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Abstract

Neural dialogue models suffer from low-quality responses
when interacted in practice, demonstrating difficulty in gen-
eralization beyond training data. Recently, knowledge distil-
lation has been used to successfully regularize the student
by transferring knowledge from the teacher. However, the
teacher and the student are trained on the same dataset and
tend to learn similar feature representations, whereas the most
general knowledge should be found through differences. The
finding of general knowledge is further hindered by the uni-
directional distillation, as the student should obey the teacher
and may discard some knowledge that is truly general but re-
futed by the teacher. To this end, we propose a novel training
framework, where the learning of general knowledge is more
in line with the idea of reaching consensus, i.e., finding com-
mon knowledge that is beneficial to different yet all datasets
through diversified learning partners. Concretely, the training
task is divided into a group of subtasks with the same num-
ber of students. Each student assigned to one subtask not only
is optimized on the allocated subtask but also imitates multi-
view feature representation aggregated from other students
(i.e., student peers), which induces students to capture com-
mon knowledge among different subtasks and alleviates the
over-fitting of students on the allocated subtasks. To further
enhance generalization, we extend the unidirectional distilla-
tion to the bidirectional distillation that encourages the stu-
dent and its student peers to co-evolve by exchanging com-
plementary knowledge with each other. Empirical results and
analysis demonstrate that our training framework effectively
improves the model generalization without sacrificing train-
ing efficiency.

Introduction
Neural dialogue generation has drawn increasing attention,
but current dialogue models still struggle with generaliza-
tion, e.g., frequently producing generic and meaningless re-
sponses in inference (Mou et al. 2016; Li et al. 2016a; Ser-
ban et al. 2017b). Unlike machine translation or summariza-
tion, dialogue generation has more freedom and diversity
in the semantic and linguistic aspects of responses. Without
specific training guidance, they are prone to over-fitting cer-
tain aspects of corpora (e.g., naive target sequence predic-
tion) that show distinct distributions between training and
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test data. Therefore, it is usually hard for these models to
learn generalizable features and they may easily get stuck in
a narrow local minimum that is fragile to data perturbation
(Chaudhari et al. 2017; Keskar et al. 2017).

To alleviate this problem, one line of work introduces
prior common knowledge of the real world to facilitate the
model generalization, such as redesigning objective func-
tions (e.g., maximize mutual information or coherence) in-
stead of only fitting target sequence (Li et al. 2016b; Feng
et al. 2020a), and modifying generation order (e.g., hierar-
chical or syntactic-based generation) instead of naive left-
to-right generation (Su et al. 2018; Welleck et al. 2019). In-
tuitively, common knowledge is a class of knowledge that
benefits both the training and the test data, as it is reflected
generally in the whole corpus and not merely only works
for the training data. With the common knowledge as con-
straint, models can be guided to learn towards a better di-
rection that can bridge the gap of training and test data dis-
tributions more easily. Dubey et al. (2018) also verified that
common knowledge from the real world plays an important
role in models’ quickly learning unfamiliar video games.

However, prior common knowledge is hard to manually
define, since it varies with tasks and domains and can be a
limiting factor if defined wrong. Recently, another line of
work (Arora, Khapra, and Ramaswamy 2019; Tahami, Gha-
jar, and Shakery 2020; Chen et al. 2020), using knowledge
distillation (KD; Ba and Caruana 2014; Hinton, Vinyals, and
Dean 2015), has successfully extracted knowledge from a
pre-trained teacher model to regularize the student model
for better generalization. The student model aims to achieve
a balance of using raw knowledge from the training data and
distilled knowledge from the teacher model, which makes
the student capture more common or generalizable knowl-
edge and perform better in testing. Compared with previ-
ous work on introducing common knowledge, KD is more
straightforward and extensible. However, conventional KD
still faces two drawbacks:

• Lack of feature diversity: Because both the student and
the teacher are trained on the same dataset, they may learn
similar feature representations, which means the knowl-
edge is not sufficiently diverse to conduct an effective reg-
ularization on the feature learning of the student.

• Lack of student feedback: Previous work (Romero et al.
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2015; Yim et al. 2017; Furlanello et al. 2018) has proved
that the student can obtain better generalization perfor-
mance than the teacher, but KD still runs unidirection-
ally, which may damage the more generalizable knowl-
edge learned by the student and hinder the performance
improvement of the teacher.
In this work, we propose a novel training framework

to tackle these problems by generating multi-view feature
representations and co-evolution via bidirectional distilla-
tion. Figure 1 illustrates the proposed framework. To ob-
tain multi-view feature representations, the training task is
divided into a group of subtasks, i.e., subsets of training
data, and each subtask is assigned a corresponding student
model, which learns knowledge specific to different sub-
tasks. The students are also enforced to perform as well
as possible in the unseen subtasks by imitating the predic-
tions of other students, so that common knowledge can be
drawn collaboratively, which also prevents aggressive over-
fitting. In addition, a bidirectional knowledge distillation is
further applied, which encourages the student and its stu-
dent peers to exchange complementary knowledge and to-
gether evolve towards better generalization, which further
eliminates the need of pre-training in conventional KD. Fur-
thermore, the student peers for a student in knowledge distil-
lation are randomly selected at each iteration to prevent the
degeneration and homogenization (Kuncheva and Whitaker
2003; Schwenker 2013) of multi-view feature representa-
tions due to the bidirectional learning settings. In such way,
the proposed training framework enables students to jointly
learn diverse yet generalizable knowledge from multi-view
feature representations from different data compositions.

Our main contributions are as follows:
• We propose a novel training framework that reconstructs

the training task as a group of subtasks and aggre-
gates multi-view feature representations from randomly-
selected student peers to regularize students for more gen-
eralizable knowledge.

• The framework is enhanced by bidirectional knowledge
distillation that allows the student to provide feedback to
its student peers and makes both ends able to co-evolve.

• We conducted extensive experiments and analysis to val-
idate the effectiveness of multi-view feature representa-
tions and bidirectional distillation and demonstrate why
these mechanisms work well.

Method
In this section, we describe how to effectively capture com-
mon knowledge for improving the generalization of dia-
logue models. We first introduce multi-view feature repre-
sentation for diverse knowledge, then propose bidirectional
distillation to regularize both students and their partners, and
finally present the optimization objective.

Multi-View Feature Representation
For generative conversation models, given a training exam-
ple (x, y) ∈ D, where x is the source sequence, i.e., the di-
alogue history, y is the target sequence, i.e., the correspond-
ing response, and D is the whole training dataset consisting
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Figure 1: An overview of multi-view feature representation
and bidirectional distillation.

of M examples, i.e., |D| = M , the learning objective is to
minimize the following negative log-likelihood:

LNLL(x, y; θ) = −
∑|y|

j=1
log p(yj |y<j , x; θ), (1)

where θ is the learnable parameters.
In conventional knowledge distillation (Furlanello et al.

2018; Kim et al. 2020), a teacher model is first pre-trained
on the whole dataset, whose parameters we denote as θt,
and another model, parameterized as θs, is taken as the stu-
dent that further aligns its prediction with the teacher predic-
tion using the Kullback-Leibler divergence (Kullback and
Leibler 1951):

LKL(x, y, θt; θs) =

|y|∑
j=1

∑
w∈V

p(w|Xj ; θt) log
p(w|Xj ; θt)

p(w|Xj ; θs)
,

where w is a word in the vocabulary V and Xj is defined as
(y<j , x). The student is tasked to cover all the knowledge
from the teacher due to the mean-seeking behaviour of the
KL divergence, while the teacher is kept fixed in the distil-
lation.

As the teacher and the student are trained using exactly
the same data, they intend to learn similar feature represen-
tations or knowledge (Li et al. 2016c; Morcos, Raghu, and
Bengio 2018). However, it should be crucial for the students
to obtain sufficiently diverse sources of knowledge to ex-
tract common knowledge that generalizes to unseen exam-
ples, which is not available in such distillation settings and
limits the effect of the regularization from the teacher. To
address this problem, we propose to learn multi-view fea-
ture representations for the students to find more common
knowledge by aligning their predictions with diverse part-
ners. Essentially, the training dataset is broken down into N
subsets {Dn}Nn=1, where ∪Nn=1Dn = D and ∩Nn=1Dn = ∅,
that compose varied subtasks, each assigned an individual
student. Each student is trained using supervised examples
solely from its corresponding subset so that for the macro
task we can get diverse representations from micros views.
The supervised learning of a student is conducted as follows:

Ln
NLL(x

k, yk; θn) = −
|yk|∑
j=1

log p(ykj |yk<j , x
k; θn), (2)

where (xk, yk) ∈ Dn and n identifies the student and the
subset.
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Figure 2: Comparison of knowledge aggregation and trans-
fer among vanilla KD, Co-Teaching (CT), and deep mutual
learning (DML). The dashed and solid lines represent for-
ward and backward propagation, respectively. The differ-
ently colored lines in CT represent students S1 and S2 are
trained on independent batches of training data.

In turn, we aggregate the corresponding multi-view fea-
ture representation for each student to imitate by averag-
ing over predictions of all other students. However, ag-
gregation with naive averaging will lead multi-view fea-
ture representations of all students to be similar, which can
also cause students to homogenize (Kuncheva and Whitaker
2003; Schwenker 2013). Therefore, we further introduce the
imitation gate g(·) (shown in Figure 1) to maintain the di-
versity of multi-view feature representations. Specifically,
each student randomly imitates a subgroup of students at
each iteration, which subjects to g(p) ∼ Bernoulli(p), and
the number of the imitated students is decided by the imita-
tion probability p. During training, students are regularized
by different and dynamic multi-view feature representations,
which alleviates the homogenization of students. Besides,
the imitation gate also reduces the computational cost (i.e.,
forward and backward propagation). For example, we can
keep the computational cost constant by adjusting the imita-
tion probability when the number of students increases. The
distillation loss of each student is computed as:

Ln
KL(x

k, yk, θ/n; θn) =

|yk|∑
j=1

∑
w∈V

p(w|Xk
j ; θ/n)

p(w|Xk
j ; θ/n)

p(w|Xk
j ; θn)

,

where p(w|Xk
j ; θ/n) is the aggregated probability distribu-

tion from other students, /n denotes the students other than
the student n, and Xk

j denotes (yk<j , x
k) ∈ Dn, which en-

sures that the student n never observes data directly from
other subsets. p(w|Xk

j ; θ/n) is calculated as:

p(w|Xk
j ; θ/n) ,

1

H

∑
i=1...N,i 6=n

gi(p)p(w|Xk
j ; θi), (3)

where H =
∑

i=1...N,i 6=n g
i(p) is the number of the im-

itated students. By randomly selecting distilled students at
each iteration, a single student is kept from the access of a
global view of all the data and may maintain its specialty
rather than homogenize.

Bidirectional Distillation
Previous work, such as vanilla KD (Hinton, Vinyals, and
Dean 2015), Co-Teaching (CT) (Feng et al. 2019), and deep
mutual learning (DML) (Zhang et al. 2018c), only conducts
the unidirectional knowledge distillation from the teacher

to the student, illustrated in Figure 2. However, according
to prior research (Romero et al. 2015; Yim et al. 2017;
Furlanello et al. 2018), the student can achieve better perfor-
mance than the teacher. It suggests the unidirectional knowl-
edge distillation has the risk of damaging the more general-
izable knowledge that the student has learned.

To alleviate this problem, we propose the bidirectional
knowledge distillation that induces both sides to reach a
consensus by simultaneously regularizing each other, rather
than one side monotonously imitating the other side. Simi-
lar to feature fusion methods (Hou, Liu, and Wang 2017), we
first fuse the prediction p(w|Xk

j ; θn) of the student n and the
prediction p(w|Xk

j ; θ/n) of corresponding multi-view fea-
ture representation to construct more generalizable knowl-
edge p(w|Xk

j ; θn, θ/n):

p(w|Xk
j ; θn, θ/n) ,

1

2
p(w|Xk

j ; θn) +
1

2
p(w|Xk

j ; θ/n) (4)

Then we enforce the student to imitate the fused knowledge
p(w|Xk

j ; θn, θ/n), which can be expressed as:

Ln
KL(x

k, yk, θ/n; θn) =

|yk|∑
j=1

∑
w∈V

p(w|Xk
j ; θn, θ/n)·

log
p(w|Xk

j ; θn, θ/n)

p(w|Xk
j ; θn)

(5)

Besides, we also allow the teacher (i.e., the partners) to be
regularized and conduct parameter updates. The final distil-
lation loss is formulated as the Jensen–Shannon (JS) diver-
gence (Dagan, Lee, and Pereira 1997):

Ln
JS(x

k, yk; θn, θ/n) =
1

2
Ln

KL(x
k, yk, θ/n; θn)+

1

2
Ln

KL(x
k, yk, θn; θ/n)

(6)

In CT and DML, students can also provide knowledge for
the imitated student due to iterative parameter updates. How-
ever, iterative parameter updates have two disadvantages:
1) It obviously slows down the training speed. 2) Com-
pared with it, simultaneous parameter updates can speed up
the convergence and obtain better performance (Mescheder,
Nowozin, and Geiger 2017; Nagarajan and Kolter 2017).

Optimization
In this section, combining the NLL loss in Equation 2 with
the distillation loss in Equation 6, we give the final optimiza-
tion objective as follows:

L =

N∑
n=1

(Ln
NLL + T 2 ∗ Ln

JS), (7)

where T 2 is a scalar coefficient. It is used to maintain an
equilibrium between the NLL loss Ln

NLL and the distillation
loss Ln

JS because we use 1
T to soften the probability distri-

bution when calculating KL divergence.
Unlike vanilla KD and CT, we do not pre-train any student

model as DML, which significantly saves the training time.
Once the whole training set is divided into a group of sub-
tasks, each student learns the assigned subtask and conducts
the bidirectional distillation simultaneously. All students up-
date parameters in parallel until convergence.
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Experiment
We conduct experiments on two high-quality open-domain
dialogue datasets, DailyDialog and PersonaChat, compared
with state-of-the-art methods, and provide extensive analysis
to examine the effect of the proposed method.

Datasets
We adopt two commonly-used dialogue datasets:
• DailyDialog (Li et al. 2017b) covers a variety of daily

scenarios, such as work, health, and politics. We first ex-
tract the (dialogue history, response) pairs from the raw
dataset. Each pair consists of two consecutive dialogue
turns, in which the first turn and the second turn repre-
sent dialogue history and response, respectively. Then we
limit the length of dialogue turns to [5, 25] by discarding
the pairs whose response is shorter than 5 words and trun-
cating the turns whose length is longer than 25 words. Fi-
nally, the processed dataset contains 50K, 4.5K, and 4.3K
pairs for training, validation, and testing, respectively.

• PersonaChat (Zhang et al. 2018a) is collected by two
crowdsourced workers chit-chatting with each other, con-
ditioned on the assigned personas. In our experiments, we
only use the conversation text and process it as Daily-
Dialog. The processed dataset contains 106K, 13K, and
12.5K pairs for training, validation, and testing.

Baselines
We re-implemented the following four methods and com-
pared them with the proposed MRBD (Multi-View Feature
Representation and Bidirectional Distillation):
• Seq2Seq+Att uses a vanilla Seq2Seq model (Sutskever,

Vinyals, and Le 2014) with attention mechanism (Bah-
danau, Cho, and Bengio 2015). The encoder and the de-
coder are based on a 2-layer bidirectional GRU (Cho et al.
2014) and a 2-layer unidirectional GRU, respectively. The
size of hidden units is 500.

• KD uses two dialogue models as the student and the
teacher, similar to Tahami, Ghajar, and Shakery (2020).
The student learns from both the ground-truth responses
and the probability distributions of the teacher.

• CT stands for the Co-Teaching training framework (Feng
et al. 2019), in which two students are trained on inde-
pendent training sets, and they provide complementary
knowledge for each other. In practice, one student can
still access the data assigned to the other student due to
the whole training set shuffled once in each epoch.

• DML means Deep Mutual Learning (Zhang et al. 2018c),
which constructs a group of students trained on the same
training set. Each student learns from both the ground-
truth responses and the knowledge equally aggregated
from all other students. All students update the parameters
iteratively, which means one student needs to recalculate
a new prediction for the next students to imitate after up-
dating its parameters.

In our experiments, for a fair comparison, models in base-
lines and our method comprise the Seq2Seq-based genera-
tive dialogue models with the same settings as Seq2Seq+Att.

DailyDialog Dist-1 Dist-2 Ent-1 Ent-2 Dis-1 Dis-2
Seq2Seq+Att 4.054 27.962 7.689 12.773 0.148 0.454
KD 4.219 29.007 7.732 12.892 0.142 0.395
CT 4.591 29.387 7.864 13.087 0.323 0.477
DML 4.316 29.193 8.027 12.932 0.146 0.374
MRBD 4.762 30.592 8.232 13.257 0.136 0.357
PersonaChat Dist-1 Dist-2 Ent-1 Ent-2 Dis-1 Dis-2
Seq2Seq+Att 0.854 5.122 7.136 11.294 0.601 1.138
KD 0.862 5.343 7.159 11.718 0.502 0.964
CT 1.093 7.161 7.233 12.038 0.641 1.246
DML 0.952 6.399 7.196 11.824 0.435 0.891
MRBD 1.745 12.391 7.419 12.246 0.300 0.578

Table 1: Results of the automatic evaluation.

Besides, we use the KL divergence to calculate the distance
of probability distributions for all baselines.

Experimental Settings
According to the performance on the validation set, includ-
ing loss and metrics, we set the hyper-parameters of the pro-
posed method and baselines as follows: We set the embed-
ding size to 500, the vocabulary size for both DailyDialog
and PersonaChat to 20K. The dropout probability and the
temperature T are 0.1 and 3, respectively. We use Adam
optimizer (Kingma and Ba 2015), with a learning rate of
0.0001, gradient clipping at 5.0, and a mini-batch size of 64.
Following the settings of Feng et al. (2019), CT needs to pre-
train students on the whole training set before Co-Teaching.
We set the number of students to 6 for DML and MRBD.
The imitation probability in MRBD is 0.5. The training set
is randomly divided into six non-overlapping subsets with
the same number of pairs. For CT, DML, and MRBD, we
choose the student model that achieves the best performance
on the validation set for the final evaluation.

Experimental Results
It is challenging to assess the quality of the generated re-
sponses, especially in semantics (e.g., coherence and flu-
ency). In this work, we conduct two kinds of evaluations,
automatic evaluation and human evaluation. The automatic
evaluation focuses on the diversity, specificity, and distribu-
tion of responses that can be well reflected by the statistics of
words. The human evaluation considers the coherence, sim-
ilarity, and fluency of responses. Both BLEU (Papineni et al.
2002) and EmbSim (Liu et al. 2016) are adopted to measure
the similarity of the generated response with reference, but
they show a poor correlation with human evaluation.

Automatic Evaluation Dist-{1,2} (Distinct) are widely
employed to evaluate the diversity of the generated re-
sponses (Li et al. 2016a; Zhang et al. 2018b; Feng et al.
2020a), which represent the percentage (%) of unique uni-
grams and bigrams. We use Ent-{1,2}1 (Word Entropy) and

1Ent = − 1
|U|

∑
w∈U log2 pg(w), where pg is estimated based

on the training set.
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DailyDialog Coherence Similarity Fluency Average
Seq2Seq+Att 3.36 2.91 3.64 3.303
KD 2.55 2.09 2.45 2.363
CT 2.45 2.18 1.82 2.150
DML 2.00 1.72 2.00 1.906
MRBD 1.45 1.55 1.09 1.363
PersonaChat Coherence Similarity Fluency Average
Seq2Seq+Att 3.09 2.63 3.26 2.993
KD 2.25 2.13 3.01 2.463
CT 2.38 1.87 2.38 2.210
DML 1.37 1.75 2.12 1.746
MRBD 1.12 1.38 1.25 1.250

Table 2: Results of the human evaluation. Lower is better.

Dis-{1,2}2 (KL divergence) to measure the specificity and
distribution distance of the generated responses (Csaky, Pur-
gai, and Recski 2019). The responses with higher word en-
tropy contain more meaningful and low-frequency words. A
lower KL divergence represents a more similar response dis-
tribution. We report both unigrams and bigrams versions of
word entropy and KL divergence. The results are shown in
Table 1. We can see that our training framework significantly
outperforms all state-of-the-art baselines in terms of diver-
sity, specificity, and distribution distance on all datasets, es-
pecially on PersonaChat. Compared with other baselines,
CT also obtains more diverse and more specific responses
as MRBD but shows a dramatic decline in the distribution
distance of responses. We argue that the diversified multi-
view knowledge has better regularization effects than the di-
versified single-view knowledge for fitting the distribution
of the real-world responses. In practice, the performance of
CT will weaken once we do not pre-train the students before
Co-Teaching. Moreover, DML gains more performance im-
provements than KD in comparison to Seq2Seq+Att, which
also validates multi-view knowledge is beneficial for reg-
ularizing the feature learning of students. Finally, we con-
ducted the significant test on both DailyDialog and Per-
sonaChat, and the results demonstrate that the performance
improvements of MRBD are significant (i.e., p < 0.01).

Human Evaluation For all datasets, we randomly ex-
tracted 200 pairs from the test sets. Then we invited three
well-educated annotators to rank the responses generated by
different models in terms of coherence (how much infor-
mation in the generated response is relevant to dialogue his-
tory), similarity (how much information in the generated re-
sponse is related to reference), and fluency (how likely the
generated response is from human). Ties are allowed. Ta-
ble 2 reports the evaluation results. We can see that MRBD
achieves consistent improvements across all metrics. Espe-
cially in the coherence and fluency, MRBD shows substan-
tive gains. CT and DML have greater advantages than KD
with respect to fluency. We also calculate the spearman’s
rank correlation coefficient (Zar 2014) to evaluate the inter-
annotator agreement. The results are 0.542 and 0.602 on

2Dis = 1
|Ur|

∑
w∈Ur

log2
pr(w)
p(w)

, where pr and p are estimated
based on references and the generated responses, respectively.

Model Dist-1 Dist-2 Ent-1 Ent-2 Dis-1 Dis-2
w/o Subtask 5.317 32.149 7.265 12.476 0.205 0.486
w/o Subgroup 4.692 30.385 8.101 12.889 0.138 0.404
w/o BiDistill 3.836 25.480 8.225 13.449 0.134 0.348

Table 3: Results of the ablation study.

Ratio Dist-1 Dist-2 Ent-1 Ent-2 Dis-1 Dis-2
0% 4.762 30.592 8.232 13.257 0.136 0.357
25% 4.808 31.585 8.351 13.343 0.133 0.308
50% 5.115 31.191 7.311 12.550 0.167 0.498
100% 5.317 32.149 7.265 12.476 0.205 0.486

Table 4: Results of different ratios of subtask overlap.

DailyDialog and PersonaChat, respectively, with p < 0.001.

Experimental Analysis
In this section, we provide extensive analysis to validate the
effectiveness of multi-view feature representation and bidi-
rectional distillation, and further discuss why the proposed
framework works better. Unless otherwise stated, the follow-
ing results are based on the test set of DailyDialog.

Ablation Study We first conduct the ablation study to an-
alyze the contributions of different mechanisms quantita-
tively. Then we further investigate the impact of the overlap-
ping ratio of subtasks and the imitation probability of stu-
dents on model performance.

Table 3 shows the results of MRBD w/o Subtask (i.e., stu-
dents are trained on the same training set), w/o Subgroup
(each student imitates all other students), w/o BiDistill (i.e.,
students adopt unidirectional distillation). As we can see,
MRBD w/o Subtask improves the diversity of responses but
yields a sharp decline in terms of specificity and distribution
distance. It is because students can not provide diversified
multi-view knowledge to regularize each other for common
knowledge without the subtask mechanism. The generated
responses are more diverse but limited in the training set,
which is in line with observations in Csaky, Purgai, and Rec-
ski (2019), i.e., the diversity of responses still increases af-
ter over-fitting the training set. MRBD w/o Subgroup shows
a slight decrease in all metrics compared with MRBD, in-
dicating that the subgroup mechanism conducts a positive
effect on maintaining the diversity of knowledge. The speci-
ficity and distribution distance of MRBD w/o BiDistill ob-
tain slight improvements, but the diversity declines dramati-
cally, which demonstrates that the unidirectional distillation
causes students only to imitate the aggregated knowledge
and may lose knowledge learned from the assigned subtask.

Impact of Subtask Overlap Table 4 gives the results of
MRBD with the overlapping ratios of 0%, 25%, 50%, 100%.
We can discover that MRBD (25%) achieves better perfor-
mance than other variants. After the overlapping ratio of
25%, the performance of MRBD represents a gradual de-
cline in specificity and distribution distance, which is consis-
tent with the observation in MRBD w/o subtask. It suggests
that allowing subtasks to overlap appropriately is beneficial
for students to gain more performance improvements.
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Probability Dist-1 Dist-2 Ent-1 Ent-2 Dis-1 Dis-2
0.2 4.610 29.913 8.032 12.926 0.162 0.400
0.5 4.762 30.592 8.232 13.257 0.136 0.357
0.8 4.841 31.219 8.138 13.013 0.136 0.364
1.0 4.692 30.385 8.101 12.889 0.138 0.404

Table 5: Results of different imitation probabilities.
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Figure 3: Robustness against noisy data.

Impact of Imitation Probability Table 5 presents the
results of MRBD with the imitation probabilities of 0.2,
0.5, 0.8, and 1.0. The performance of MRBD first ascends
and then slowly declines as the imitation probability gradu-
ally increases, which means that if students share too many
views, the aggregated multi-view knowledge will be more
similar, exacerbating the homogenization of students. Be-
sides, MRBD consumes less computational cost compared
with DML due to the adjustable imitation probability.

Model Generalization Analysis We first validate the ro-
bustness of MRBD against noisy data, and then investigate
why it achieves better generalization than baselines.

Robustness against Noisy Data It is challenging to col-
lect a large-scale and high-quality dialogue dataset. More-
over, identifying data noise in the raw dialogue dataset is
labor-consuming. Knowledge distillation is beneficial for
the model to resist noisy data because the student not only
learns from reference but also considers the prediction from
the teacher. To evaluate the robustness of models against
data noise, we first add noisy data into the training set by
replacing the correct responses with randomly selected re-
sponses, and then observe the changes of the test loss with
respect to the proportion of noisy data. We report the results
in Figure 3. Our method and CT achieve better robustness
than other baselines, attributed to the independent training
sets in CT and the subtask mechanism in MRBD.

Robustness against Parameter Perturbation Previous
research (Chaudhari et al. 2017; Keskar et al. 2017) has
proved that a wider local minimum generally represents bet-
ter generalization. Specifically, with a wide local minimum,
the accuracy of model prediction will not change dramati-
cally under small perturbations in inference. To measure the
width of local minima reached by baselines and our method,
we add independent Gaussian noise with variable standard
deviation σ to the parameters of the learned models, and
then observe the changes of the test loss. Figure 4 plots the
loss changes with respect to the perturbation level (i.e., the
magnitude of σ). We can see that the losses of baselines
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Figure 4: Robustness against parameter perturbation.

Metrics KD CT DML MRBD
Entropy 1.360 5.475 4.362 5.765
Diversity 0.580 0.747 0.706 0.798

Table 6: Entropy and diversity of predictions generated by
baselines and our method.

change more drastically than our method after adding pertur-
bations, which means MRBD finds a wider local minimum
than baselines, indicating better generalization.

Effect of Multi-View Feature Representation Finally,
we discuss why multi-view feature representation performs
better regularization on the feature learning of students.

Entropy Analysis of Prediction According to previous
work (Pereyra et al. 2017; Chaudhari et al. 2017), the soft-
ened target with high entropy is beneficial for models to
reach a wider local minimum. Therefore, we compare our
training framework with baselines (except for Seq2Seq+Att)
in terms of entropy of predictions of the teacher (or the stu-
dent peers). Note that for MRBD, we choose the first three
students to aggregate the predictions. The results are re-
ported in Table 6. Our method obtains the highest entropy,
which suggests that multi-view feature representation can
enhance the entropy of predictions for better regularization.

Diversity Analysis of Prediction We further evaluate the
diversity of predictions that reflects the degree of homoge-
nization of students. The diversity is calculated by the aver-
age Euclidean distance between the predictions of each pair
of students. As shown in Table 6, MRBD outperforms all
baselines, which indicates that multi-view feature represen-
tation effectively alleviates the homogenization of students.
Besides, the results also demonstrate that the diversity of
predictions is related to the entropy of predictions. The pre-
dictions with more diversity can avoid the centralization of
probability distribution in the aggregated prediction.

Effect of Knowledge for Regularization To validate the
effectiveness of knowledge in predictions, we further in-
troduce another kind of regularization approach, including
weight decay (L2) and label smoothing, to compare with
the above four knowledge-based regularization approaches.
Based on results in Table 1 and Table 7, we can find that the
knowledge-based regularization has significant advantages
compared with the weight decay-based regularization. The
label smoothing-based regularization achieves better perfor-
mance than KD and is slightly weaker than both CT and
DML, but MRBD still outperforms it in all metrics. Thus
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Model Dist-1 Dist-2 Ent-1 Ent-2 Dis-1 Dis-2
w/ L2 4.114 28.538 7.737 12.827 0.146 0.423
w/ LS 4.307 29.297 7.771 13.026 0.152 0.411

Table 7: Results of Seq2Seq+Att w/ L2 (weight decay), w/
LS (label smoothing).

Dialogue history: I’d like to apply for a credit card. Can you help
me with my application?
S2S+Att: Then what would you like for a computer?
KD: Yes, which size do you recommend?
CT: Sir, your account certainly is? You need a credit card.
DML: Yes, it’s very simple. Would you have an e-mail?
MRBD: Certainly, madam. Which one would you like to apply for?
Dialogue history: What subjects are you studying?
S2S+Att: I am working in Germany and I am studying studying.
KD: I am studying in a company. I am studying with you.
CT: I am not interested in English.
DML: I have to work abroad and work in English.
MRBD: I am studying languages. I am going to work at university.

Table 8: Examples generated by baselines and MRBD.

knowledge in predictions indeed conducts a more informed
guide than the conventional regularization approaches.

Case Study Table 8 shows several examples that consist of
dialogue history and responses generated by different mod-
els. We can see that the responses generated by our method
show more relevance with dialogue history than baselines.
Although the knowledge-based baselines also generate some
responses that contain words or phrases related to conversa-
tion topics, the semantics of these responses are still contra-
dictory to dialogue history. Besides, these baselines repre-
sent low fluency, especially S2S+Att (Seq2Seq+Att).

Related Work
Previous seq2seq-based dialogue models (Vinyals and Le
2015; Shang, Lu, and Li 2015; Sordoni et al. 2015; Serban
et al. 2016) tend to generate dull and meaningless responses
when interacted, although they usually perform well in the
training set. To tackle this problem, one line of work intro-
duces common knowledge of the real world to constrain the
feature learning of models for better generalization. Li et al.
(2016a) first proposed to use mutual information maximiza-
tion as the training objective instead of only predicting tar-
get sequence. Li et al. (2016b) considered the conversation
task as a reinforcement learning problem and used rewards
as the training objective. Some work (Li et al. 2017a; Zhang
et al. 2018b; Feng et al. 2020a) further proposed a variety
of manually or automatically defined rewards for more ef-
fective and comprehensive constraints. Beside, modifying
the generation process with task-related inductive biases is
also a promising attempt, such as syntactic-based generation
(Dusek and Jurcı́cek 2016; Welleck et al. 2019), hierarchi-
cal generation (Serban et al. 2017a; Su et al. 2018), and la-
tent variable based generation (Serban et al. 2017b; Zhao,
Zhao, and Eskénazi 2017; Gu et al. 2019; Shen, Feng, and
Zhan 2019). Several research even incorporated more spe-

cific knowledge into the dialogue task, such as topics (Xing
et al. 2017), personas (Qian et al. 2018; Zhang et al. 2018a),
emotions (Zhou et al. 2018), implicit scenarios (Feng et al.
2020b), and structure knowledge (Ghazvininejad et al. 2018;
Young et al. 2018; Zhan et al. 2020).

Our work belongs to another line of work that aims to cap-
ture common knowledge from the training data by knowl-
edge distillation (KD) (Hinton, Vinyals, and Dean 2015).
Tahami, Ghajar, and Shakery (2020) introduced KD into
the retrieval-based dialogue model where knowledge from
a better performing teacher is used to regularize a lower-
performance but much faster student. (Feng et al. 2019) pro-
posed a Co-Teaching retrieval-based dialogue model where
two students are optimized on independent training sets,
and imitate and guide each other with their own knowledge
from the assigned training sets. However, both KD and Co-
Teaching limit the teacher knowledge to single-view feature
representation. As the training data is shuffled once in each
epoch, each student in Co-Teaching can still access the data
allocated to another student, which means two students may
learn similar feature representations. Our work is more re-
lated to deep mutual learning (DML) (Zhang et al. 2018c)
where a group of students with different initializations even
architectures are trained on the same dataset and try to learn
multi-view knowledge. Each student aggregates the teacher
knowledge from all other students equally. Unfortunately,
students tend to learn similar feature representations due to
optimized on the same dataset, and will further homogenize
based on similar teacher knowledge. These problems hin-
der students from learning diverse views. Meanwhile, the
computation cost will increase dramatically as the number
of views grows. More importantly, all of the above methods
still conduct unidirectional knowledge distillation, which is
not beneficial for continuous performance improvement.

The existing NLG tasks using KD mainly contain neu-
ral machine translation and text generation (Kim and Rush
2016; Tang, Lu, and Lin 2019; Wei et al. 2019; Chen et al.
2020). To the best of our knowledge, our method, including
multi-view feature representation and bidirectional distilla-
tion, is the first work that applies knowledge distillation to
generative dialogue systems.

Conclusion
In this work, we propose a novel training framework, multi-
view feature representation with bidirectional distillation
(MRBD), to guide the dialogue model towards better gen-
eralization. The students in MRBD not only learn from the
assigned subtasks but also imitate diversified multi-view
knowledge from the randomly selected student peers trained
on different unseen subtasks. Besides, we further construct
bidirectional distillation that allows the student peers to ex-
change knowledge simultaneously and find common parts
together. Therefore, the proposed method can automatically
capture common knowledge by maintaining a balance be-
tween the diversity and consistency of feature representa-
tion. The experimental results and analysis validate the su-
periority of the knowledge-based regularization and demon-
strate the effectiveness of multi-view feature representation
and bidirectional distillation.
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