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Abstract

Human understanding of narrative texts requires making
commonsense inferences beyond what is stated explicitly in
the text. A recent model, COMET, can generate such im-
plicit commonsense inferences along several dimensions such
as pre- and post-conditions, motivations, and mental states of
the participants. However, COMET was trained on common-
sense inferences of short phrases, and is therefore discourse-
agnostic. When presented with each sentence of a multi-
sentence narrative, it might generate inferences that are in-
consistent with the rest of the narrative.
We present the task of discourse-aware commonsense infer-
ence. Given a sentence within a narrative, the goal is to gen-
erate commonsense inferences along predefined dimensions,
while maintaining coherence with the rest of the narrative.
Such large-scale paragraph-level annotation is hard to get and
costly, so we use available sentence-level annotations to ef-
ficiently and automatically construct a distantly supervised
corpus.
Using this corpus, we train PARA-COMET, a discourse-
aware model that incorporates paragraph-level information to
generate coherent commonsense inferences from narratives.
PARA-COMET captures both semantic knowledge pertain-
ing to prior world knowledge, and episodic knowledge in-
volving how current events relate to prior and future events
in a narrative. Our results show that PARA-COMET outper-
forms the sentence-level baselines, particularly in generating
inferences that are both coherent and novel.

Introduction
Narrative understanding is a long-standing challenge in the
field of natural language processing (NLP) (Charniak 1972;
Winograd 1972). Arguably, the most crucial aspect of nar-
rative understanding is the ability to make implicit com-
monsense inferences about entities and events in a story and
refining them as the story unfolds (Pettijohn and Radvan-
sky 2016; Williams, Lieberman, and Winston 2017; Rashkin
et al. 2018; Qin et al. 2019). This ability in humans is seam-
less, yet essential for coherent understanding of narrative
text. Can NLP systems explicitly generate commonsense in-
ferences, that a human might implicitly make while reading
a narrative?
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Figure 1: Discourse-agnostic models generate inferences
relevant to the local context, but these generations can of-
ten be generic or incorrect at the narrative-level. Discourse-
aware models take the rest of the context into account to
make globally coherent inferences.

Being able to generate commonsense inferences has im-
portant practical implications. Commonsense Transformer
(COMET, Bosselut et al. 2019), proposed recently, gener-
ates commonsense inferences for a given phrase or sentence,
capturing pre- and post-conditions along nine inferential di-
mensions found in the ATOMIC (Sap et al. 2019) knowledge
base.1 The commonsense inferences generated by COMET
have been effectively applied to downstream applications
such as sarcastic comment generation (Chakrabarty et al.

1See Table 2 for a full list of inferential dimensions in ATOMIC.
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2020), therapy chatbots (Kearns et al. 2020), abductive nat-
ural language generation (Bhagavatula et al. 2019), and au-
tomated story plot generation (Ammanabrolu et al. 2021).

However, the COMET inferences suffer from a major
shortcoming – they are generated for a sentence in isola-
tion and fail to account for the full paragraph-level narrative
context. This often results in the generation of inferences
that are inconsistent or unlikely when considering the pre-
vious narrative context. For example in Figure 1, given only
the sentence “Ella walked around the property,” one might
infer that she did this because she wanted to “get exercise”
or “admire the view”. While such an inference is reasonable
for the sentence in isolation, it is inconsistent given the full
context – e.g., “The water bill at Ella’s house had been high.
Ella walked around the property.” Instead, a more reason-
able inference in light of the full context is that “She wanted
to fix a leak.”

We introduce the task of generating implicit discourse-
aware commonsense inferences for narrative text, and
present PARA-COMET, a transformer-based, controlled
generation model for the task. Instead of collecting crowd-
sourced annotated data as direct supervision for this task,
which is potentially expensive and challenging to scale,
PARA-COMET is distantly supervised through sentence-
level inferences obtained either from the COMET model or
by heuristically matching a sentence to events found in the
ATOMIC knowledge base. We define and use a coherence
metric that measures the likelihood of each candidate infer-
ence in the context of the story to improve their paragraph-
level consistency.

We show that PARA-COMET generates coherent
discourse-aware inferences and performs better than
discourse-agnostic baselines in both automated and manual
evaluation. Yet, even the best model generates implausible
inferences (23% of the inferences), and inferences that con-
tradict the paragraph-level context (in 44% of the stories).
This stresses the difficulty of the task and calls for further
research. We release our models and data as an initial step to-
wards advancing paragraph-level commonsense understand-
ing.2

Background
Sentence-level commonsense inferences. A key compo-
nent of our distant supervision approach is the availability
of sentence-level commonsense inferences. The ATOMIC
knowledge base (Sap et al. 2019) consists of such if-then
knowledge about causes and effects, agents and themes of
events, and their actions and mental states. An ATOMIC
entry is encoded as a triplet < e1, d, e2 >, where e1 is an
event phrase, d is an inferential dimension and e2 is the in-
ference along the given dimension. ATOMIC defines nine
inferential dimensions such as xIntent: the agent’s intent,
oEffect: the effect on the patient(s) etc. (See Table 2).
The event e1 and the inference e2 are natural language tem-
plates consisting of variables PersonX for the agent and

2Code and data is available at https://github.com/skgabriel/
paracomet.

PersonY for the (possibly unknown) patient(s).3
While ATOMIC contains nearly 880K triplets, it is not

nearly enough to capture the full range and generality of
possible events, which is immeasurably vast and impos-
sible to manually enumerate. Furthermore, due to lexi-
cal variability, events are rarely found as-is in ATOMIC.
To that end, COMET (Bosselut et al. 2019) was devel-
oped as a transformer-based knowledge model trained on
ATOMIC to generate commonsense inferences for a given
phrase/sentence. Thus, both ATOMIC and COMET are nat-
ural candidates to obtain sentence-level commonsense infer-
ences.

Reasoning about narratives. A related line of work to
ours is script learning, that defines a structured represen-
tation for prototypical series of events (Schank and Abelson
1977). An event (e.g., going to a restaurant) is decomposed
into components such as the participants (customer, waiter,
cook, etc.), subevents (sitting down, asking for menus, etc.),
and their various pre- and post-conditions. In later work,
scripts were also referred to as “narrative event chains”, and
multiple methods to learn the narrative chains from raw text
were developed (Chambers and Jurafsky 2008; Jans et al.
2012; Pichotta and Mooney 2014; Rudinger et al. 2015).
Similarly, the Choice of Plausible Alternatives (COPA) task
(Roemmele, Bejan, and Gordon 2011) proposes a bench-
mark for commonsense causal reasoning. It asks which of
two alternatives has a causal relationship (either cause or ef-
fect) with a given premise. Finally, the temporal ordering
of events is often studied along with typical times and dura-
tion (Kozareva and Hovy 2011; Granroth-Wilding and Clark
2016; Li, Ding, and Liu 2018; Zhou et al. 2019).

Types of commonsense inferences. While most common-
sense work only pertains to non-situational semantic knowl-
edge such as that captured by ConceptNet (Speer, Chin, and
Havasi 2017), in this paper we focus on commonsense based
on naive psychology, a core human ability that allows people
to reason about mental states such as reactions, intents, goals
and beliefs (Heider 1958) in particular situations. ATOMIC
is specifically designed to capture such knowledge and we
focus on such socially motivated commonsense, though our
distant supervision approach and our proposed model are ex-
tensible to other knowledge bases and forms of common-
sense.

Commonsense Inference with Discourse
Our work is motivated by the question: can NLP systems
explicitly generate commonsense inferences, that a human
might implicitly make while reading a narrative? To tackle
this question, we formalize and introduce the discourse-
aware commonsense inference task.4

3We refer to PersonY in ATOMIC as patient, one or more
people who are affected or acted upon by the action of the verb. We
don’t make the semantic distinction between patient and theme.

4We use the term discourse-aware to refer to data/systems that
use paragraph-level information. Similarly, discourse-agnostic sys-
tems only use sentence-level information.
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Narrative Dimension w/o Discourse w/ Discourse
Lenny was digging a hole in his yard to plant a tree.

PersonX needed to be in a pool 7 have a shovel 3
...
He jammed the shovel harder into the ground.
All of a sudden water started spurting out of the hole.
Carla worked at the mall.

PersonX needed to be hungry 3 drive to the foodcourt 3
For her lunch break she ate at the food court.
...
Carla’s co-worker bought her lunch.

Sports day was always Emma’s favourite day at school.

PersonX wants to practice more 7 to win 3
...
A girl who moved to the school entered the 100m sprint.
Emma had never seen her ... thought she would be fine.
The water bill at Ella’s house had been high.

PersonX wanted to admire the view 7 find a leak 3
...
Ella walked around the property.

Table 1: Examples generated from the models in this paper: a discourse-agnostic (sentence-level) baseline, vs. our discourse-
aware PARA-COMET. We highlight the sentence that each inference was generated for in bold. Inferences are marked as
plausible (3) or implausible (7).

Type Dimension Template

Causes
xIntent PersonX wanted e2
xNeed PersonX needed e2
xAttr PersonX is seen as e2

Effects

xWant PersonX wants e2
xEffect PersonX is likely e2
xReact PersonX then feels e2
oWant PersonY wants e2
oEffect PersonY is likely e2
oReact Others then feel e2

Table 2: Natural language templates for ATOMIC dimen-
sions.

Formally, given a narrative with T sentences
{S1, S2...ST }, the goal is to generate a set of com-
monsense inferences for the nine inferential dimensions
(Table 2) for each sentence Si. This set of inferences
generated for Si must also be consistent with the entire
narrative. Maintaining consistency with the full narrative
context requires reasoning about the relationship between
past and future events.

Table 1 shows some examples of discourse-aware
(paragraph-level) and discourse-agnostic (sentence-level)
inferences. Sentence-level inferences are often inconsistent
with the narrative. For example, the inference that a charac-
ter needed “to be in a pool” when the earlier context shows
they are gardening (first row in Table 1) or that a character
wants to “practice more” when it has been established they
are confident in their own abilities (third row).

Distant Supervision Approach
Sentence-level inferences (e.g. those obtained from
COMET) are inadequate to train models for our proposed
task and obtaining direct supervision of discourse-aware
inferences may be prohibitively expensive or infeasible to
collect in large quantities at an effective quality standard
level. Therefore, we use distant supervision to loosely
align sentences in a narrative to their discourse-aware com-
monsense inferences. First, we obtain discourse-agnostic
inferences from either the COMET model or the ATOMIC
knowledge base. Next, we filter out inferences that are
inconsistent with the rest of the narrative (described in
Section ). Thus, we obtain silver standard training data
for training models for our task. Additionally, we create a
smaller-scale validation set by manually validating infer-
ences through a crowdsourcing annotation task (Section ).

Source of Narratives
The basis for our dataset are English stories from the ROC-
Stories corpus (Mostafazadeh et al. 2016), which consists
of 98K five-sentence stories authored by workers on Ama-
zon Mechanical Turk. Understanding these stories requires
commonsense and temporal inferences that we aim to cap-
ture. We split the original ROCStories train set into train,
dev, and test sets in a 90/5/5 ratio.

Discourse-agnostic Inferences
We aim to generate the types of commonsense inferences
defined by the ATOMIC knowledge base (Sap et al. 2019).
We obtain discourse-agnostic inferences using either of the
following approaches.

Heuristic: For each sentence Si in the story, we get an
initial set of candidate inferences Ri by extracting ATOMIC
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Narrative Inference Relevant?

Natalie’s favorite movie is The Wizard of Oz... PersonX wanted: to see the film 3
I was at the grocery store...I see the lines were very long... PersonX then feels: relieved 7
Jim wanted to learn Spanish. He tried taking a class... PersonY/Others want: to catch up 7
Our building had a summer bbq party today. The manager took photos... PersonX wants: to enjoy the party 3
Chris realizes that he rarely watches cable TV anymore. He calls...to cancel... PersonX wanted: to be a good customer 7
My grandparents lived in Alabama...I miss traveling there... PersonX is seen as: sad 3

Table 3: Examples from the distantly supervised dataset. We highlight the most relevant (i.e. potentially contradictory or sup-
porting) sections in the story for each inference being considered.

tuples, < e1, d, e2 >, in which e1 and Si share either noun
phrases or verb phrases. We repurpose the ROUGE metric
(Lin 2004) to measure the surface-level relevance of a partic-
ular event e1 to a sentence Si. Specifically, we compute the
ROUGE-1 F1 score, which considers unigrams, and keep
the top 10 inferences with respect to the score for each sen-
tence and dimension.

Model-based: We use COMET to generate common-
sense inferences for each sentence Si in the story. We use
beam search with a beam size of 10 to obtain a set of infer-
ences for each sentence and dimension combination.

More details on the distant supervision data curation pro-
cess are given in the Appendix.

From Discourse-agnostic to Discourse-aware
Inferences
The inferences obtained by both heuristic and model-based
methods (Section ) only consider one sentence at a time.
To improve coherence with the rest of the narrative, we
filter the inferences that have a low coherence with the
given narrative. Specifically, inspired by information the-
ory (Shannon 1948; Hale 2001), we define coherence as
a measure based on the cross entropy of the story tokens
conditioned on a particular candidate knowledge inference.
For a tuple < e1, d, e2 >∈ Ri matched to a sentence Si,
and a language model Θ, we compute the cross entropy
loss of the tokens in the story, where < d, e2 > follow
Si: CE(S1, ...Si, < d, e2 >, ...S5).5 We use a transformer-
based language model, and convert < d, e2 > to natural lan-
guage using hand-crafted templates shown in Table 2.

In practice, we divide the dimensions into causes (xNeed,
xIntent, xAttr) and effects (xWant, xEffect,
xReact, oWant, oEffect, oReact). For cause infer-
ences, we compute coherence with the previous and current
sentences in the story. For effect inferences we use the full
story. This allows us to effectively measure how well the
extracted inferences may follow from past or predict future
story events.

To ensure an equal distribution of inferences across di-
mensions, we order inferences by coherence score and keep
the top 5 inferences for each sentence and dimension type.

5Here we define cross entropy loss as CE(t1, ..., tn) =
− 1

n

∑n
i=1 log2pΘ(ti|t1, ..., ti−1).

This filtering step is designed to reduce the number of con-
tradicting inferences in our distant supervision corpus.

Validation Set
We validate a subset of the development set through crowd-
sourcing to obtain a gold evaluation set. We used Amazon
Mechanical Turk and asked workers to judge the relevance
of inferences for a given sentence within a story, leaving the
interpretation of relevance to the best judgement of annota-
tors.6 Generally, we found that annotators adhered to a strict
definition of relevance in which ambiguous inferences that
may still be relevant to the story context at some point in
the story timeline are labeled as irrelevant. See Table 3 for
examples.

We randomly sampled 542 stories from the development
set, and for each story we randomly selected a sentence and
a dimension, and annotated the 5 inferences associated with
them. We had 3 annotators judge each example, and used
the majority vote to obtain a gold label. We filtered out low
quality annotations by manually checking for workers with
low inter-annotator agreement and frequently incorrect la-
beling.7

Our annotations yielded fair inter-annotator agreement of
Fleiss’ κ = 0.338 (Fleiss 1971) (p-value < .001). Despite
the challenges of this task, this value is higher or comparable
to prior work achieved for the evaluation of commonsense
knowledge.8 The final evaluation subset consists of 607 in-
ferences, across all different dimensions, from 313 unique
stories that were found to be relevant by multiple human an-
notators (34.29% of the inferences judged).

Model
We draw inspiration from the distinction between seman-
tic and episodic memory (Tulving and Donaldson 1972),
and consider implicit commonsense knowledge in two ways:
1) semantic knowledge, grounded in world knowledge and
culture-specific social knowledge (e.g., “leaks lead to high
water bills”), and 2) episodic knowledge, grounded in causal
understanding and epistemic reasoning—i.e. reasoning that

6We restrict annotators to US only.
7These were done primarily by workers who spent less than 20

seconds on a HIT.
8κ = 0.23 in judging commonsense knowledge triplets in

(Feldman, Davison, and Rush 2019) and between κ = 0.289 and
κ = 0.483 in commonsense story generation in (Guan et al. 2020).
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As a result, PersonX wants 
to finish the chapter. 

Jordan was writing
 a new novel.

She was facing a block on
the next chapter. 

Jordan decided to take a
break from writing. 

She went outside and took 
a nice walk. 

After the walk, Jordan was able to write the next chapter.  
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Figure 2: An illustration of PARA-COMET with a memory component. The model predicts an inference for a given sentence
in the narrative (e.g., the second) and a requested ATOMIC dimension.

relates past events to current events (e.g., “if a person gets a
high water bill, they will want to find out why”). We intro-
duce two variants of the PARA-COMET controlled gener-
ation model: a memory-less model that focuses on semantic
knowledge drawn from the context, and a model augmented
with recurrent memory that allows us to explicitly incorpo-
rate episodic knowledge.

Figure 2 demonstrates generating inferences for a narra-
tive using PARA-COMET with recurrent memory.

Memory-less model. Given a story context c =
{S1, S2, . . . , ST } of T sentences and a selected sentence Si,
we set the input to:

x = S1 || S2 . . . ST || s || d (1)

where s and d are special tokens. s represents the index of
the selected sentence, while d represents the required dimen-
sion in ATOMIC. || denotes concatenation. In the example
in Figure 2, the input provided to the model is:

x = Jordan was writing... < |sent2| > < |xWant| >

We fine-tuned the base GPT and GPT2 transformer mod-
els (Radford et al. 2019; Radford 2018) to generate the ex-
pected output, which is an inference for the dimension d and
sentence Si.

Memory-augmented model. To incorporate inferences
generated for other sentences in the story while generating
inferences for a given sentence, we extend the model with a
recurrent memory component, inspired by episodic memory.
Mm ∈ RRm×Lr×H is the external memory, whereRm is ei-
ther the maximum number of inferences per instance to store

in memory (during training time) or the current number of
instances (during decoding time), Lr is the maximum infer-
ence sequence length,9 and H is the hidden state dimension.

The memory-augmented model takes as input a memory
update matrix Mu ∈ RRu×Lr×H , where Ru is the num-
ber of inferences used to update memory, and incorporates
it into the memory matrix:

Mm = Mm ⊕ femb(M
u) (2)

⊕ stands for matrix concatenation, and femb is an embed-
ding layer trained jointly with the rest of the model. After
the memory is updated, we average Mm across the token
dimension to get θmem ∈ RRm×H :

θmem =
1

Lr
·

Lr∑
l=1

Mml (3)

We denote the context representation obtained from GPT
or GPT2’s hidden state as Co ∈ RLc×H , where Lc is the
context sequence length. We average it across all tokens,
obtaining θctx ∈ RH . We then prune the memory to the
top-k most relevant inferences, measured by cosine similar-
ity between the memory θmem and context vectors θctx. The
memory output Mo ∈ RH is the average of the top-k infer-
ences.

Finally, we reweigh the context representation Co to con-
sider the memory:

Co = Co + proj(Mo) (4)

9We use a maximum memory size (Rm) of 45 inferences and a
maximum sequence length of 100 tokens during training time. Dur-
ing decoding, we dynamically resize memory based on the number
of inferences previously generated.
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Where proj is a linear projection layer used to project the
memory output into the same hidden dimensional space as
the context representation.

At training time, the memory consists of previously ex-
tracted relations from our distant supervision, while at test
time, it consists of previously generated inferences, recall-
ing the model’s prior decisions. For both PARA-COMET
model variants, we minimize the cross entropy loss of the
entire sequence (input and output).

Experimental Setup
Training Setup
All models are implemented using the Transformers pack-
age (Wolf et al. 2020), and trained for a maximum of 20
epochs. Training is performed using an Adam optimizer
with linear warmup (Kingma and Ba 2015). We also sim-
ulate a batch size of 16 using gradient accumulation and an
actual batch size of 4. The learning rate is 2∗10−5 for GPT2.
For GPT we use a learning rate of 6.25 ∗ 10−5. All other hy-
perparameters follow (Radford et al. 2019; Radford 2018).
We retrieve the top k = 1 inferences from memory.10 We
use the 124M parameter version of the GPT2 model.

Decoding Setup
For decoding, we use beam search with a beam size of
b ∈ {1, 10}. The maximum decoding length is 50 tokens.
Unlike at training time, where we take a single dimension
for each sentence in each story, at decoding time we gener-
ate inferences from every dimension for every sentence. For
both training and decoding, all experiments are run using 64
Intel(R) Xeon(R) Gold 6130 x86-64 CPUs at 2.10GHz and
a Quadro RTX 8000 GPU.

Baselines
As a baseline, we use the COMET model, pre-trained on
ATOMIC, to generate sentence-level inferences for each
sentence in the story.11 As an additional baseline, we use
a retrieval model (BERT-KNN) based on the K-Nearest
Neighbor search algorithm (k=1). We embed ATOMIC
events using BERT (Devlin et al. 2019), then find the closest
ATOMIC event node for each story sentence to get a set of
matching inferences.

Evaluation
We report the performance of all models for automatic eval-
uation and the top 6 model variations (two COMET varia-
tions and four PARA-COMET variations) for human evalu-
ation. For PARA-COMET, we report the variants with and
without memory, trained on either the heuristic matching ap-
proach (PARA-H) or the model-based approach (PARA-M),
as described in Section .

10For GPT2 we use memory during training and decoding. For
GPT, we report results using training-only memory.

11See the original paper for details.

Human Evaluation
We follow a similar crowdsourcing setup to the validation
presented in Section to measure the quality of generated
inferences. We sampled 336 inferences from 56 unique sto-
ries. We show crowdworkers the full story, a specified di-
mension, and a generated inference. We specify the assign-
ment of PersonX to the syntactic subject of the sentence.12

Following Zhang et al. (2017), we ask workers to judge
the likelihood of inferences based on a 5-point Likert scale:
obviously true (5), generally true (4), plausible (3), neutral
or unclear (2), and doesn’t make sense (1). Table 4 displays
the percent of inferences judged as plausible or true (3-5),
and plausible (3), and the average rating per inference (using
majority voting).

Overall, PARA-COMET generations are scored with
higher average ratings, between 3.05 and 3.44 points com-
pared to 2.57 and 2.93 points for the COMET baseline vari-
ants. Specifically, the memory-augmented variants produced
notably more plausible inferences than any other model. We
observed that inferences in this category tend to be less
obvious—e.g. restating information from the context, pro-
ducing generic inferences—and recover plausible implicit
inferences.

Automatic Evaluation
Similarity to the gold inferences. We follow the
ATOMIC and COMET automatic evaluation setup using
BLEU (Papineni et al. 2001), which measures the n-gram
overlap between the generated and gold inferences.

Novelty. Following Jastrzebski et al. (2018), we compute
novelty by measuring the percentage of generated inferences
that do not appear verbatim in ATOMIC. We account for
slight paraphrases by counting as novel the generated infer-
ences that have an edit distance ratio of less than 0.95 with
all ATOMIC events.

Discourse-level coherence. We use natural language
inference (NLI; Dagan et al. 2013) as a proxy for measuring
the narrative-level coherence of the predicted inferences.
We define coherence as follows - at the very least, the
story must not contradict any of the predictions, and it
may possibly entail some of the predictions. We use the
pretrained SemBERT model (Zhang et al. 2020), a variant
of BERT augmented with explicit semantic role labels, to
compute NLI labels (entailment, neutral, contradiction).

Table 5 provides a summary of the automatic evalua-
tion results on the gold subset. The PARA-COMET
variants outperform the sentence-level baselines across all
metrics. The novelty results show that PARA-COMET
models are capable of generating inferences that did not
appear in the original ATOMIC knowledge graph. The
memory-augmented models generated inferences that were

12We manually corrected incorrect parses such as those in which
the subject of the sentence is not a person.
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Model Decoding True or Plausible (3-5) (%) Plausible (3) (%) Avg. Rating

COMET greedy 49.41 17.86 2.57
beam-10 63.69 26.19 2.93

PARA-H beam-10 68.45 22.62 3.21
PARA-H+mem beam-10 66.67 27.98 3.05
PARA-M beam-10 74.40 23.81 3.44
PARA-M+mem beam-10 77.38 31.55 3.42

Table 4: Human evaluation results. We highlight the overall best performing model in bold. All PARA-COMET results are
using GPT2 models.

Model Decoding BLEU-1 BLEU-2 Novelty NLI

BERT-KNN - 79.99 69.14 - 44.84

COMET greedy 85.78 80.87 3.03 53.85
beam-10 87.91 80.10 18.87 51.44

PARA-H (GPT) beam-10 91.00 83.14 17.09 54.63
PARA-H+mem (GPT) beam-10 90.99 83.43 16.09 56.23
PARA-M (GPT) beam-10 91.03 83.06 12.56 52.72
PARA-M+mem (GPT) beam-10 91.09 82.88 12.54 59.42

PARA-H (GPT2) beam-10 91.03 83.43 15.99 54.95
PARA-H+mem (GPT2) beam-10 91.24 83.57 14.39 56.23
PARA-M (GPT2) beam-10 89.44 81.89 20.96 54.63
PARA-M+mem (GPT2) beam-10 89.68 82.18 20.06 54.95

Table 5: Performance according to the automatic evaluation metrics. The best performing model for a specific PARA-COMET
variant (GPT or GPT2) is underlined. We highlight the overall best performing model in bold. The NLI score is the percent of
stories for which the model predicted entail or neutral.

more coherent with the story, reducing the percents of con-
tradicting inferences from 46.15% (in COMET) to 40.58%.
We find the GPT models generally have comparable or
better performance to GPT2 models on automatic metrics,
which we hypothesize is due to the fact GPT was pretrained
on story text and has specific knowledge pertaining to
implicit knowledge underlying narratives. Overall, we
find that incorporating narrative coherence through either
episodic knowledge from the recurrent memory mechanism
and/or context from other story events improves BLEU-1
by up to 3.33 points and BLEU-2 by up to 2.70 points.

Case Study: Personal Narratives
To test the ability of the model to generalize to more com-
plex narratives requiring further pragmatic reasoning (Sap
et al. 2020), we sampled and manually evaluated a set of 111
story/sentence/dimension triplets from personal blog posts
in the COSMOSQA machine reading comprehension test
set (Huang et al. 2019). While these narratives tend to be
of a similar or shorter length than ROCStories, they require
more real-world understanding. They also contain nuanced
descriptions of social interactions.

We found that our model is effective at predicting infer-
ences in an unsupervised setting with 49.55 % of relations
labeled as true and 20.72% of relations labeled as plausible
(vs. 20.72% and 27.03% for COMET). We noticed that our
model more frequently overcomes two major plausibility er-
rors in unsupervised commonsense inference - off-topic and

Story: Almost a month ago now, the radio station got struck
by lightning. It fried the router and the cable modem.
[Before �, PersonX wanted]
We got the new equipment right away.

COMET (beam-10): to be a good cook, to eat

PARA-M: to have better internet, to not be bothered
Story: I posted a moment ago regarding a girl I asked out...
she said she would like to do something,
but work made it difficult. That was a couple of weeks back...
[Next, PersonX will]

COMET (beam-10): get married, get a divorce

PARA-M: be asked out, get rejected

Table 6: Examples of personal blog posts with commonsense
model predictions. Here we assume PersonX to be the nar-
rator of the blog post.

temporarily inappropriate predictions (see Table 6).

For example, our model is able to correctly predict the
likely intentions of someone owning a router and cable mo-
dem (example 1), while COMET predictions incorrectly fo-
cus on meal preparation. COMET also sometimes makes
relevant but farfetched predictions while our model’s infer-
ences are better situated within a narrative timeline (example
2).
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Conclusion
We introduced a new task of discourse-aware commonsense
inference over narratives. To target this task, we proposed a
new model, PARA-COMET, trained using distant supervi-
sion, that captures narrative discourse.

Despite the challenges of the task, we demonstrated the
effectiveness of our approach using both automatic and hu-
man evaluations. In particular, our models were able to gen-
erate more implicit and novel discourse-aware inferences. In
the future, we are interested in exploring further extensions
of our work to downstream paragraph- and narrative-level
tasks that may benefit from access to commonsense knowl-
edge.
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most logical conclusion for all readers). One likely contribu-
tor to this specificity of commonsense is the dependency on
online crowdsourcing for annotation and generation of com-
monsense knowledge. A 2016 report from Pew Research13

found that a sample of MTurk crowd-sourcing workers was
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posed steps for future work on discourse-aware common-
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Jans, B.; Bethard, S.; Vulić, I.; and Moens, M. F. 2012. Skip
n-grams and ranking functions for predicting script events.
In EACL, 336–344. Association for Computational Linguis-
tics.
Jastrzebski, S.; Bahdanau, D.; Hosseini, S.; Noukhovitch,
M.; Bengio, Y.; and Cheung, J. C. K. 2018. Commonsense
mining as knowledge base completion? A study on the im-
pact of novelty. In Proceedings of the Workshop on Gener-
alization in the Age of Deep Learning. Association for Com-
putational Linguistics.
Kearns, W. R.; Kaura, N.; Divina, M.; Vo, C. V.; Si, D.;
Ward, T. M.; and Yuwen, W. 2020. A Wizard-of-Oz Inter-
face and Persona-based Methodology for Collecting Health

12864



Counseling Dialog. Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems .

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In ICLR.

Kozareva, Z.; and Hovy, E. 2011. Learning Temporal Infor-
mation for States and Events. In 2011 IEEE Fifth Interna-
tional Conference on Semantic Computing, 424–429.

Li, Z.; Ding, X.; and Liu, T. 2018. Constructing Narrative
Event Evolutionary Graph for Script Event Prediction. In
IJCAI.

Lin, C.-Y. 2004. ROUGE: A Package for Automatic Evalu-
ation of Summaries. In Text Summarization Branches Out,
74–81. Barcelona, Spain: Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/W04-
1013.

Mostafazadeh, N.; Chambers, N.; He, X.; Parikh, D.; Ba-
tra, D.; Vanderwende, L.; Kohli, P.; and Allen, J. 2016. A
Corpus and Cloze Evaluation for Deeper Understanding of
Commonsense Stories. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, 839–849. San Diego, California: Association for Com-
putational Linguistics. doi:10.18653/v1/N16-1098. URL
https://www.aclweb.org/anthology/N16-1098.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2001.
Bleu: a Method for Automatic Evaluation of Machine Trans-
lation. In ACL.

Pettijohn, K.; and Radvansky, G. 2016. Narrative event
boundaries, reading times, and expectation. In Mem Cogn
44, 1064–1075.

Pichotta, K.; and Mooney, R. 2014. Statistical Script Learn-
ing with Multi-Argument Events. In EACL, 220–229.

Qin, L.; Bosselut, A.; Holtzman, A.; Bhagavatula, C.; Clark,
E.; and Choi, Y. 2019. Counterfactual Story Reasoning and
Generation. In EMNLP.

Radford, A. 2018. Improving Language Understanding by
Generative Pre-Training. OpenAI technical report .

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language Models are Unsupervised
Multitask Learners. OpenAI technical report .

Rashkin, H.; Bosselut, A.; Sap, M.; Knight, K.; and Choi, Y.
2018. Modeling Naive Psychology of Characters in Simple
Commonsense Stories. In ACL.

Roemmele, M.; Bejan, C. A.; and Gordon, A. S. 2011.
Choice of plausible alternatives: An evaluation of common-
sense causal reasoning. In 2011 AAAI Spring Symposium
Series.

Rudinger, R.; Rastogi, P.; Ferraro, F.; and Van Durme, B.
2015. Script induction as language modeling. In Proceed-
ings of the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, 1681–1686.

Sap, M.; Gabriel, S.; Qin, L.; Jurafsky, D.; Smith, N. A.;
and Choi, Y. 2020. Social Bias Frames: Reasoning about

Social and Power Implications of Language. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, 5477–5490. Online: Association
for Computational Linguistics. doi:10.18653/v1/2020.acl-
main.486. URL https://www.aclweb.org/anthology/2020.
acl-main.486.
Sap, M.; Le Bras, R.; Allaway, E.; Bhagavatula, C.; Lourie,
N.; Rashkin, H.; Roof, B.; Smith, N. A.; and Choi, Y. 2019.
ATOMIC: An Atlas of Machine Commonsense for If-Then
Reasoning. In AAAI.
Schank, R. C.; and Abelson, R. P. 1977. Scripts, plans, goals
and understanding: An inquiry into human knowledge struc-
tures. Published by Psychology Press.
Shannon, C. E. 1948. The Mathematical Theory of Commu-
nication. The Bell System Technical Journal 27(3).
Speer, R.; Chin, J.; and Havasi, C. 2017. Conceptnet 5.5: An
open multilingual graph of general knowledge. In Thirty-
First AAAI Conference on Artificial Intelligence.
Tulving, E.; and Donaldson, W. 1972. Episodic and seman-
tic memory. Organization of memory .
Williams, B.; Lieberman, H.; and Winston, P. H. 2017. Un-
derstanding Stories with Large-Scale Common Sense. In
COMMONSENSE.
Winograd, T. 1972. Understanding natural language. Cog-
nitive psychology 3(1): 1–191.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; Davi-
son, J.; Shleifer, S.; von Platen, P.; Ma, C.; Jernite, Y.; Plu, J.;
Xu, C.; Le Scao, T.; Gugger, S.; Drame, M.; Lhoest, Q.; and
Rush, A. 2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations, 38–45. Association for Computational
Linguistics.
Zhang, S.; Rudinger, R.; Duh, K.; and Durme, B. V. 2017.
Ordinal Common-sense Inference. Transactions of the As-
sociation for Computational Linguistics 5: 379–395.
Zhang, Z.; Wu, Y.-W.; Hai, Z.; Li, Z.; Zhang, S.; Zhou, X.;
and Zhou, X. 2020. Semantics-aware BERT for Language
Understanding. Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-20) .
Zhou, B.; Khashabi, D.; Ning, Q.; and Roth, D. 2019. Going
on a vacation takes longer than Going for a walk: A Study of
Temporal Commonsense Understanding. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP),
3354–3360.

12865


