

Cormode, G.; and Muthukrishnan, S. 2007. The String Edit
Distance Matching Problem with Moves. ACM Trans. Algo-
rithms 3(1): 2:1–2:19.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL, 4171–4186.

Dong, Y.; Dragut, E. C.; and Meng, W. 2019. Normalization
of Duplicate Records from Multiple Sources. IEEE Trans.
Knowl. Data Eng. 31(4): 769–782.

Ganczorz, M.; Gawrychowski, P.; Jez, A.; and Kociumaka,
T. 2018. Edit Distance with Block Operations. In ESA, vol-
ume 112 of LIPIcs, 33:1–33:14.

Gezici, G.; Dehkharghani, R.; Yanikoglu, B.; Tapucu, D.;
and Saygin, Y. 2013. SU-Sentilab : A Classification System
for Sentiment Analysis in Twitter. In SemEval, 471–477.

Gimpel, K.; Schneider, N.; O’Connor, B.; Das, D.; Mills,
D.; Eisenstein, J.; Heilman, M.; Yogatama, D.; Flanigan, J.;
and Smith, N. A. 2011. Part-of-speech Tagging for Twitter:
Annotation, Features, and Experiments. In ACL, HLT ’11,
42–47.

Hasan, M.; Agu, E.; and Rundensteiner, E. 2014. Using
hashtags as labels for supervised learning of emotions in
twitter messages. In ACM SIGKDD workshop on health in-
formatics, New York, USA.

Hearst, M. A. 1994. Multi-paragraph Segmentation of Ex-
pository Text. In ACL, 9–16.

Hirohata, K.; Okazaki, N.; Ananiadou, S.; and Ishizuka, M.
2008. Identifying Sections in Scientific Abstracts using
Conditional Random Fields. In IJCNLP.

Hughes, A.; and Palen, L. 2009. Twitter Adoption and Use
in Mass Convergence and Emergency Events. International
JOURNAL of Emergency Management 6: 248–260.

Jenders, M.; Kasneci, G.; and Naumann, F. 2013. Analyzing
and predicting viral tweets. In WWW, 657–664.

Kong, L.; Schneider, N.; Swayamdipta, S.; Bhatia, A.; Dyer,
C.; and A. Smith, N. 2014. A Dependency Parser for Tweets.
In EMNLP.

Kozima, H. 1993. Text Segmentation Based on Similarity
Between Words. In ACL, 286–288.

Lafferty, J. D.; McCallum, A.; and Pereira, F. C. N. 2001.
Conditional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data. In ICML, 282–289.

Levenshtein, V. 1966. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics Doklady
10: 707.

Li, C.; Sun, A.; Weng, J.; and He, Q. 2015. Tweet Segmenta-
tion and Its Application to Named Entity Recognition. IEEE
Trans. on Knowl. and Data Eng. 27(2): 558–570.

Lopresti, D. P.; and Tomkins, A. 1997. Block Edit Models
for Approximate String Matching. Theor. Comput. Sci. 181:
159–179.

Lu, Y.; He, H.; Zhao, H.; Meng, W.; and Yu, C. 2013. An-
notating Search Results from Web Databases. IEEE Trans.
on Knowl. and Data Eng. 25(3): 514–527.

Müller, M.; Salathé, M.; and Kummervold, P. E. 2020.
COVID-Twitter-BERT: A Natural Language Processing
Model to Analyse COVID-19 Content on Twitter. arXiv
preprint arXiv:2005.07503 .

Muthukrishnan, S.; and Sahinalp, S. C. 2000. Approximate
Nearest Neighbors and Sequence Comparison With Block
Operations. In STOC, 416–424.

Plank, B.; Hovy, D.; McDonald, R.; and Søgaard, A. 2014.
Adapting taggers to Twitter with not-so-distant supervision.
In COLING, 1783–1792.

Ray Chowdhury, J.; Caragea, C.; and Caragea, D. 2019.
Keyphrase Extraction from Disaster-Related Tweets. In
WWW, 1555–1566. ISBN 9781450366748.

Ritter, A.; Clark, S.; Etzioni, O.; et al. 2011. Named entity
recognition in tweets: an experimental study. In EMNLP,
1524–1534.

Rosenthal, S.; Farra, N.; and Nakov, P. 2017. SemEval-2017
Task 4: Sentiment Analysis in Twitter. In Proceedings of
SemEval ’17.

Schneider, A. T.; Mukherjee, A.; and Dragut, E. C. 2018.
Leveraging Social Media Signals for Record Linkage. In
WWW (The Web Conference), 1195–1204.

Shapira, D.; and Storer, J. 2011. Edit Distance with Block
Deletions. Algorithms 4. doi:10.3390/a4010040.

Shapira, D.; and Storer, J. A. 2002. Edit Distance with Move
Operations. In CPM, 85–98.

Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013. Recursive Deep Models
for Semantic Compositionality Over a Sentiment Treebank.
In EMNLP.

12487

Suh, B.; Hong, L.; Pirolli, P.; and Chi, E. H. 2010. Want to
Be Retweeted? Large Scale Analytics on Factors Impacting
Retweet in Twitter Network. In SCSM, 177–184.
Utiyama, M.; and Isahara, H. 2001. A Statistical Model for
Domain-Independent Text Segmentation. In ACL, 499–506.
Vanzo, A.; Croce, D.; and Basili, R. 2014. A context-based
model for Sentiment Analysis in Twitter. In COLING, 2345–
2354.
Yang, F.; Dragut, E.; and Mukherjee, A. 2020. Predicting
Personal Opinion on Future Events with Fingerprints. In
COLING, 1802–1807.
Yilmaz, E.; Kanoulas, E.; and Aslam, J. A. 2008. A Sim-
ple and Efficient Sampling Method for Estimating AP and
NDCG. In SIGIR, 603–610.
Zhang, S.; He, L.; Dragut, E. C.; and Vucetic, S. 2019. How
to Invest my Time: Lessons from Human-in-the-Loop Entity
Extraction. In SIGKDD, 2305–2313.
Zhang, S.; He, L.; Vucetic, S.; and Dragut, E. 2018. Regular
Expression Guided Entity Mention Mining from Noisy Web
Data. In EMNLP, 1991–2000.

12488

