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Abstract

Currently the unified semantic role labeling (SRL) that
achieves predicate identification and argument role labeling
in an end-to-end manner has received growing interests. Re-
cent works show that leveraging the syntax knowledge sig-
nificantly enhances the SRL performances. In this paper,
we investigate a novel unified SRL framework based on the
sequence-to-sequence architecture with double enhancement
in both the encoder and decoder sides. In the encoder side,
we propose a novel label-aware graph convolutional network
(LA-GCN) to encode both the syntactic dependent arcs and
labels into BERT-based word representations. In the decoder
side, we creatively design a pointer-network-based model for
detecting predicates, arguments and roles jointly. Our pointer-
net decoder is able to make decisions by consulting all the in-
put elements in a global view, and meanwhile it is syntactic-
aware by incorporating the syntax information from LA-
GCN. Besides, a high-order interacted attention is introduced
into the decoder for leveraging previously recognized triplets
to help the current decision. Empirical experiments show that
our framework significantly outperforms all existing graph-
based methods on the CoNLL09 and Universal Proposition
Bank datasets. In-depth analysis demonstrates that our model
can effectively capture the correlations between syntactic and
SRL structures.

1 Introduction
Semantic role labeling (SRL), as a shallow semantic pars-
ing for extracting the predicate–argument structure in sen-
tences, has long been a fundamental natural language pro-
cessing (NLP) task (Gildea and Jurafsky 2000; Pradhan et al.
2005; Zhao et al. 2009; Fei, Ren, and Ji 2020). Traditional
SRL is divided into two pipeline subtasks: predicate identifi-
cation (Scheible 2010) and argument role labeling (Pradhan
et al. 2005). Recently, great efforts have been paid for con-
structing unified SRL systems, solving two pipeline steps in
one shot via one unified model (He et al. 2018), as illus-
trated in Figure 1. Most current unified SRL models employ
graph-based models by exhaustively enumerating all poten-
tial predicates and their corresponding arguments jointly (He
et al. 2018; Cai et al. 2018; Li et al. 2019). Graph-based
models improve the SRL performances by reducing the error
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Figure 1: An example of unified SRL. Above/below are the
SRL/dependency structures, respectively. Same color refers
to the propositions under the same predicate.

propagation in the pipeline scheme, meanwhile achieving an
overall simplified procedure.

Moreover, many prior work has revealed that syntax fea-
tures are extraordinarily effective for SRL (Roth and Lap-
ata 2016; Marcheggiani and Titov 2017; Zhang, Wang, and
Si 2019). Intuitively, the predicate–argument structure in
SRL shares many common connections with the underlying
syntactic structure (i.e., dependency tree), as illustrated in
Figure 1. Nevertheless, most of prior syntactic dependency-
aware SRL models are limited to the merely use of de-
pendency arcs (e.g., clickyyou), while neglecting depen-
dency labels (e.g., nsubj) (Jin, Kawahara, and Kurohashi
2015; Roth and Lapata 2016; Strubell et al. 2018; Xia et al.
2019). Actually, dependency labels carry crucial evidences
for SRL, since the information from the neighboring nodes
under distinct types of arcs contributes in different degrees
(Kasai et al. 2019). In Figure 1, dependent arcs with nomi-
nal attributes (e.g., nsubj, obj) are more associated with core
roles (e.g., A0-A5) in SRL, while the arcs with modifying
attributes (e.g., advmod) relate more to modifier roles (e.g.,
AM-*). On this basis, another line of works has considered
both dependent arcs and labels via graph convolutional net-
works (GCN) (Marcheggiani and Titov 2017).

In this work, we propose a novel unified SRL framework,
which is fully orthogonal to the existing graph-based meth-
ods. The system leverages the encoder-decoder architecture
(cf. Figure 2), being able to jointly produce all the possi-
ble predicate-argument-role triplets. In the encoder side, we
newly propose a label-aware GCN (namely LA-GCN) for
encoding word representations, dependency arcs and labels
(cf. Figure 2 left). The syntax GCN encoders in existing
SRL works (Marcheggiani and Titov 2017) model depen-
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Figure 2: Our sequence-to-sequence framework for unified SRL. The input consists of a sentinel token ‘<S>’ (idx=1) and the
words (idx=2∼9). During decoding, if the pointer directs to <S>, the decoder will go to next word. If the pointer directs to a
real word, a predicate-argument pair will be generated and its role label will be given by the role labeler.

dent labels by creating label-specific GCN parameters, i.e,
each dependency label owns a set of GCN parameters. Such
an implicit modeling method could be inefficient and prob-
lematic to be re-harnessed, while our LA-GCN encoder for-
malizes the arcs and labels simultaneously, and normalizes
them unitedly into distributions as connecting-strengths (cf.
Figure 3).

In the decoder side, we design a novel decoding system
for SRL based on the pointer network (Vinyals, Fortunato,
and Jaitly 2015), which picks an element from the input
tokens with the highest probability at each decoding step
(cf. Figure 2 right). Pointer networks have been exploited
for a wide range of NLP tasks, such as text summarization
(See, Liu, and Manning 2017), syntactic parsing (Ma et al.
2018), information extraction (Li, Ye, and Shang 2019), etc.
Pointer networks can make decisions in the consultant of all
the input elements in a global scope (See, Liu, and Man-
ning 2017; Ma et al. 2018; Li, Ye, and Shang 2019). The
decoder detects all possible arguments for each predicate in
an incremental, close-first fashion, and meanwhile the la-
beler assigns semantic roles for the determined argument-
predicate pairs. Besides the pointer-based decoding, we fur-
ther propose two enhancements in the decoder side. First,
we improve the pointer with a high-order interacted atten-
tion mechanism, where each decoding input is fused with the
prior recognized triplets as high-order information (cf. Fig-
ure 4). At the meantime, we render the pointer to be syntax-
aware by fully incorporating previously yielded dependency
information from the LA-GCN (cf. Figure 4).

We conduct evaluations on two SRL benchmark datasets,
including CoNLL09 English (Hajič et al. 2009), and Univer-
sal Proposition Bank (Akbik et al. 2015; Akbik and Li 2016)
for total eight languages. Experimental results show that
our framework outperforms all baselines significantly, and
achieves new state-of-the-art performances on unified SRL
in terms of both the predicate identification and argument
role labeling. Ablation studies are performed for compre-
hensively understanding the contribution of each proposed
mechanism. Further analysis demonstrates that our model
can effectively capture the correlations between dependent
labels and semantic role labels. At last, we summarize our

contributions in this study as below:
I To our knowledge, we are the first to present a unified

SRL framework based on pointer networks. The pointer at
current decision is encouraged to interact with previously
recognized triplets via a proposed high-order interacted at-
tention mechanism.

I We introduce a novel label-aware GCN encoder for
modeling syntactic dependency arcs and labels simultane-
ously. We render the pointer to be syntax-aware by re-
harnessing the syntactic dependency distribution from the
label-aware GCN.

I Our framework gives new state-of-the-art performances
on SRL benchmarks. In-depth analysis uncovers that our
model can well capture the correlations between syntactic
and SRL structures.

2 Related Work
The task of semantic role labeling (SRL) pioneered by
Gildea and Jurafsky (2000) can be roughly grouped into two
schemes: the pipeline scheme and the unified scheme. Prior
works traditionally separate the SRL into two pipeline sub-
tasks, i.e., predicate disambiguation and argument role la-
beling. They mainly conduct argument role labeling based
on the pre-identified predicate oracle. Earlier works em-
ploy hand-crafted features with machine learning classi-
fiers (Pradhan et al. 2005; Punyakanok, Roth, and Yih
2008), while later researchers take advantages of neural
networks with automatic distributed features (FitzGerald
et al. 2015; Roth and Lapata 2016; Marcheggiani and Titov
2017; Strubell et al. 2018). Recent efforts are paid for the
end-to-end solution that handles both two subtasks by one
model, i.e., unified SRL. All the current unified SRL em-
ploys graph-based neural model, exhaustively enumerating
all the possible predicate and arguments, as well as the roles
labels (He et al. 2018; Cai et al. 2018; Li et al. 2019; Lei
et al. 2015).

Our work is also closely related to the application of
pointer networks (Vinyals, Fortunato, and Jaitly 2015).
Pointer networks have been extensively exploited for many
NLP tasks, such as text summarization (See, Liu, and Man-
ning 2017), syntactic parsing (Ma et al. 2018; Fernández-
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González and Gómez-Rodrı́guez 2020), information extrac-
tion (Li, Ye, and Shang 2019), etc. On the one hand, based
on encoder-decoder architecture (Sutskever, Vinyals, and Le
2014), pointer network is able to yield results with lower
model complexity. Besides, pointer network can make de-
cisions in the consultant of all the input elements in global
viewpoint (See, Liu, and Manning 2017; Ma et al. 2018; Li,
Ye, and Shang 2019). In this work, we first present a pointer
network based solution for end-to-end SRL, as an alternative
to the current graph-based methods.

In addition, our work also falls into syntax-aware SRL.
The syntactic features, e.g., dependency structures, have
long been proven effective for SRL tasks (Marcheggiani,
Frolov, and Titov 2017; Zhang, Wang, and Si 2019; Fei et al.
2020). Yet most prior work merely utilized the dependent
arcs, leaving the dependent type information unexploited,
which however is equally crucial for the task. On the other
hand, some consider encoding such dependent labels using
GCN model (Marcheggiani and Titov 2017), i.e., by creating
the label-specific GCN parameters. Unfortunately, such im-
plicit integration of dependent labels could be less effective,
since intuitively the dependent arcs and labels are closely
related, and should be modeled in a more unified manner.
In this paper, we propose a label-aware GCN encoder for
effectively modeling these two syntax information. We also
improve our framework with a high-order interacted atten-
tion mechanism and a syntactic-aware pointer mechanism,
which can further facilitate the procedure.

3 Preliminary
SRL Formalization Following the current line of unified
SRL studies (He et al. 2018; Cai et al. 2018; Li et al. 2019),
we model the task as predicate-argument-role triplet pre-
diction. Given an input sentence S = {w1, · · · , wn}, our
framework predicts a set of triplets Y = {· · · , <pk, ak, rk>
, · · · |pk ∈ P, ak ∈ A, rk ∈ R}, where P , A and R are all
possible predicate/argument tokens, and role labels. In Fig-
ure 2, we show the format of the final outputs for the corre-
sponding input sentence. In this work, we mainly consider
the dependency-based SRL, detecting the dependency head
of each argument (Li et al. 2019). Note that our framework
is flexible to be extended to the span-based SRL, by further
predicting the end-boundary for an argument.

Pointer Network The pointer mechanism functions by
learning the conditional probability of an output at the posi-
tion corresponding to an input token. The vanilla pointer net-
work employ the attention mechanism (Bahdanau, Cho, and
Bengio 2015; Luong, Pham, and Manning 2015) to accom-
plish the selecting target from the input sequence.1 Tech-
nically, given the encoding representations of input tokens
[e1, · · · , en], and the current decoding representation st, we
calculate the relatedness between st and each ei and normal-
ize it over the inputs as below:

vt,i = Score(st, ei) = Tanh(W0[st; ei] + b) ,

ot,i = Softmax(vt,i) , i = [1, · · · , n] .
(1)

1We denote the vanilla pointer mechanism as base pointer.
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Figure 3: Illustration to show the process of generating the
encoder representation h7 for the 7-th word ‘view’ in Figure
2, using our proposed label-aware GCN.

We then take the position Pt with the maximum ot,i over
each input token wi as the output of t-th decoding:

Pt = Argmax
i

(ot,i) . (2)

Each pointing decision is made in the consultant of all input
tokens, which can be seen as a type of global interaction.

4 Our Framework for Unified SRL

Overview In Figure 2, we give a overall picture of our
framework. In the encoder module, we first employ the
pre-trained BERT language model (Devlin et al. 2019) to
provide word representations for input tokens. Then, the
LA-GCN fuses rich syntax features and learn contextual-
ized word representations. Finally, we take the shortcut con-
nected representations between BERT representations and
LA-GCN representations as the final encoder representa-
tions. As shown in Figure 2, a sentinel token ‘<S>’ is in-
serted at the head of the input sentence, which informs the
system that the current decoding input (maybe predicate)
has no further argument.

In the decoder module, the decoder first takes the encoder
representation ej of the input token wj , and outputs the cor-
responding decoding representation st at each step t. Then
the pointer will direct to a position of a input tokenwi, and if
wi is not ‘<S>’, the decoder will generate a predicate(wj)-
argument(wi) pair. Further, the labeler assigns the role label
for the pair. Note that the decoder takes tokens sequentially
in the order of the input, but if a token wj is determined as
a predicate, it will be re-input at next decoding step, until no
further argument is detected. The decoding process termi-
nates once all the input tokens are examined, and meantime
it outputs all the triplets Y .
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Encoder Module
Word Representation We employ BERT (Vaswani et al.
2017) to yield our contextualized word representation rbi for
each token wi:

{rb1, · · · , rbn} = BERT({x1, · · · ,xn}), (3)
where rbi is the BERT output representation. We concatenate
word-piece embeddings and position embeddings, i.e., xi =
xw
i ⊕ xP

i , as the BERT input embeddings.

Label-Aware GCN We propose a label-aware GCN (LA-
GCN) encoder for simultaneously modeling the dependency
arcs and labels (Figure 3). We denote ai,j=1 if there is an
arc betweenwi andwj , and ai,j=0 vice versa. πy

i,j represents
the dependency label betweenwi andwj . Besides of the pre-
defined dependency labels, we additionally add a ‘self ’ label
as the self-loop arc πy

i,i for wi, and a ‘none’ label for repre-
senting no arc between wi and wj . We use the embedding
xy
i,j for the label πy

i,j . Our LA-GCN consists of L layers,
and we denote the resulting hidden representation of wi at
l-th layer as h(l)

i :

h
(l)
i = ReLU(

∑n
j=1β

(l)
i,j (W1 ·h(l−1)

j +W2 ·xy
i,j+b)) , (4)

where β(l)
i,j is the neighbor connecting-strength distribution:

β
(l)
i,j =

ai,j · exp (rni · rnj )∑n
j=1 ai,j · exp (rni · rnj )

, (5)

where rni is the element-wise addition by h
(l−1)
i +xy

i,j . The
neighbor connecting-strength distribution βi,j encodes both
the information from the dependent arcs and labels, and thus
comprehensively reflects the syntactic attributes. The initial
input representation of the first layer LA-GCN is h

(0)
i =

rbi ⊕xpos
i , where xpos

i is the POS tag embedding for wi. We
note that after L layers of information aggregation, much
high-order information between neighbors in the graph can
fully retained, which will facilitate the SRL.

We then impose a residual connection between BERT and
the last layer of LA-GCN. The final encoder representations
are the concatenation of the two representations from two
encoders respectively, which ensures the minimum informa-
tion loss from the BERT contextualized source.

ei = h
(L)
i ⊕ rbi . (6)

Decoder Module
We employ the LSTM (Hochreiter and Schmidhuber 1997)
as our decoder. Suppose the system has already confirmed
several triplets Y

′
= {· · · , <pk, ak, rk>}, with the corre-

sponding representations rtrplk for these established triplets
(elaborated later in Eq. 12), at the decoding step t. The de-
coding input representation is ut = e? ⊕ e†?, where e? is
the corresponding encoder representation of the ?-th input
token (from Eq. 6), and e†? is a high-order representation via
the high-order interacted attention that we will introduce in
the next sub-section. Then, the LSTM cell produces the de-
coding representation based on ut:

st = LSTMCell(ut) . (7)

t-1 t
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Figure 4: Illustration to show the input and output for the
decoding step at ‘view’ in Figure 2. t →the current decod-
ing step, i →the index of an input word, 7 →the index of
the current input word, rtrplk →previously recognized triplet
representations.

High-Order Interacted Attention The representation e†?
from the high-order interacted attention can be calculated as:

e†? =
∑k

j=1αjr
trpl
j ,

αj = Softmax(µj) ,

µj = Tanh(W3r
trpl
j + W4e? + b) .

(8)

By interacting with previously recognized triplets, the cur-
rent decision will capture the higher-order information. Oth-
erwise, the decoding process for detecting the argument for
a predicate is restricted to local features, which can be seen
as a first-order model. Taking the example in Figure 4, for
the predicate ‘view’, being informed by the prior triplet, e.g.,
‘view-it-A1’, the pointer tends to assign other token as argu-
ment rather than ‘it’ repeatedly.

Syntax-Aware Pointer Mechanism Based on the decod-
ing representation st, we can obtain the pointing result via
the base pointer in Eq. (1). We now consider making full use
of the previously yielded syntactic information in LA-GCN,
i.e., rendering the pointer to be syntactic-aware. Specifically,
for each encoder representation ei, we calculate its corre-
sponding syntactic-aware counterpart (denoted as e‡i ):

e‡i =
∑

j 6=iβ
(L)
i,j ej , (9)

where β(L)
i,j is the syntax connecting distribution at the last

layer of LA-GCN. We then concatenate e‡i and ei as the
syntax-aware representation e∗i , which together with st is
fed into the pointer in Eq. (1) for producing the pointing
position. The reuse of βi,j can be understood as a way to
further leverage the second-order syntactic structures con-
cerning the current ei for the pointer.

Role Labeler Once a predicate-argument pair has been
determined, the role labler will assign a role for the
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In-domain (WSJ) Out-of-domain (Brown)

P R F1 Prd P R F1 Prd

Without BERT

He et al. (2018) LP-GCN 89.4 88.7 89.4 93.1 79.8 78.1 79.0 79.6

Cai et al. (2018) LP-GCN 90.2 89.3 89.9 94.9 80.4 78.9 79.5 80.5
GCN∗ 89.7 89.0 89.5 94.2 80.0 78.3 79.0 80.0

Li et al. (2019) LP-GCN 90.2 89.5 89.9 95.2 79.9 78.5 79.2 81.5
GCN∗ 89.8 89.1 89.4 94.7 79.4 78.2 78.7 80.7

Ours
LA-GCN 90.8 90.0 90.4 95.5 80.7 79.3 80.2 81.8
LP-GCN 90.6 89.6 90.2 95.4 80.5 79.0 79.7 81.6
GCN∗ 89.6 89.0 89.3 94.5 79.0 78.3 78.6 80.2

With BERT

Cai et al. (2018) LP-GCN 91.2 92.0 91.7 95.7 82.1 82.8 83.9 85.6
LA-GCN 91.0 92.3 91.9 95.8 82.5 83.1 84.3 85.8

Li et al. (2019) LP-GCN 91.6 92.2 92.0 95.5 84.7 84.4 84.6 87.0
LA-GCN 92.0 92.4 92.2 95.9 85.4 85.1 85.2 87.8

Ours LA-GCN 92.5 92.5 92.5 96.2 85.6 85.3 85.4 90.0

Table 1: Unified SRL results on CoNLL09 English data.

predicate-argument pair via a Biaffine layer (Dozat and
Manning 2017):

rlb = g1(rp)W5g2(ra) + U1r
p + U2r

a + b ,

pr = Softmax(rlb) ,
(10)

where g1(·) and g2(·) are two feedforward layers, rp and ra

are the predicate and argument representations, given by:
rp = ep ⊕ s , ra = ea ⊕ s , (11)

where ep and ea are the corresponding encoder represen-
tations (cf. Eq. 6) of the predicate and argument, and s is
the decoding representation (cf. Eq. 7). For each established
triplet <pk, ak, rk>, we construct the corresponding repre-
sentations rtrplk by applying element-wise addition on the
representations rak , rpk and rlbk of the corresponding predi-
cate, argument and role:

rtrplk = rak + rpk + rlbk , (12)

where rtrplk is used in the high-order interacted attention.

Learning
As described earlier, each decoding input in our frame-
work depends on the last prediction. Following previous
encoder-decoder studies, we adopt the teacher-forcing strat-
egy (Williams and Zipser 1989) during training, maximizing
the likelihood of the oracle pointer at each decoding frame.
Besides, we change the order of oracles during learning so
that the process of detecting the arguments for a predicate is
in a close-first manner. For example, for the predicate ‘view’
in Figure 1, the outputs will follow the from-near-to-far or-
der: ‘it→online→you’, instead of ‘you→it→online’ or other
cases. This is more intuitive compared with the traditional
reading order (from-left-to-right), as humans always tend to
first grasp the core ideas then dig into more details. Also this
facilitates the high-order interacted attention mechanism.

The training target is to minimize the cross-entropy loss
between the predicted pointer distribution and the gold one:

Lpointer = −∑N
t
ôt log ot , (13)

where N is the total decoding steps and ôt is the gold point-

ing. Also there is the role label loss:
Lrole = −∑M

k
p̂k log pk , (14)

where M is the total number of triplets, p̂k is the k-th gold
role label. We summarize them into total loss:

L = Lpointer + Lrole +
λ

2
||Θ||2 , (15)

where λ is a regularization for the `2 norm term, Θ is the
overall parameters.

5 Experiment and Evaluation
Setup
We train and evaluate all models on two SRL benchmarks,
including CoNLL09 (English), and Universal Proposition
Bank (eight languages). We employ the official training, de-
velopment and test sets in each dataset. The gold-standard
syntactic features (POS tags and dependency trees) are also
offered. In terms of hyper-parameters, since BERT is used,
the size of word representations is 768.2 The size of POS tag
embeddings is 50. We use a 3-layer LA-GCN with 350 hid-
den units, and the output size of LSTM decoder is 300. We
adopt the Adam optimizer with an initial learning rate 2e-5,
mini-batch size 16 and regularization weight 0.12.

We consider two SRL setups: unified and pipeline SRL.
For the unified SRL, we make comparisons with: He et al.
(2018), Cai et al. (2018), Li et al. (2019), all of which is
graph-based neural models. We equip all the baselines with
a label-parameter GCN encoder (denoted as LP-GCN) for
modeling syntactic dependency features (including arcs and
labels). We also equip them with the vanilla GCN which
does not encode dependency labels (denoted as GCN∗). For
the pipeline SRL, we use gold predicates for argument role
labeling. We use precision (P), recall (R) and F1 scores for
measuring the argument role labeling (Arg). For predicate
disambiguation (Prd), only F1 is presented. All models are
trained and evaluated 5 times and the averaged values are
reported.

2https://github.com/google-research/bert, base-cased version.
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EN DE FR IT ES PT FI ZH Avg.
He et al. (2018) 87.0 80.0 89.6 78.5 79.4 80.7 78.2 71.6 80.6
Cai et al. (2018) 88.3 80.9 90.6 79.8 80.1 81.8 78.1 74.8 81.9
Li et al. (2019) 90.6 82.2 92.0 81.3 82.6 85.1 80.7 75.1 83.6
Ours 91.5 84.5 93.8 80.7 84.0 85.0 82.1 76.8 84.9

Table 2: F1s of argument role labeling for unified SRL on UPB. All models use BERT and the LA-GCN encoder.

P R F1

Pipeline Model
Zhao et al. (2009) - - 85.4∗
Björkelund et al. (2010) 87.1∗ 84.5∗ 85.8∗
FitzGerald et al. (2015) - - 86.7∗
Roth and Lapata (2016) 88.1∗ 85.3∗ 86.7∗
Marcheggiani and Titov (2017) 89.1∗ 86.8∗ 88.0∗

Unified Model
He et al. (2018) 89.8 89.6 89.7
Cai et al. (2018) 89.9 90.2 90.0
Li et al. (2019) +LA-GCN +BERT 92.3 92.6 92.4
Ours 92.8 92.9 92.8

Table 3: Argument role labeling with gold predicates on
CoNLL09. Values with ∗ are from prior papers.

Result and Analysis
Results on CoNLL09 English In Table 1, we have the fol-
lowing observations: First, all the models with the BERT en-
hanced representations are much stronger than those with-
out BERT. This is consistent with prior BERT-based stud-
ies (He, Li, and Zhao 2019; Fei, Zhang, and Ji 2020). Sec-
ond, the methods when modeling both syntactic dependent
labels and arcs (i.e., LP-GCN and LA-GCN) consistently out-
perform those models using only dependent arcs (i.e., GCN∗).
Meanwhile, our proposed LA-GCN encoder presents quite
improved results, compared with the LP-GCN encoder.

Most importantly, our framework significantly outper-
forms all the baselines on two test sets for both argument
role labeling and predicate disambiguation. For example, by
equipped with LP-GCN under no BERT representations, ours
wins 0.3%(90.2-89.9) and 0.5%(79.7-79.2) F1 gaps than Li
et al. (2019) for ‘Arg’ on WSJ and Brown respectively. With
the LA-GCN, our model can further increase the wining gaps
over baselines. The improvements largely lie in that the pro-
posed syntactic-aware pointer mechanism is available when
equipped with LA-GCN encoder, which additionally brings
the enhancements. Also with our proposed LA-GCN plus
BERT, the advantages can still be retained.

Results on UPB Table 2 shows the comparisons between
different models on UPB. Above all, our pointer network
wins the best overall results against all the graph-based base-
lines, with an average F1 score (84.9%). The improvements
from our model demonstrate its effectiveness on unified SRL
over all strong baselines.

Argument Role Labeling with Gold Predicates In Ta-
ble 3, we show the performances for pipeline SRL based

Arg Prd
Ours 93.2 97.4

w/o POS 92.6 97.0
w/o BERT 90.8 95.7
w/o LA-GCN 91.2 95.9
w/o dependent label (GCN∗) 91.9 96.2
LP-GCN 92.7 97.1
w/o Syntactic-aware Pointer 92.2 96.9
w/o HI Attention (Eq. 8) 92.0 96.5
base pointer (Eq. 1) 91.7 96.1
left-to-right parsing scheme 92.5 97.2
w/o residual connection (Eq. 6) 91.9 96.4

Table 4: Ablation results (F1) on CoNLL09.

on CoNLL09 (WSJ) data. Compared with the traditional
pipeline baselines, the unified systems can perform better.
More importantly, with the help of LA-GCN encoder and
BERT, our framework outperforms two best baselines, i.e.,
92.8% F1, maintaining the advances on the standalone argu-
ment role labeling.

Ablation Study In Table 4, we list the influences of dif-
ferent proposed mechanisms on our model, based on the de-
velopment set of CoNLL09 (WSJ). For the input features,
the BERT representations are of the most prominent help-
fulness. The dependency features (both arcs and labels) also
show significant impacts, from the remove of the LA-GCN.
Looking into the dependency features, either only decoding
the dependent arcs (via GCN∗) or replacing our LA-GCN with
LP-GCN, the performances will drop.

Besides, both the syntactic-aware pointer mechanism and
the high-order interacted attention mechanism plays impor-
tant roles for the resulting framework. Especially when both
two mechanisms are unavailable (degraded into the base
pointer), the performance decreases crucially. Finally, the
results fall if replacing the close-first parsing scheme with
a vanilla left-to-right direction. Also canceling the resid-
ual connection of BERT representation results in substantial
drops, as the utilities from rich BERT contexts are hurt.

Improvement for Argument Roles In Table 5, we present
the results of high-frequency arguments on the UPB English
test set. We compare with the best baseline Li et al. (2019)
under different GCN encoders. We note that when our model
takes LP-GCN encoder, the syntactic-aware pointer mecha-
nism is unusable. Two models both use BERT representa-
tions for fair comparisons.

12799



nm
od
:p
os
s

ca
se

ns
ub
j:p
as
s

m
ar
k

ac
l

de
t

ob
l:n
pm

od
pu
nc
t

am
od

ob
j

nu
m
m
od

co
m
po
un
d

au
x

au
x:
pa
ss

ro
ot

ad
vm

od
fix
ed

ob
l

nm
od

cc co
nj

ns
ub
j

ac
l:r
el
cl

cc
om

p
co
p

fla
t

ap
po
s

vo
ca
tiv
e

di
sc
ou
rs
e

de
t:p
re
de
t

ad
vc
l

cs
ub
j

xc
om

p
pa
ra
ta
xi
s

go
es
w
ith

cc
:p
re
co
nj

io
bj

co
m
po
un
d:
pr
t

ob
l:t
m
od

ex
pl

or
ph
an

lis
t

nm
od
:tm

od
nm

od
:n
pm

od
cs
ub
j:p
as
s

re
pa
ra
nd
um

fla
t:f
or
ei
gn

di
sl
oc
at
ed

de
p

Dependency…labels

A0
A1
A2
A3
A4

AM-ADV
AM-ADJ
AM-DIR
AM-LOC
AM-MNR
AM-MOD
AM-NEG
AM-TMP

A
rg
um

en
t…

ro
le
…
la
be
ls

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Correlations between dependency labels (Universal Dependency Treebank v1.4) and argument roles on UPB English.

Li et al. (2019) Ours

GCN∗ LP-GCN LP-GCN LA-GCN

A0 85.6 86.3 87.2 88.3
A1 87.4 88.7 89.0 89.8
A2 82.9 83.2 84.1 85.0
A3 21.8 32.0 34.1 41.2
A4 50.0 53.4 52.3 60.3
AM-ADV 55.3 56.7 57.8 58.2
AM-ADJ 70.2 71.6 72.4 75.4
AM-DIR 34.7 36.0 38.8 40.3
AM-DIS 67.9 69.2 67.5 70.1
AM-LOC 49.6 50.4 50.0 52.0
AM-MNR 51.2 53.3 57.4 62.4
AM-MOD 95.1 96.3 96.8 97.3
AM-NEG 89.4 92.0 93.1 96.0
AM-PRR 89.0 90.5 91.6 94.3
AM-TMP 76.0 77.6 79.3 82.0
C-A1 56.4 61.9 63.1 64.2
R-A0 80.6 82.5 83.2 84.5
R-A1 60.5 62.2 67.3 71.9
Weighted Avg. 69.9 71.8 72.5 73.3

Table 5: Improvement for argument roles on UPB English.

First of all, when modeling the dependent type informa-
tion, all argument roles receive improvements, which can
be learnt by the Li et al. (2019) under GCN∗ and LP-GCN.
Next, using the same LP-GCN encoder, our pointer network
achieves the overall better scores (i.e., 72.5% weighted av-
erage F1) than Li et al. (2019). Most prominently, our full
framework (with LA-GCN) can gain the improvements from
all the role labels. Especially we find that the improvements
for those less occurred arguments are more significant, such
as A3, A4, AM-ADJ and AM-MNR. We give the credit to
the stronger capability of our pointer network on the collab-
oratively learning between syntactic dependency structure
and semantic role labeling. We also thank to the LA-GCN
encoder for unifiedly modeling the dependent arcs and la-
bels, where the yielded syntax connecting-strength distribu-
tion combined with the syntactic-aware pointer mechanism
further contributes to the process.

Correlations between Dependency Labels and Semantic
Roles Here we investigate the correlations between depen-
dency labels and semantic roles, which are discovered by our
framework. Technically, when a predicate-argument pair re-
ceives the argument role label (by Eq. 10), we first collect
the syntactic weights (i.e., β(L)

i,j ) of each dependency labels
concerning the predicate and argument tokens (ep and ea in
Eq. 11), respectively. For each argument role, we then nor-
malize these weights over each dependency label into distri-
bution. We visualize the correlations between semantic roles
and dependency labels in Figure 5.

We can learn that our framework has captured the under-
lying inter-dependency between the syntactic structure and
the SRL structure from the diversified visualizations. Specif-
ically, some interesting patterns can be observed. First, for
each semantic role, only a small subset of dependent labels
will contribute. For example, the A1 role majorly relates to
these obj, nsubj, cop and csubj dependent labels, while the
A4 role almost depends on the nmod label only. Such find-
ing may provide a crucial foundation for the future works
on the direction of unsupervised semantic role label that rely
on the syntactic structures. Besides, we find that the frame-
work tends to master such correlations accurately. This ex-
plains why our model can still achieve prominent improve-
ment than the baseline model on those minority role labels,
such as A4, AM-TMP, etc.

6 Conclusion
We proposed a unified SRL framework based on the pointer
network. We further proposed a label-aware GCN (LA-
GCN) encoder for modeling both syntactic dependent arcs
and labels in a unified manner. Besides, a high-order inter-
acted attention mechanism was introduced for leveraging
prior recognized triplets into the current decision. Lastly,
a syntactic-aware pointer was proposed which fully incor-
porated the syntactic dependent information yielded from
LA-GCN. Our framework significantly outperforms exist-
ing graph-based SRL models on CoNLL09 and Universal
Proposition Bank. Further analysis demonstrates that our
model effectively captures the correlations between depen-
dency labels and semantic roles.
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Štěpánek, J.; Straňák, P.; Surdeanu, M.; Xue, N.; and Zhang,
Y. 2009. The CoNLL-2009 Shared Task: Syntactic and Se-
mantic Dependencies in Multiple Languages. In Proceed-
ings of the CoNLL, 1–18.

He, L.; Lee, K.; Levy, O.; and Zettlemoyer, L. 2018. Jointly
Predicting Predicates and Arguments in Neural Semantic
Role Labeling. In Proceedings of the ACL, 364–369.

He, S.; Li, Z.; and Zhao, H. 2019. Syntax-aware Mul-
tilingual Semantic Role Labeling. In Proceedings of the
EMNLP, 5353–5362.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.

Jin, G.; Kawahara, D.; and Kurohashi, S. 2015. Chinese Se-
mantic Role Labeling using High-quality Syntactic Knowl-
edge. In Proceedings of the IJCNLP, 120–127.

Kasai, J.; Friedman, D.; Frank, R.; Radev, D.; and Rambow,
O. 2019. Syntax-aware Neural Semantic Role Labeling with
Supertags. In Proceedings of the NAACL, 701–709.

Lei, T.; Zhang, Y.; Màrquez, L.; Moschitti, A.; and Barzilay,
R. 2015. High-Order Low-Rank Tensors for Semantic Role
Labeling. In Proceedings of the NAACL, 1150–1160.

Li, J.; Ye, D.; and Shang, S. 2019. Adversarial Transfer for
Named Entity Boundary Detection with Pointer Networks.
In Proceedings of the IJCAI, 5053–5059.

Li, Z.; He, S.; Zhao, H.; Zhang, Y.; Zhang, Z.; Zhou, X.; and
Zhou, X. 2019. Dependency or Span, End-to-End Uniform
Semantic Role Labeling. In Proceedings of the AAAI, 6730–
6737.

Luong, T.; Pham, H.; and Manning, C. D. 2015. Effective
Approaches to Attention-based Neural Machine Translation.
In Proceedings of the EMNLP, 1412–1421.

Ma, X.; Hu, Z.; Liu, J.; Peng, N.; Neubig, G.; and Hovy, E.
2018. Stack-Pointer Networks for Dependency Parsing. In
Proceedings of the ACL, 1403–1414.

Marcheggiani, D.; Frolov, A.; and Titov, I. 2017. A
Simple and Accurate Syntax-Agnostic Neural Model for
Dependency-based Semantic Role Labeling. In Proceedings
of the CoNLL, 411–420.

Marcheggiani, D.; and Titov, I. 2017. Encoding Sentences
with Graph Convolutional Networks for Semantic Role La-
beling. In Proceedings of the EMNLP, 1506–1515.

Pradhan, S.; Ward, W.; Hacioglu, K.; Martin, J.; and Juraf-
sky, D. 2005. Semantic Role Labeling Using Different Syn-
tactic Views. In Proceedings of the ACL, 581–588.

Punyakanok, V.; Roth, D.; and Yih, W. 2008. The Impor-
tance of Syntactic Parsing and Inference in Semantic Role
Labeling. Computational Linguistics 34(2): 257–287.

Roth, M.; and Lapata, M. 2016. Neural Semantic Role La-
beling with Dependency Path Embeddings. In Proceedings
of the ACL, 1192–1202.

Scheible, C. 2010. An Evaluation of Predicate Argument
Clustering using Pseudo-Disambiguation. In Proceedings of
the LREC.

See, A.; Liu, P. J.; and Manning, C. D. 2017. Get To The
Point: Summarization with Pointer-Generator Networks. In
Proceedings of the ACL, 1073–1083.

12801



Strubell, E.; Verga, P.; Andor, D.; Weiss, D.; and McCal-
lum, A. 2018. Linguistically-Informed Self-Attention for
Semantic Role Labeling. In Proceedings of the EMNLP,
5027–5038.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
Sequence Learning with Neural Networks. In Proceedings
of the NeurIPS, 3104–3112.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Proceedings of the NeurIPS,
5998–6008.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer Net-
works. In Proceedings of the NeurIPS, 2692–2700.
Williams, R. J.; and Zipser, D. 1989. A Learning Algorithm
for Continually Running Fully Recurrent Neural Networks.
Neural Computation 1(2): 270–280.
Xia, Q.; Li, Z.; Zhang, M.; Zhang, M.; Fu, G.; Wang, R.; and
Si, L. 2019. Syntax-Aware Neural Semantic Role Labeling.
In Proceedings of the AAAI, 7305–7313.
Zhang, Y.; Wang, R.; and Si, L. 2019. Syntax-Enhanced
Self-Attention-Based Semantic Role Labeling. In Proceed-
ings of the EMNLP, 616–626.
Zhao, H.; Chen, W.; Kazama, J.; Uchimoto, K.; and Tori-
sawa, K. 2009. Multilingual Dependency Learning: Exploit-
ing Rich Features for Tagging Syntactic and Semantic De-
pendencies. In Proceedings of the CoNLL, 61–66.

12802


