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Abstract

While widely used in industry, recurrent neural networks
(RNNs) are known to have deficiencies in dealing with long
sequences (e.g. slow inference, vanishing gradients etc.). Re-
cent research has attempted to accelerate RNN models by de-
veloping mechanisms to skip irrelevant words in input. Due
to the lack of labelled data, it remains as a challenge to de-
cide which words to skip, especially for low-resource clas-
sification tasks. In this paper, we propose Knowledge-Aware
Leap-LSTM (KALL), a novel architecture which integrates
prior human knowledge (created either manually or automat-
ically) like in-domain keywords, terminologies or lexicons
into Leap-LSTM to partially supervise the skipping process.
More specifically, we propose a knowledge-oriented cost
function for KALL; furthermore, we propose two strategies
to integrate the knowledge: (1) the Factored KALL approach
involves a keyword indicator as a soft constraint for the skip-
ping process, and (2) the Gated KALL enforces the inclusion
of keywords while maintaining a differentiable network in
training. Experiments on different public datasets show that
our approaches are 1.1x ∼ 2.6x faster than LSTM with
better accuracy and 23.6x faster than XLNet in a resource-
limited CPU-only environment.

Introduction
Recurrent neural networks, including vanilla RNN, Long
Short-term Memory (LSTM) (Hochreiter and Schmidhu-
ber 1997) and Gated Recurrent Unit (GRU) (Chung et al.
2014), are suitable for sequential natural language process-
ing (NLP) tasks. They have been widely used in many in-
dustrial areas such as finance (Han et al. 2018) and health-
care (Miotto et al. 2018). Typically, RNNs read in either
all or a fixed length of text sequentially, and output a dis-
tributed representation for each token. However, while such
process is essential for some applications like machine trans-
lation (Bahdanau, Cho, and Bengio 2015), it makes RNNs
slow to process long input text common in e.g. document
classification (Liu et al. 2015) or question answering (Tan,
Xiang, and Zhou 2015). Meanwhile, humans read text by
making a sequence of fixations and saccades, i.e. fixating
some words and skip others (Hahn and Keller 2016), be-
cause texts are usually written with redundancy and can be
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understood by partial reading (Yu, Lee, and Le 2017). Some
research shows that not all input tokens are equally impor-
tant in many NLP tasks (Seo et al. 2017).

To accelerate RNNs in processing long text, recent re-
search has been focusing on mechanisms to skip/skim
irrelevant, unimportant or redundant words in input for
RNNs (Yu, Lee, and Le 2017; Campos et al. 2017; Seo et al.
2017; Liu et al. 2018; Hansen et al. 2019; Huang, Shen, and
Deng 2019). We define such models as “selective RNNs”.

Representative selective RNNs include LSTM-Jump (Yu,
Lee, and Le 2017), Skip-RNN (Campos et al. 2017), Skim-
RNN (Seo et al. 2017) and Leap-LSTM (Huang, Shen, and
Deng 2019). While they involve different modifications of
standard RNNs/LSTM, selective RNNs share a crucial com-
ponent: a decision making network predicting whether a
word should be skipped/skimmed or not. In general, the de-
cision making component is jointly trained with the classifi-
cation targets in a supervised learning framework. However,
due to the absence of labelled ground truths on whether a
word should be skipped or not, there is no direct supervision
signal for the training of the decision making component,
resulting in inaccurate skipping process.

To improve the accuracy of skipping process, we propose
a novel architecture using two strategies to integrate prior
human knowledge to partially supervise the skipping pro-
cess. For the prior human knowledge, we use existing key-
words, terminologies or lexicons, which has been beneficial
for many NLP classification tasks such as document cate-
gorisation, topic modelling, sentiment analysis etc. In the
following sections, we use the term keyword or keywords
to refer to prior human knowledge. We define our general
architecture as Knowledge-Aware Selective RNNs for long
text and document classification.

The contributions of this paper include:

• We propose a novel architecture to integrate prior knowl-
edge to selective RNNs. We illustrate this architecture
with the state-of-the-art (SOTA) Leap-LSTM (Huang,
Shen, and Deng 2019), and refer to the architecture as
knowledge-aware Leap-LSTM (KALL) in the rest of the
paper. Two different integration strategies are proposed,
namely the factored KALL and gated KALL;

• The factored KALL uses a vector to indicate keywords
and concatenates the indicator with word embeddings for
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skip prediction, which is straight-forward but effective;
• Since the factored KALL uses a soft constraint which does

not guarantee to keep the keywords, we further propose
the gated KALL which utilises a gate mechanism to en-
force inclusion of the keywords while maintaining a dif-
ferentiable network in training;

• We propose a knowledge-oriented cost function to super-
vise the decision making component;

• We conduct experiments on four public datasets and ver-
ify the effectiveness of the proposed architecture.

Related Work
In this section, we will look at some representative work
regarding selective RNN/LSTM models, including LSTM-
Jump, Skip-RNN, Skim-RNN and Leap-LSTM. These mod-
els select and use only parts of texts from input to speed
up process, achieving better performance than the standard
RNN/LSTM models in many tasks and datasets.

LSTM-Jump learns to predict the number of jumping
steps to skip irrelevant information after it reads one or sev-
eral input tokens, resulting in faster inference (Yu, Lee, and
Le 2017). Given a training example x1:T , LSTM-Jump reads
the embedding of the firstR tokens x1:R, and uses the result-
ing hidden state to compute a softmax that determines a dis-
tribution over the jumping steps between 1 and K. To solve
the non-differentiable jumping action parameters θa, rein-
forcement learning and policy gradient method (Williams
1992) are used. The experiments on different NLP tasks
show that the selective reading approach speeds up the base
model by two to six times, beating the standard LSTM in
accuracy.

Skip-RNN augments RNN with a binary state update
gate, ut ∈ {0, 1} which determines whether the state of the
RNN will be updated (ut = 1) or copied from the previous
time step (ut = 0) (Campos et al. 2017). At a time step t,
the probability ũt+1 ∈ [0, 1] of performing a state update at
t + 1 is pre-calculated. If the model decides to omit a state
update, the pre-calculated state update gate for the follow-
ing time step, ũt+1, is incremented by ∆ũt. Alternatively,
if the model decides to perform a state update, the accumu-
lated value is flushed and ũt+1 = ∆ũt. The whole model is
differentiable except for a binary function. Skip-RNN uses a
straight-through estimator (Bengio, Léonard, and Courville
2013) and approximates the binary function by the iden-
tity when computing gradients during the backward pass.
Evaluation on six different sequence learning tasks shows
that Skip-RNN provides faster and more stable training for
long sequences and complex models, reducing the number
of floating point operations (FLOPs).

Structural-Jump-LSTM (Hansen et al. 2019) combines
the advantages of Skip-RNN and LSTM-Jump: it can skip
and jump text. The model consists of two agents: one is
capable of skipping single words when reading, and one
is capable of exploiting punctuation structure (sub-sentence
separators (,:), sentence end symbols (.!?), or end of text
markers) to jump ahead after reading a word. JUMPER (Liu
et al. 2018), inspired by the cognitive process of text read-
ing, scans a piece of text sequentially and makes classifica-

tion decisions when there is enough evidence, reducing total
text reading by 30∼40%.

Skim-RNN skims rather than skips tokens (Seo et al.
2017). Skimming refers to spending little time on parts of
the text that do not affect the reader’s main objective. This
is operationalised as using a smaller RNN to update only
a fraction of the hidden state. Alternatively, for parts of
text that should be read fully, Skim-RNN updates the hid-
den state with a larger RNN. To solve the non-differentiable
issue of the decision function, Skim-RNN uses Gumbel-
Softmax (Jang, Gu, and Poole 2017) to estimate the gradi-
ent of the function. Experiments show that Skim-RNN can
significantly reduce FLOPs, achieving faster inference on
CPUs and higher accuracy than skipping tokens.

Most of the aforementioned models use only preceding
context (e.g. hidden state at time step t − 1) in the deci-
sion making component. The resulting networks are diffi-
cult to converge and unstable. Leap-LSTM improves over
these models by including information from the current
word and following context (Huang, Shen, and Deng 2019).
Furthermore, leap-LSTM provides a controllable skipping
rate by adding a penalty term during training. Experiments
show that skipping about 60% or 90% words leads to
only insignificant decline in accuracy compared to standard
LSTM. Furthermore, Leap-LSTM model can achieve better
accuracy with a speed-up ranging from 1.5x∼1.7x. How-
ever, Leap-LSTM looks at the words one by one to decide
whether to skip or keep, which slows down the processing
to some extent. Pointer-LSTM uses a pointer network to go
through all words first and then select top-K important words
for the final classification (Du, Huang, and Moilanen 2020).
Results on four data sets show that Pointer-LSTM is much
faster than Leap-LSTM at the skip rate 0.9.

Since Leap-LSTM is the latest work regarding selective
RNNs and achieves state-of-the-art results on various pub-
lic datasets, we illustrate our approach by enhancing Leap-
LSTM. We propose a knowledge-aware framework which
can utilise prior knowledge (i.e. keywords) to supervise the
training of the decision network. The main difference of our
work with previous models is that we fully utilise human
knowledge to guide the skipping process.

Knowledge-Aware Leap-LSTM (KALL)
Existing selective RNNs achieves significant speed-up, but
only marginal improvement in performance. We investigated
the skipping decisions of these models and found that many
informative or important words are skipped due to the lack
of direct supervision on skipping during training.

Since human knowledge can provide complementary sig-
nal to neural networks, we propose a knowledge-aware
framework to improve the performance of selective RNNs.
More specifically, we take Leap-LSTM as the backbone and
illustrate the integration of human knowledge to the model.
A major challenge here is how to maintain the differentiabil-
ity of a selective RNN when integrating a discrete variable
about keyword knowledge into it, so that back-propagation
can be used to train the neural network. We propose two in-
tegration approaches as described below.
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Figure 1: Architecture of Factored KALL

Human Knowledge: Keywords
We define keywords as important and informative words
or expressions for an NLP task. They can be extracted
automatically or manually. Take binary sentiment analy-
sis as an example, where a given sentence is classified
as positive or negative. Positive sentences tend to include
words like “adorable, attractive, distinguished”, while neg-
ative sentences may contain words like “aggressive, annoy-
ing, bored”. These words can be regarded as sentiment key-
words and used as features in sentiment analysis.

Recent decades have seen a surge of electronic dictionar-
ies, lexicons and terminologies. These human knowledge re-
sources contain abundant keywords useful for augmenting
various NLP models. As a result, our knowledge-aware se-
lective RNN framework is widely applicable.

Standard Leap-LSTM
Given an input token xt at time step t, Leap-LSTM uses a
two-layer MLP to calculate a probability distribution over
skipping versus keeping the token:

st = RELU(W1[xt;fprecede(t);ffollow(t)] + b1) (1)
πt = softmax(W2st + b2) (2)

where st is the hidden state of the MLP, and πt represents
the aforementioned probability distribution. fprecede(t) and
ffollow(t) are contextual features before and after time step
t, respectively. W1, W2, b1 and b2 are trainable parameters.

A binary decision dt is then obtained by sampling πt us-
ing Gumbel-softmax, and the hidden state of LSTM is up-
dated as:

ht =

{
LSTM(ht−1, xt) if dt = 0

ht−1 if dt = 1
(3)

where dt = 0 indicates keep and dt = 1 indicates skip.
The objective function includes a penalty term to control

the skipping rate of the model:

L = Lc + λ(rt − r)2 (4)

where Lc is the classification loss; rt is the pre-defined (ex-
pected) skip rate while r is the actual skip rate; λ > 0 is the
weight for the penalty term.

In Equation (1), the preceding feature fprecede(t) is
formed by ht−1 to encode the information of all processed
words. The following feature ffollow(t) consists of two
parts: local and global contexts. The local context is ob-
tained by applying a convolutional neural network (CNN) to
xt+1:t+m, where m is the window size of the context. The
global feature is produced using a small LSTM on xt+1:T ,
where T is the length of current sequence. Note that the
small LSTM reversely reads the texts, i.e. starting from the
end of the sequence. The complete following feature is con-
structed as:

ffollow(t) =

{
[LSTMr(t+ 1);CNN(t+ 1)] if t < T ;

hend if t = T.
(5)

where hend is a learnable parameter, and LSTMr(t + 1) is
the small LSTM reading texts reversely.

The Gumbel-softmax for decision sampling is as:

yi =
exp((log(πi) + gi)/τ∑k

j=1 exp((log(πj) + gj)/τ)
(6)

where i = {1, . . . , k} and k is the number of decisions; τ
is the softmax temperature. The update function of Equation
(3) is then operationalised as:

ht = [yt]0 · LSTM(ht−1, xt) + [yt]1 · ht−1 (7)

Knowledge-Oriented Cost Function
Given a set of keywords K, we use kwt

to indicate whether
an input token wt is a keyword. A knowledge-oriented cost
function is then created by adding a penalty term to the cost
function of Equation (4) as follows:

L = Lc + λLs + βLk (8)

where Ls represents the loss from the skipping mechanism
(i.e. the difference between the pre-defined and actual skip
rates), while Lk represents the cost related to knowledge
guidance and weighted by β > 0.

Our design of Lk follows the idea that the skipping deci-
sion dt from the decision making component should be con-
sistent with the keyword indicator. More specifically, when
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Figure 2: Architecture of Gated KALL

Figure 3: Gating mechanism in gated knowledge integration

a token is indicated as a keyword (kwt = 1), the network
should decide to keep the token (i.e. predicting dt = 0 for
Equation 3), otherwise the model should be penalised. As a
result, we define Lk as below:

Lk = − 1

T

T∑
t=1

ut logP (dt = 0) (9)

ut =

{
1 if dt = 0 or kwt

= 1;

0 otherwise
(10)

where P (dt = 0) is the probability of dt = 0 calculated
from Equation (2).

The penalisation works as follows: given a keyword in-
put token (kwt = 1), if the network predicts that the to-
ken should be kept (dt = 0), the probability of dt = 0
approaches 1 (i.e. the log probability approaches 0), and no
penalty is incurred. Alternatively, if the network predicts that
dt = 1, the probability of dt = 0 is low, resulting in a large
loss. We do not penalise any other scenarios (e.g. when the
input token is not indicated as a keyword but the model de-
cides to keep the token) so as to maintain the flexibility of
the model to learn and discover useful words for a task.

Factored KALL: Knowledge as Factor in Word
Embeddings
To draw further benefit from human knowledge, we integrate
keyword information to the skip prediction process.

Our first approach is to represent keyword information
as a factor in the word embedding input. More specifically,
we define a vector ft to represent whether wt is a key-
word. While there are many ways to define ft (e.g. using
a binary indicator, a one-hot vector or embedding etc.), we
use a multi-hot vector to capture rich keyword information:
ft = [d0, d1, d2, d3], in which d0 represents whether wt is
a single keyword or part of a multi-word keyword, while
d1, d2 and d3 indicate whether wt is the start, middle and
end of the multi-word keyword, respectively. For example,
ft = [1, 0, 1, 0] indicates that the current word wt is a key-
word, and it is in the middle of a multi-word keyword. Fur-
thermore, in scenarios that keywords have different impor-
tance, we can prioritise each keyword by setting ft to differ-
ent positive numbers, e.g.> 1 indicates more important, and
< 1 represents less important. In our experiments, we set ft
as a multi-hot vector with equal weights.

Figure 1 shows the architecture of factored KALL, where
wt is the word embedding, Et is the concatenation of ft and
the word embeddingwt. We feedEt as well as the preceding
and following contexts of wt to an MLP network to predict
whether wt should be kept or not.

Using knowledge as a factor in word embeddings pro-
vides a soft signal to skip prediction. There is no guaran-
tee that the model keeps every keyword. Nevertheless, the
knowledge-oriented function introduced in Section can al-
leviate this problem by driving the model to include more
keywords through weight optimisation.

Gated KALL: Gated Knowledge Integration
To enforce the model to keep all keywords while maintain-
ing the differentiability of the network, we propose the sec-
ond approach of integrating keyword information to the skip
prediction: a gating mechanism as shown in Figures 2 and 3.

We define two gates: a Keyword Gate and a Decision
Gate. The Keyword Gate uses a pre-defined probability to
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indicate the degree to which a word is considered as a key-
word. Without loss of generality, we apply a Sigmoid func-
tion to a predefined keyword weight ft, setting it as a posi-
tive integer� 1 when wt is a keyword, and a negative num-
ber� −1 otherwise:

hf (t) = σ(ft) =

{
≈ 1; ft ≥ C if wt ∈ K;

≈ 0; ft ≤ −C if wt 6∈ K.
(11)

where hf (t) is the probability produced by the Keyword
Gate; C � 1 is the minimum absolute value for ft. In our
experiments, we set ft = 6 for all keywords, and ft = −6
for all non-keywords. Different thresholds may be set to dif-
ferent keywords to indicate varied degree of importance.

The Decision Gate controls whether a word is kept or not
which performs a soft switch operation to combine hf (t) and
the probability distribution πi on skipping versus keeping
from Equation (2), resulting in a new update function for the
hidden state of LSTM:

ht =

{
LSTM(ht−1, xt) if dt = 0 or hf (t) >= θ

ht−1 if dt = 1 and hf (t) < θ
(12)

where dt = 0 indicates a decision to keep the token as pro-
duced by the decision network, and dt = 1 otherwise; θ is
a pre-defined threshold for the Keyword Gate (e.g. 0.5). To
make the neural network differentiable, we rewrite the hid-
den state update function as:

ht = max(hf (t), [yt]0) · LSTM(ht−1, xt)

+ min(1− hf (t), [yt]1) · ht−1 (13)
Figure 3 presents a detailed diagram of the gating mech-

anism. The gating mechanism guarantees that the model
keeps all keywords, and uses the decision network to de-
cide whether to keep or skip a non-keyword. To illustrate,
when the Keyword Gate indicates that wt is a non-keyword
(e.g. as shown in Figure 2), then hf (t) ≈ 0 and the decision
component suggests to skip the token (i.e. dt = 1), the up-
date function becomes ht ≈ min(1 − hf (t), [yt]1) · ht−1,
i.e. the network skips wt by copying ht−1 to ht. Alterna-
tively, when Keyword Gate signals that wt should be kept
(e.g. a keyword as shown in Figure 2), even though the deci-
sion function suggests to skip the token, the update function
becomes ht ≈ max(hf (t), [yt]0) · LSTM(ht−1, xt), i.e. the
network keeps the token and feeds it to LSTM to update ht.

Note that Eq. (13) describes the strategy for updating ht
during training. Since back-propagation is not required dur-
ing inference, We directly use Eq. (12) for inference.

Experiments
We use four datasets to evaluate KALLs: (1) two large-
scale public datasets with automatically generated keywords
as “human knowledge”, for experiments in a general sce-
nario; (2) two customised datasets with only long sequences
and human generated keywords, for experiments in a low-
resource scenario.

We evaluate the overall accuracy of the models (i.e. F1
score for multi-class classification), and conduct an ablation
test to investigate the performance gain from the knowledge-
oriented cost function, the factored and the gated mecha-
nisms. Furthermore, we evaluate the speed-up of KALLs in
terms of inference time.

Our baselines include LSTM, standard Leap-LSTM, dis-
tilBERT (Sanh et al. 2019) and the SOTA pre-trained model
XLNet (Yang et al. 2019). DistilBERT reduces the size of a
BERT model by 40%, while retaining 97% of its language
understanding capabilities and being 60% faster. XLNet is
an extension of the Transformer-XL (Dai et al. 2019) model
which introduces a recurrence mechanism without the se-
quence length limit during the training (nevertheless, the
maximum length limit still needs to be set when fine-tuning
downstream tasks). All systems are trained on GPUs (AWS
g3.16xlarge, NVIDIA Tesla M60), and the inference time is
evaluated in a CPU-only industrial scenario.

Datasets
The four datasets are AGNews, DBpedia, Yelp Review Full
(Yelp-Full) and Yelp Review Polarity (Yelp-Polarity)1. AG-
News and DBpedia are the same as in (Huang, Shen, and
Deng 2019), containing both short and long sequences,
whereas Yelp-Full and Yelp-Polarity are customised to in-
clude long sequences to simulate a low-resource scenario.
More specifically, we first selecte sequences of more than
100 tokens from the original train, validation and test sets,
respectively, and then randomly sample 10% of these se-
quences respectively from the selected train, validation and
test sets to form small datasets. Table 1 shows the statistics
of the datasets. Full Small and Polarity Small are the cus-
tomised datasets, as opposed to the original ones. MaxLen
and AveLen denote the maximum and average sequence
length of a training set. As we can see, the sequences can
be very long (> 1000 tokens), with an average length of
more than 200 in our constructed datasets.

We use the publicly available Opinion Lexicon2 (Hu and
Liu 2004) as the human knowledge for Yelp-Full and Yelp-
Polarity. The opinion lexicon contains 6,800 English posi-
tive and negative sentiment/opinion words. While no key-
words are generated by humans for AGNews and DBpedia,
we illustrate the wide applicability of our models by using
automatically generated keywords as “human knowledge”.
We first use sklearn’s tf-idf3, TextRank (Mihalcea and Tarau
2004) and Rake (Rose et al. 2010) to generate three separate
keyword sets with n-gram range of [1, 3] throughout; then
we intersect them and obtain 3,006 keywords for AGNews
and 3,938 for DBpedia.

Settings and Hyper-parameters
Table 3 shows the common settings of the hyper-parameters
across KALLs and LSTM-based baselines. Specific settings
for KALLs and the standard learp-LSTM models are listed
in Table 4, where λ is the weight of the penalty term for
skip prediction in Equations (4) and (8). We set the weight
of the knowledge-oriented penalty term as β = 2 for both
factored and gated KALLs4. We use “xlnet-base-cased” pre-

1https://github.com/zhangxiangxiao/Crepe.
2https://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html#

lexicon
3https://scikit-learn.org/stable/modules/generated/sklearn.

feature extraction.text.TfidfVectorizer.html
4We set β = 4 when the skip rate is 0.9 for Gated KALL.
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Dataset #Train #Validation #Test MaxLen AveLen #Label
Full Original 600,000 50,000 50,000 1,231 156 5
Polarity Original 540,000 20,000 38,000 1,194 154 2
Full Small 67,045 5,558 5,604 1,187 235 5
Polarity Small 59,259 2,189 4,159 1,164 236 2
AGNews 110,000 10,000 76,00 250 45 4
DBpedia 540,000 20,000 70,000 1,500 55 14

Table 1: Statistics of the datasets.

Model Full Small Polarity Small AGNews DBpedia
Settings: Fixed Length

Standard LSTM ALL 200 100 ALL 200 100 ALL 100 25 ALL 100 25
61.63 57.60 51.75 95.14 92.67 87.93 93.53 93.46 92.11 99.05 99.01 98.11
256 128 – 256 128 – 256 128 – 256 128 –

XLNet 64.97 60.30 – 96.27 91.53 – 94.50 93.05 – 99.40 98.91 –
DistilBERT 64.63 – – 96.08 – – 94.29 – – 99.25 – –

Settings: Skipping Rate
0.25 0.6 0.9 0.25 0.6 0.9 0.25 0.6 0.9 0.25 0.6 0.9

Standard Leap-LSTM 61.56 59.48 54.08 94.69 93.65 89.06 93.85 93.54 93.04 99.10 99.06 98.84
Factored KALL w/o Lk 61.55 59.90 55.73 94.57 93.77 90.69 – – – – – –
Gated KALL w/o Lk 61.67 58.90 53.25 94.73 93.41 89.03 – – – – – –
Factored KALL + Lk 61.85 60.64 56.50 94.97 94.21 91.56 93.93 93.64 93.23 99.14 99.09 99.01
Gated KALL + Lk 62.33 60.72 57.48 95.02 94.42 92.71 94.00 93.75 93.34 99.35 99.16 99.10

Table 2: Micro F1 scores of all systems

Parameter Value
optimiser Adam
dimension of Glove pre-trained word embedding 100
size of hidden states 200
learning rate 0.001
number of layers of LSTM 1
epochs 25
batch size 32
dropout rate 0.4
lowercase True

Table 3: Common settings of all systems.

trained model for XLNet and “distilbert-base-uncased” for
distilBERT. The batch size of fine-tuning XLNet is set to
8 and 4 when the maximum length limit is 128 and 256,
respectively; the batch size of distilBERT is set to 10. All
other hyper-parameters are kept as default.

In the implementation of standard Leap-LSTM5 and our
KALL models, the states of small LSTM and CNNs are pre-
computed and cached after each data batch is fed into the
model; and the main LSTM retrieves relevant states from
the cache at each time step for skip decision making.

Model Accuracy
Table 2 shows the performance of KALLs and the baselines
at different input lengths. ALL means that LSTM reads full
sequences. We use the commonly-used cut-off lengths 200

5The authors of Leap-LSTM released their codes at:
https://github.com/ht1221/leap-lstm in Tensorflow, and we re-
implemented it with Pytorch.

Parameter Value
λ 1.0
size of the first CNN filter [3, 300, 1, 60]
size of the second CNN filter [4, 300, 1, 60]
size of the third CNN filter [5, 300, 1, 60]
size of small LSTM for global feature 20
size of MLP for decision making 20
dropout of small LSTM for global feature 0.5
temperature τ for gumbel-softmax 0.1

Table 4: Settings of Leap-LSTM and KALL

and 100 for Standard LSTM; To speed up the transformers,
we use half (256) and a quarter (128) of the original max-
imum length 512 for XLNet and distilBERT. The skipping
rates of all Leap-LSTM systems are set to 0.25, 0.6 and 0.9.
All models are evaluated using Micro F1 score.

As we can see from Table 2, the two KALL models
with the knowledge-oriented loss function Lk perform the
best on all LSTM-based systems but one scenario: the stan-
dard LSTM with the full length input on the Polarity Small
dataset6. Specifically, the gated KALL + Lk achieves best
overall F1 scores. The performance gain is especially large
when the skipping rate is high.

Our ablation tests show that the two KALL models with-
out Lk perform differently under different skipping rates.
Factored KALL w/o Lk outperforms standard Leap-LSTM,
showing that the factored method as a soft integration of
knowledge gives the decision network more flexibility to de-

6Nevertheless, for this scenario, when we lowered the skipping
rate to 0.15, gated KALL achieved a higher score.
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Model Full Small Polarity Small AGNews DBpedia
0.25/L 0.9/L 0.25/L 0.9/L 0.25/L 0.9/L 0.25/L 0.9/L

Leap-LSTM 24.33/179 83.50/39 27.21/171 90.24/23 26.04/33 86.00/6 25.88/41 87.38/7
Factored KALL 23.03/182 83.19/40 28.31/169 84.07/37 25.03/33 85.42/7 25.32/41 86.24/8
Gated KALL 25.45/176 80.0/47 23.81/179 81.25/44 23.94/34 83.67/7 24.50/42 84.36/9

Table 5: Actual skipping rates and average sequence length of Leap-LSTM and KALL

Model Full Small Polarity Small AGNews DBpedia
0.25 0.6 0.9 0.25 0.6 0.9 0.25 0.6 0.9 0.25 0.6 0.9

Leap-LSTM 1.4x 1.6x 1.9x 1.8x 2.1x 2.7x 1.1x 1.5x 2.3x 1.2x 1.7x 2.8x
Factored Knowledge-aware 1.4x 1.6x 1.9x 1.8x 2.1x 2.5x 1.1x 1.4x 2.3x 1.2x 1.7x 2.6x
Gated Knowledge-aware 1.3x 1.6x 1.9x 1.7x 2.1x 2.3x 1.1x 1.4x 2.3x 1.2x 1.7x 2.5x

Table 6: Inference speed-up relative to standard LSTM.

cide a keyword to keep or skip. By contrast, Gated KALL
w/o Lk performs worse when the skipping rates are 0.6 and
0.9. We argue that forcing the network to keep the keyword
without adjusting the decision network to learn from the
knowledge will deteriorate system performance, especially
when skipping more words.

Furthermore, the addition of the knowledge-oriented cost
function improves the performance of KALLs, showing that
the cost function contributes to the gain of KALLs by bet-
ter optimising the parameters, especially for Gated KALL
where the loss function helps to adapt the decision network
to be consistent with the enforcement of keywords.

XLNet (256) and distilBERT (256)7 achieve better results
on all datasets compared to our KALLs. However, when
the maximum length limit is 128, the F1 scores of XL-
Net dramatically decrease and are significantly worse than
our Gated KALLs when the skipping rate is 0.6. We ar-
gue that in practical scenarios where resource is limited
or low latency is required, fast LSTM-based models which
can achieve comparable performance can be more prefer-
able than cumbersome transformers to deploy. Furthermore,
our skipping model, which can scan any long sequence
and keep important words while reducing the information
loss, does not suffer from the inherent maximum input
length limitation which hamstrings deep architectures. Our
results show that knowledge-aware skipping models can bal-
ance accuracy/speed trade-off better than existing selective-
RNNs without excessive architectural modifications.

Skipping Rates and Inference Speed
Table 5 shows the actual skipping rates of the three Leap-
LSTM models and the average sequence length L under
each actual skipping rate on the test set. As we can see, when
the skipping rate is 0.9, on average, KALLs select fewer than
50 tokens from an input sequence of the two Yelp datasets,
and fewer than 10 tokens from an input sequence of AG-
News and DBpedia. These models significantly outperform
the standard LSTM which uses a fixed-length input of 100
tokens on Yelp data and 25 tokens on AGNews and DBpe-
dia. This shows that for an NLP task with long sequences,

7256 is the maximum input length for XLNet and distilBERT.

simple truncation strategy introduces a large risk of deterio-
rating model performance, and KALLs are effective in miti-
gating that risk.

Table 6 shows the speed-up of inference time of KALLs
and Leap-LSTM relative to the standard LSTM. The stan-
dard Leap-LSTM is 1.1x∼2.7x faster than the standard
LSTM across various skipping rates. The two KALL mod-
els are slower than the standard Leap-LSTM in some cases,
meaning our knowledge integration has traded off some in-
ference speed for model performance. Nevertheless, KALLs
are still 1.1x∼2.6x faster than the standard LSTM.

Though XLNet and distilBERT performs better on many
NLP tasks, they are impractical for many industry applica-
tions due to its high resource consumption and low speed.
We take the Full Small data set as an example: on our CPU-
only platform, XLNet (256) uses 802 seconds on the test set
of Full Small, distilBERT (256) takes 337 seconds, while our
Gated KALL (r = 0.9) uses only 34 seconds, which is 23.6x
and 9.9x faster than XLNet (256) and distilBERT (256), re-
spectively. Even on the GPU server, XLNet (256) takes 371
seconds and distilBERT (256) uses 60 seconds, which are
respectively 10.9x and 1.76x slower than our Gated KALL
(r = 0.9). We obtained similar results in terms of speed
comparison on other data sets.

Conclusions
This paper proposes a novel framework (KALL) to integrate
human knowledge of keywords into the skipping process of
Leap-LSTM, a SOTA selective RNN which is fast in pro-
cessing long sequences. We design two integration strate-
gies: the factored KALL which integrates a keyword vector
as a factor in word embedding, and the gated KALL which
uses a gated mechanism to enforce the model to keep the
keywords. We also propose a knowledge-oriented cost func-
tion which can better optimise the parameters in the decision
network for predicting whether to keep or skip the word. Our
evaluation on four public datasets shows that: (1) KALLs
significantly outperform standard LSTM and Leap-LSTM
in accuracy, while maintaining a fast processing speed; (2)
KALLs are not only faster, but also achieve comparable per-
formance in a resource-limited circumstance compared to
XLNet and distilBERT.
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