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Abstract

The use of language is subject to variation over time as well
as across social groups and knowledge domains, leading to
differences even in the monolingual scenario. Such variation
in word usage is often called lexical semantic change (LSC).
The goal of LSC is to characterize and quantify language vari-
ations with respect to word meaning, to measure how distinct
two language sources are (that is, people or language mod-
els). Because there is hardly any data available for such a
task, most solutions involve unsupervised methods to align
two embeddings and predict semantic change with respect to
a distance measure. To that end, we propose a self-supervised
approach to model lexical semantic change by generating
training samples by introducing perturbations of word vectors
in the input corpora. We show that our method can be used for
the detection of semantic change with any alignment method.
Furthermore, it can be used to choose the landmark words to
use in alignment and can lead to substantial improvements
over the existing techniques for alignment. We illustrate the
utility of our techniques using experimental results on three
different datasets, involving words with the same or differ-
ent meanings. Our methods not only provide significant im-
provements but also can lead to novel findings for the LSC
problem.

1 Introduction
Language use is deeply rooted in the social, cultural and his-
torical context that shapes it. It has been shown that mean-
ing of words change over time, being pushed by cultural
and societal transformations, a phenomenon named seman-
tic change (Schmidt 1963). For example, the English word
awful was used in the sense of the words impressive or ma-
jestic before the year 1800, while, in modern English, it de-
scribes something objectionable. Language is also subject
to variation across different communities for many different
reasons (Schlechtweg et al. 2019). For example, the word
model can be used to refer to the design or version of a
product (as in model of a car), or it could be used to refer
to a mathematical model in a scientific paper.

In this paper, we develop a novel self-supervised semantic
shift (S4) method to detect words with different meaning in
two corpora from the same language (monolingual).
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As methods based on the distributional property of words
have been shown to be very effective in encoding seman-
tic relationship between words (Hamilton, Leskovec, and
Jurafsky 2016b; Sagi, Kaufmann, and Clark 2009; Bam-
ler and Mandt 2017; Kulkarni et al. 2015) or even biases
and stereotypes (Bolukbasi et al. 2016; Caliskan, Bryson,
and Narayanan 2017), the task of identifying semantic
change between words using word embeddings, such as
Word2Vec or FastText (Mikolov et al. 2013; Bojanowski
et al. 2017) has gained a great deal of popularity. This task
is often a difficult one as it involves unsupervised meth-
ods (e.g. learning embeddings, alignment and/or mapping
of words). For example, in the recent SemEval-2020 com-
petition (Schlechtweg et al. 2020), the highest scores were
at about 70% accuracy on a binary classification task to pre-
dict occurrence of semantic change across time periods in
several languages. The main challenge stems from the un-
supervised nature of the problem, as training data is rare or
non-existing, and is highly dependent on the input corpora.
This impacts multiple aspects of the task. In particular, to
compare the embedding matrices A,B ∈ Rn×d of two sep-
arate corpora A and B, where n is the size of the common
vocabulary and d is the embedding dimension, one must first
align them to make them comparable, usually via an Orthog-
onal Procrustes (OP) method. The goal of OP is to learn an
orthogonal transform matrixQ (i.e.,QTQ = Id, where Id is
the d-dimensional identity matrix), that most closely maps
A to B, namely, Q∗ = argminQ:QTQ=Id ‖AQ−B‖. It has
been shown that this problem accepts a closed-form solu-
tion via Singular Value Decomposition (SVD) (Schönemann
1966). The fact that Q is an orthogonal matrix makes it so
thatAQ is only subject to unitary transformations such as re-
flection and rotation, preserving the inner product between
its word vectors. Words whose vectors are used in the OP
are called landmarks (or anchors), these are the words over
which we will enforce proximity in the alignment by mini-
mizing the distance of its vectors.

Any landmark choice incorporates an initial assumption
to the solution. An ideal solution to this problem would in-
volve a set of landmark words that are semantically stable
(i.e. words that have the same sense) across the input cor-
pora. In the context of diachronic embeddings, where the
embedding is learned from adjacent time slices of text, the
assumption is that words will change only slightly from time
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t to t+1, therefore, without loss of generality, all words can
be used as landmarks. We refer to the use of all common
words as landmarks as the global alignment. Global align-
ment may introduce undesirable similarity between word
vectors of a word w that is used in different senses across
corpora. As a consequence of the orthogonal transformation,
words that are supposed to be closely aligned will be distant.
Wang et al. (Wang et al. 2019) refer to this problem, in the
context of word translation, as oversharing, that is, aligning
more words than one should.

This problem is illustrated in Figure 1. We aligned the
embeddings of English historical texts from the 19th and
20th-21st centuries. The data and ground-truth in this exam-
ple was extracted from the SemEval-2020 task on unsuper-
vised lexical semantic change detection (Schlechtweg et al.
2020). The word ‘bit’ is known to have suffered semantic
change over time, it has received the new sense of binary
digit. Words ‘bag’ and ‘risk’ are labelled as semantically
stable over the given period. We show the results of Global
Alignment for this data in Figure 1(a) and alignment with
landmarks chosen with our proposed method S4-A in Fig-
ure 1(b). In Figure 1(a), by doing Global Alignment, we are
forcing 20th century bit (red circle) to be close to 19th cen-
tury bit (blue circle) and also 20th century bag (red square)
to be further away from the 19th century bag (blue square).
Notice in (b) that by choosing landmarks using S4-A, words
bag and risk from two different time periods remain close,
while bit from the different time periods is far, hence ampli-
fying the difference between semantically stable and unsta-
ble words. More specifically, the cosine distance across the
time periods for bit is 0.40, and 0.41 for bag in (a). Those
respective quantities are 0.61 and 0.01 in (b).

Self-supervised techniques have been shown to be effec-
tive in similarly challenging vision-based tasks with limited
(or even w/o) supervision (Dosovitskiy et al. 2015; Doer-
sch, Gupta, and Efros 2015; Zhang, Isola, and Efros 2016;
Gidaris, Singh, and Komodakis 2018), by using techniques
such as image rotation and context changes to create pseudo
labels for learning. In this paper, motivated by these ad-
vances, we introduce a new method we call self-supervised
semantic shift (S4 for short) to guide the self-supervision by
adding perturbations to set of target word vectors by moving
them towards other words in the vector space. This process
mimics the occurrence of semantic change in the corpora,
making specific words semantically unstable.

This paper makes the following contributions:

1. We introduce the novel S4 method and demonstrate its
advantage on two tasks in monolingual word embedding:
Unsupervised Binary Classification, and Word Embed-
ding Alignment. In classification, S4 simulates semantic
changes and learns to predict semantically stable and un-
stable words via self-supervision. In alignment, S4 learns
to determine the landmark set by predicting, selecting,
and refining a set of stable words with self-supervision.

2. We evaluate S4-D’s classification performance on a
British v.s. American English semantic change detection
task. Regardless of the underlying alignment methods,
S4 consistently shows significant gain over the baseline
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(a) Global Alignment.
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(b) Landmarks selected with S4-A.

Figure 1: PCA projection of aligned word vectors using: (a)
the global alignment strategy, (b) landmarks selected with
S4-A. Blue (and red resp.) marks show the location of a
word in 1810-1860 (and 1946-2010 resp.). Only the word
‘bit’ is subject to semantic change in this example. Shapes
correspond to words bit (circle), bag (square), risk (triangle).
Cosine distances of bit, bag, and risk across time periods in
are 0.40, 0.41 and 0.01, and 0.61, 0.01, and 0.01 in (b), re-
spectively.

methods, attaining up to 2.65× higher F1 score.
3. For the SemEval-2020 task (Schlechtweg et al. 2020), we

show landmark words learned by S4-Aattains improved
performance on lexical semantic change detection (with
a simple linear classifier) in four different languages,
demonstrating the importance of landmark selection with
S4-A for downstream tasks.

4. We also use S4 for discovery of semantic changes in ar-
ticles within two arXiv subjects: Artificial Intelligence
and Classical Physics. We find that S4-based alignment
can identify unique semantically changed words in top-
ranked word lists that were overlooked by existing align-
ment methods, providing diversity and novel discovery of
lexical semantic changes.

Our methods have many applications in which seman-
tic change has been shown to be important such as di-
achronic linguistic analysis (Hamilton, Leskovec, and Juraf-
sky 2016a; Dubossarsky, Weinshall, and Grossman 2017),
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and predicting armed conflict participants from semantic
relations (Kutuzov, Velldal, and Øvrelid 2017). More re-
cently, Bojanowski et al. (2019) have presented a strategy
using alignment of monolingual embeddings for updating
language models to incorporate changes caused by language
evolution or usage in specific domains.

Code for the experiments in this paper are provided in our
GitHub repository 1.

2 Related Work
Some of the earliest works on diachronic semantic change
discovery analyzes word usage over time with respect to fre-
quency and sense, mostly based on the difference of the dis-
tributional property of words between time periods or do-
mains (Sagi, Kaufmann, and Clark 2009; Cook and Steven-
son 2010). Distributed word vector representations, such
as the ones obtained by skip-gram with negative sampling
(Mikolov et al. 2013) allow for learning distributional in-
formation into dense continuous vectors. Hamilton et al.
(2016b) conducted a diachronic analysis of semantic change
on historical text using word embeddings aligned with Or-
thogonal Procrustes and by measuring the displacement of
vectors across time periods using cosine distance. To cir-
cumvent the need for alignment, Hamilton et al. (2016a)
have proposed a measure of semantic change that com-
pares second-order vectors of distance between a word and
its neighbors. Some authors have presented dynamic word
embedding techniques to avoid alignment by jointly learn-
ing the distributional representations across all time peri-
ods (Bamler and Mandt 2017; Rudolph and Blei 2018; Yao
et al. 2018), in which words are connected across time via
the assumption that the change across periods is smooth.
Yin et al. (Yin, Sachidananda, and Prabhakar 2018) intro-
duced the Global Anchor method for corpus-level adapta-
tion, which avoids alignment altogether by using second-
order distances. This method is proven to be equivalent to
the global alignment method and as a result makes use of the
smoothness of change assumption which may lead to over-
sharing, especially in cross-domain scenarios.

Selection of landmarks as words with likely same mean-
ing in two different languages is used in translation tasks.
Artetxe et al. (2017) employ a self-supervision approach to
refine a small seed dictionary with arabic numerals. Con-
neau et al. (2017) use self-supervising adversarial learning to
align bilingual embeddings, refining it with Orthogonal Pro-
crustes on the best matching words. Joulin et al. (2018) pro-
pose an alternative loss function for the alignment in order to
address the conflict between Euclidean alignment and cosine
distance mapping and to refine the alignment by matching
words that have similar frequency ranking in each language.
Lubin et al. (2019) employ a landmark selection by detecting
noisy pairs through an iterative EM algorithm.

Most of the previously developed methods do not present
a systematic way of detecting semantic change such as in
a classification problem. Our proposed method is designed
explicitly for lexical semantic change tasks by matching the
same word in two corpora, approaching semantic change as

1S4 code repository: https://github.com/IBM/S4 semantic shift

a binary classification problem. Our contributions are: the
introduction of a self-supervised method for binary semantic
change detection, a method for selecting landmark (anchor)
words for alignment of semantically changed word vectors,
a quantitative test set on British vs. American English for de-
tecting words with similar and distinct senses. We compare
our method both to baseline global alignment and noisy pairs
methods and show that it provides gains in performance in a
number of scenarios.

3 Self-Supervised Semantic Shift (S4)

The problem of detecting semantic change using monolin-
gual alignment of word embeddings is defined as follows.
Given two input corporaA and B, with vocabularies VA and
VB, let A and B be the word embedding matrices for the
common vocabulary V = VA ∩ VB, thus both A and B
have dimensions N × d, where N is the size of the com-
mon vocabulary, and d is the embedding dimension. A word
in the common vocabulary is said to be unstable if it is
used in a completely different sense between the corpora,
or that has multiple senses but some of which only appear
in one corpus, other words are considered stable. One com-
mon method for measuring semantic change is to use the
cosine distance between two embeddings after aligning A
and B on a subset of V . This problem involves two sub-
tasks: detecting words with semantic change and choosing
landmark words to align on. In this paper, we introduce a
self-supervised method that can be used in both tasks.

Given embeddings A and B, the main goal of the self-
supervision is to create a modified embedding B′ such that
B′ contains a set of words that are known to be semantically
shifted with respect to their meaning in B through explicit
perturbations. We can generate (pseudo) training samples
for a self-supervised procedure by using these modified em-
beddings and the fact that they are considered semantically
shifted. Suppose t be the target word whose sense we want to
add to another word w. We can accomplish this by replacing
t with w an arbitrary number of times r in B and re-training
the word embeddings, where the parameter r ∈ (0, 1) de-
fines the proportion of replacements with respect to the num-
ber of occurrences of t. To reduce complexity, instead of
actually retraining the word embeddings, we move the vec-
tor vw towards vt by the rule vw ← vw + rvt. This update
rule is derived from the skip-gram with negative sampling
model (Mikolov et al. 2013), specifically, whenever word t
occurs within a neighborhood window of w, vector vw is
updated with vw + (1 − z)ηvt, where z = σ(vᵀwvt). In our
perturbation, we replace σ(vᵀwvt) with parameter r, which is
used to control the proportion in which word t is found in
the neighborhood of w. The resulting word vector for w in
B′ is now shifted towards that of t and w is now forced to
become unstable regardless of its original state. By apply-
ing this process to multiple words, we are able to generate
positive samples (semantically changed words) to the self-
supervision. In contrast, negative samples are drawn from
the set of landmarks.
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Algorithm 1: Pseudo-code for self-supervised se-
mantic shift detection (S4-D). Input parameters are
word embeddings A and B, landmark words set L,
non-landmark words set M , n as the number of neg-
ative and positive samples in each iteration, and r is
the degree of perturbation. The output of this method
is the classifier weights W .
Data: A,B,L,M, n, r,max iters
Result: Classifier weights W

1 W ← init weights ;
2 i← 0;
3 while i < max iters do
4 i← i+ 1;

// Sample negatives from L and
positives from M

5 Sn = uniform sample(L, n);
6 Sp = uniform sample(M,n) ;
7 B′ ← copy(B);
8 for w ∈ Sp do
9 t← uniform sample(M);

// Simulate change by moving w
towards t

10 B′(w)← B(w) + rB(t);
11 end
12 X ← [A(w), B′(w)] ∀w ∈ Sn ∪ Sp;
13 Y ← [0 if w ∈ Sn else 1] ∀w ∈ Sn ∪ Sp;
14 W ← train(W,X, Y );
15 end
16 return W

3.1 S4-D: S4 for Semantic Change Detection

Self-supervision for semantic change detection can be used
in conjunction with any method that uses a subset of words
as landmarks. Given an initial alignment of A to B on a set
of landmarks L (potentially using Orthogonal Procrustes),
a batch of positive samples is generated from the perturba-
tions, and negative samples are uniformly drawn from L.
These samples are then used to train a binary classifier to
predict stable vs. unstable words. We use a single-layer neu-
ral network classifier with 100 hidden units with ReLU acti-
vation and sigmoid output. The input to the model is the con-
catenation of row vectors A(w) and B(w) for word w. The
model is trained over a predefined number of iterations K to
predict ŷ = 0 ifw is stable, otherwise ŷ = 1. A new batch of
positive and negative samples is generated in every iteration.
The goal is to minimize the average loss 1

K

∑K
i=1 L(ŷi, yi),

with L as the binary cross-entropy function.

Note that, at this point, the self-supervision is done over
a fixed alignment of A and B and it is trained to predict
semantic change on that setup. The hyper-parameters of S4-
D are: number of iterations K, number of negative and pos-
itive samples to generate in each iteration n and m, degree
of semantic change in the perturbations r. The pseudo-code
for S4-D is presented in Algorithm 1.

3.2 S4-A: S4 for Alignment of Word Vectors
In this section, we present an extension of the self-
supervised training to refine the landmarks based on the
classifier predictions from Section 3.1, resulting in the Self-
Supervised Semantic Shift Alignment (S4-A). The general
idea is to use stable words for alignment by adding an ex-
tra step to each iteration in Algorithm 1. At the end of
each training iteration, we update the classifiers weights W
and use the updated model to predict stable/unstable words
across A and B, hence updating the set of landmarks L with
words predicted as stable. Finally, we alignA toB using the
new set of landmarks with orthogonal procrustes and repeat
over K iterations. This method outputs both model weight
and the set of landmark wordsL and the set of non-landmark
words N . Using the final set L of landmarks, we can align
A to B using orthogonal procrustes on the words in L. Ap-
pendix A.1 contains the pseudo-code for this algorithm.

4 Experiments
4.1 Semantic Change Detection
Objective We evaluate the ability of S4-D to correctly de-
tect the occurrence of lexical semantic change across British
and American English. We designed binary classification
task to evaluate the model’s performance in predicting
semantically stable vs. unstable words. The full list of
words is given in Appendix B.

Data set The corpus used for British English is the British
National Corpus (BNC) XML Edition (of Oxford 2007)
which contains a mix of news, fiction, and academic texts.
The corpus for American English is the Corpus of Contem-
porary American English (COCA) (Davies 2009) which
contains text from newspapers, magazines, fiction, and aca-
demic texts. Both corpora are pre-processed by removing
stop words, and converting all characters to lower case, re-
sulting in 50M tokens for BNC and 188M tokens for COCA.

Baselines The baseline methods used are the commonly
used cosine distance-based method (Hamilton, Leskovec,
and Jurafsky 2016b; Kutuzov et al. 2018; Schlechtweg et al.
2019), and the Noise-Aware method (Yehezkel Lubin, Gold-
berger, and Goldberg 2019), which detects noisy word pairs.
For the cosine distance (COS), we use three different thresh-
olds for this measure, specifically we have three cosine-
based classifiers at thresholds 0.3, 0.5, and 0.7 , above which
words are classified as semantically shifted. For Noise-
Aware, we treat noisy word pairs as semantically shifted (un-
stable), and clean word pairs as stable, we will refer to that
method as Noisy-Pairs. We compare the baseline methods
to our proposed Self-Supervised Semantic Shift Detection
(S4-D) with hyper-parameters n = 1000 positives samples,
m = 1000 negative samples, rate r = 0.25, trained over
100 iterations (at each iteration, a batch of 1000 positive and
1000 negative samples are generated and used to update the
model’s weights). We train Word2Vec on the input corpora
after pre-processing with parameters dimension 300, win-
dow size 10, minimum count 100 for British, and dimension
300, window size 10, minimum count 200 for American.
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The minimum count for the American corpus is set higher
due to its corpus being considerably larger. The common vo-
cabulary contains 26064 words.
Evaluation and Analysis Once the embeddings XA, XB

are learned from the COCA and BNC corpora, respectively,
we get the embedding matrices for the common vocabulary
A,B ∈ Rn×d by selecting the rows of XA and XB that
correspond to words in the common vocabulary. We learn a
transform matrix Q by aligning A to B using a given align-
ment strategy. The self-supervised classifier is trained on A
and B using the given alignment. Using the learned matrix
Q, we align XB to XA by doing XB ← XBQ. Finally, we
concatenate the vectors of the target words and feed it into
the classifier to obtain the binary predictions (i.e. semanti-
cally stable or unstable).

The classification scores for this task (Table 1) show that
S4-D displays the best accuracy when aligning on the top
10% most frequent words, it also shows high recall and F1
scores when aligning on the 10% least frequent and 5% most
frequent words. The scores for S4-D are the average of 10
evaluation rounds, standard deviation is also reported in Ta-
ble 1. Each evaluation round consists of one execution of the
algorithm on the input data. This contrasts with the drop in
performance shown by global alignment, this is likely due
to the oversharing of words, which makes the separation
of stable and unstable words more difficult. The alignment
method is irrelevant to Noisy-Pairs since it inherently aligns
the input vectors when searching for noise. Noisy-Pairs pre-
dicts a total of 24659 pairs as clean, or semantically stable.
For that reason, only one pair of words from the target set
is predicted as semantically shifted (positive class), which
explains the precision score of 1.0 and a recall of 0.03.

Examples of stable words correctly predicted by S4-D are
the British-American pairs labour/labor, defence/defense,
petrol/gas, football/soccer, and queue/line. This shows we
are able to not only to detect identical words but also mor-
phological differences and synonyms. Note that some of
these words were not included in the alignment due to not
being in the common vocabulary. Yet, we are still able to
capture their semantic similarity after the orthogonal trans-
formation. These results show our model’s ability to gen-
eralize to words not seen in the self-supervision. Addition-
ally, we were able to correctly predict unstable words such
as chips (french fries in the US), biscuit (scone in the UK,
cookie in the US), and semi (house in the UK, truck in the
US). Noisy-Pairs is able to correctly predict the semantically
unstable words subway and yankee, and it also predicts all
stable words correctly but shows a low recall score.

4.2 Evaluating Alignment Strategies
Objective We evaluate the Self-Supervised Semantic Shift
Alignment (S4-A) described in Section 3.2 by the impact
of assessing multiple alignment strategies on the perfor-
mance of the binary classification problem from the re-
cent SemEval-2020 task on Unsupervised Lexical Semantic
Change Detection (Schlechtweg et al. 2020). The task con-
sists of predicting the occurrence of lexical semantic change
on a set of target words in four languages: English, German,
Latin, and Swedish. For each language there are two input

corpora C1 and C2 containing text from time periods t1 and
t2, with t1 < t2.
Data sets The data sets used in this experiment are provided
in the aforementioned SemEval task. The corpus used for
English is the Clean Corpus of Historical American English
(CCOHA) (Alatrash et al. 2020), a pre-processed and lem-
matized version of the Corpus of Historical American En-
glish (COHA) (Davies 2009). For this task, the corpus was
split into time periods t1 with texts from years 1810 through
1860, and t2 with text from years 1960 through 2010. The
German data set consists of the DTA corpus (von der Berlin-
Brandenburgischen Akademie der Wissenschaften 2017) for
the first time period, and a combination of the BZ and
ND corpora (zu Berlin 2018a,b) for the second time pe-
riod. Specifically, text in t1 pertains to years 1800 through
1899, and text in t2 pertains to years 1946 through 1990.
For Latin we use the LatinISE corpus (McGillivray and Kil-
garriff 2013) with time periods t1 from 200 B.C. through 0
A.D., and t2 from years 0 through 2000 (A.D.). For Swedish
we use the KubHist corpus (Borin, Forsberg, and Roxendal
2012; Adesam, Dannélls, and Tahmasebi 2019). Time pe-
riod t1 is from 1790 through 1830, time period t2 is from
1895 through 1903. Along with each data set, a list of target
words is provided for evaluation. Further details about the
data sets can be found in Appendix C.
Baselines We include common alignment methods for com-
parison to S4-A. Particularly, we adopt the global align-
ment strategy as used in diachronic embeddings (Hamilton,
Leskovec, and Jurafsky 2016b), as well as frequency based
selection of landmarks, aligning at the 5% and 10% most
and least frequent words (Bojanowski et al. 2017), and the
Noise-Aware method for selecting landmarks.
Evaluation and Analysis We begin by training Word2Vec
on C1 and C2, generating embeddings X1 and X2. We set
the embedding dimension to 300 and use a window of size
10 for all languages. The minimum word count is 20, 30,
10, and 50 for English, German, Latin, and Swedish, respec-
tively, these are chosen based on the amount of data provided
for each language.

Let A ⊂ X1 and B ⊂ X2 be the embedding matrices for
the common vocabulary terms inC1 andC2. Our experiment
consists of aligning A to B using different alignment strate-
gies and evaluating the alignments with respect to its perfor-
mance in the binary classification task. Particularly, we eval-
uate our self-supervised alignment and compare it to doing
global alignment, aligning on most and least frequent words,
and selecting clean words as landmarks (Yehezkel Lubin,
Goldberger, and Goldberg 2019).

Since there is no labeled training data for this problem,
we build a model to predict lexical semantic change based
on the cosine distance between the word vectors inA andB,
after alignment. We compute the cosine distance between all
pairs of vectors in A and B. Then, for each word w in the
common vocabulary, we compute the cumulative probabil-
ity P (x < X) where x is the cosine distance between the
vectors of w. Finally, we decide on the class of w based on
a threshold t ∈ (0, 1). To determine the value of t, we per-
form model selection through cross-validation on the self-
supervised data, selecting t that achieves the best accuracy
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Method Alignment Accuracy Precision Recall F1
COS Global 0.38/0.30/0.25 0.48/0.36/0.00 0.26/0.10/0.00 0.32/0.15/0.00
S4-D 0.45 ±0.03 0.81 ±0.06 0.28± 0.05 0.43 ±0.06
COS Top-5% 0.39/0.30/0.25 0.47/0.36/0.00 0.29/0.10/0.00 0.33/0.15/0.00
S4-D 0.67 ±0.02 0.81± 0.02 0.79± 0.02 0.82 ±0.01
COS Top-10% 0.37/0.30/0.25 0.47/0.36/0.00 0.26/0.10/0.00 0.31/0.15/0.00
S4-D 0.70± 0.03 0.83± 0.02 0.74± 0.03 0.78± 0.02

COS Bot-5% 0.40/0.29/0.24 0.46/0.32/0.00 0.31/0.10/0.00 0.35/0.16/0.00
S4-D 0.45± 0.02 0.62± 0.01 0.21± 0.02 0.31± 0.01

COS Bot-10% 0.37/0.30/0.25 0.53/0.45/0.25 0.29/0.12/0.02 0.34/0.18/0.03
S4-D 0.65± 0.02 0.71± 0.01 0.89± 0.02 0.79± 0.01

COS S4-A 0.44/0.34/0.28 0.66/0.62/0.57 0.40/0.18/0.06 0.44/0.27/0.12
S4-D S4-A 0.70± 0.01 0.72± 0.01 0.93± 0.01 0.81± 0.01

Noisy-Pairs - 0.30 1.00 0.03 0.06

Table 1: Classification scores for the British vs. American English task. The baseline cosine (COS) method outputs unstable
words whose cosine distance is greater than 0.3/0.5/0.7. Top-N/bot-N alignments use the most/least frequent words. S4-D (our
method) is the self-supervised semantic shift detection. The scores for S4-D are given as the mean and standard deviation over
10 evaluation rounds. The initial alignment is irrelevant to noisy-pairs as it necessarily searches an alignment.

in the leave-one-out tests, t is searched in (0, 1) in incre-
ments of 0.1. The prediction is ŷ = 1 if P (x < X) > t,
otherwise ŷ = 0.

Results from this experiment are shown in Table 2. We
report the accuracy on the evaluation set for each language
and alignment method. Top/bot alignments are done over
the top 5%/10% most/least frequent words in C1. S4-A is
able to achieve the best accuracy scores maximum scores
for English and German, matching some of the top perform-
ing scores in the post-evaluation phase of the SemEval-2020
Task 1 competition 2

4.3 Discovery of Semantic Change
Objective We conduct an experiment on the arXiv data pro-
vided by Yin et al. (2018) to show how we can use S4-A for
word embedding alignment for the discovery of semantic
change, and how the results differ across alignment methods.
We select the subjects of Artificial Intelligence (cs.AI) and
Classical Physics (physics.class-ph) and train embeddingsA
and B, respectively, with Word2Vec (dimension 300, win-
dow size 10, minimum count 20). The embedding matrices
are aligned using each alignment strategy, and the seman-
tic shift measured by di = ‖AiQ−Bi‖ for each word wi

in the common vocabulary, where Q is the transform matrix
learned in the alignment.
Baselines We compare the most semantically shifted words
as discovered by the Global and Noise-Aware alignments
(Hamilton, Leskovec, and Jurafsky 2016b; Yehezkel Lubin,
Goldberger, and Goldberg 2019). We also compare our re-
sults to the top 3 high scoring entries from post-evaluation
phase of the SemEval-2020 Task 1 competition, these meth-
ods may use distinct sets of features that go beyond just us-

2https://competitions.codalab.org/competitions/20948#results
Accessed: 2020-08-04.

Alignment English German Latin Swedish
S4-A 0.70 0.81 0.68 0.77
Noise-Aware 0.65 0.79 0.65 0.74
Top 5% fr. 0.65 0.77 0.68 0.77
Top 10% fr. 0.68 0.79 0.68 0.74
Bot 5% fr. 0.68 0.73 0.62 0.77
Bot 10% fr. 0.68 0.75 0.70 0.81
Global 0.68 0.79 0.65 0.74

SemEval #1 0.70 0.79 0.68 0.81
SemEval #2 0.70 0.77 0.72 0.74
SemEval #3 0.65 0.77 0.75 0.74

Table 2: Classification accuracy of the unsupervised lexi-
cal semantic change detection on the SemEval-2020 Task
1 data set. The results were obtained by aligning the em-
bedding matrices using different alignment strategies, and
applying a threshold to the cosine distance of the aligned
vectors, selected by cross-validation. Top-fr. and Bot-fr. are
alignments using OP on the top and bottom 5% and 10% fre-
quent words. The bottom rows shows the top 3 high scoring
submissions to SemEval-2020 Task 1 in the post evaluation
phase.

ing word embeddings.
Evaluation and Analysis To quantify the difference be-
tween different alignments, we measured the ranking corre-
lation using the Spearman’s rho coefficient of the ranked list
of words according to each method (ranked in descending
order of semantic shift) at varying top-K thresholds with k in
[10, 500] in increments of 10. Figure 2 shows the ranked cor-
relation coefficient between each alignment strategy. Higher
values of rho indicate that the order of semantic shift is more
consistent between the two alignment strategies. These re-
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sults reveal that Global and Noise-Aware produce very sim-
ilar rankings, with rho approaching 1 even for small values
of k. On the other hand, the ranking correlation between S4-
A is substantially lower for small values of k. This sug-
gests that most of the difference in ranking between S4-
A and the others is in the most shifted words, with the
ranking of the remaining words being very similar to Global
and Noise-Aware. In summary, S4-A can be used to find
novel shifted words that are overlooked by existing methods
such as Global and Noise-Aware. Table 3 shows the list of
uniquely discovered words among the top most shifted for
Global and S4-A . Noise-Aware because it does not show
any novel words when compared to Global, i.e., its predic-
tions are the same between arXiv subjects of Artificial Intel-
ligence and Classical Physics. We find that words uniquely
discovered by S4-A can be naturally explained in context
of their subjects, for instance, mass is likely more often used
as probability mass in AI, and as physical mass in classical
physics. More comparisons are shown in Appendix D.
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Figure 2: Ranking correlation between Global, Noise-
Aware, and S4-A alignments at varying top-k levels.
Works are ranked from most to least shifted according to
each method and the ranking correlation is measured with
Spearman’s rho. The semantic shifts are between arXiv
subjects cs.AI and physics.class-ph.

Global/Noise-Aware S4-A
agent component

approximation element
boundary mass

conceptual order
knowledge solution

plane space
reference term

rules time
system vector

Table 3: Unique words discovered by each alignment
method among the top 50 most shifted, between arXiv
cs.AI and physics-class-ph corpora. Global and Noise-
Aware show the same predictions in the top 50 words.

5 Conclusions

We introduced S4-D and S4-A as self-supervised ap-
proaches to detect word-level semantic shifts on monolin-
gual corpora. Motivated by the unsupervised nature of this
problem, we introduce self-supervision based on the per-
turbation of word vectors and apply it to binary classifica-
tion and vector alignment. S4-D is presented as an alterna-
tive to baseline unsupervised methods for semantic shift de-
tection, particularly in the case of binary classification. We
show, through experiments in Section 4.1, that it achieves
over 2× higher F1-scores than baselines in the classifica-
tion settings. Moreover, we show how the alignment of word
embeddings affect the outcome of such methods. Particu-
larly, we show that global alignment uses the assumption
of smooth transition, which may not hold true in the sce-
nario of cross-domain semantic shift, where many words can
be highly shifted. For that reason, we present an extension
of our method, named S4-A, that uses its predictions to re-
fine the alignment of the input embeddings. We demonstrate
its usefulness quantitatively, through the detection task in
Section 4.2, where S4-A allows for the detection of unique
words when using a simple cosine distance baseline. Quali-
tatively, we demonstrate that S4-A is able to discovery novel
shifts when compared to other alignment methods.

There are still open questions on how the self-supervised
model is affected according to part-of-speech, frequency
range, and degree of polysemy of words. In addition, fac-
tors such as number of tokens, vocabulary size, and degree
of change of the language may impact the quality of the em-
beddings, therefore, affect the semantic shift detection.

While this remains a difficult task, we believe that this
work will help numerous applications of semantic shift de-
tection and alignment that have been recently explored, es-
pecially in the monolingual and cross-domain setting.

Ethical Impact

Prior work has shown that embeddings in a single corpus
can encode many cultural stereotypes such as gender and
racial bias. This is not particularly surprising as language is a
tool for creating common meaning. Stereotypes, gender and
racial bias are social constructs that have been quite promi-
nent in many cultural artifacts including languages. Code
words and dog-whistles are words often used to mean differ-
ent things only for a specific community. A word that looks
quite common and benign can be very offensive when eval-
uated in context. Some of these differences can be rooted
in social justice work of reclaiming controversial words. In
short, language codes rich and complex cultural and his-
torical differences that are lost when treated as a monolith.
Our emphasis is in creating tools not to smooth over these
differences, but help identify them. To accomplish this, we
use two corpora in the same language to understand which
words in one corpus have a different meaning compared to
another corpus. Our work leverages potential bias in lan-
guages by using one corpus as a point of reference for the
other to highlight the differences.
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the Eighth International Conference on Language Resources
and Evaluation (LREC’12), 474–478. Istanbul, Turkey: Eu-
ropean Language Resources Association (ELRA).

Caliskan, A.; Bryson, J. J.; and Narayanan, A. 2017. Se-
mantics derived automatically from language corpora con-
tain human-like biases. Science 356(6334): 183–186.

Conneau, A.; Lample, G.; Ranzato, M.; Denoyer, L.; and
Jégou, H. 2017. Word translation without parallel data.
arXiv preprint arXiv:1710.04087 .

Cook, P.; and Stevenson, S. 2010. Automatically Identifying
Changes in the Semantic Orientation of Words. In LREC.

Davies, M. 2009. The 385+ million word Corpus of Con-
temporary American English (1990–2008+): Design, archi-
tecture, and linguistic insights. International journal of cor-
pus linguistics 14(2): 159–190.

Doersch, C.; Gupta, A.; and Efros, A. A. 2015. Unsuper-
vised visual representation learning by context prediction. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 1422–1430.
Dosovitskiy, A.; Fischer, P.; Springenberg, J. T.; Riedmiller,
M.; and Brox, T. 2015. Discriminative unsupervised feature
learning with exemplar convolutional neural networks. IEEE
transactions on pattern analysis and machine intelligence
38(9): 1734–1747.
Dubossarsky, H.; Weinshall, D.; and Grossman, E. 2017.
Outta control: Laws of semantic change and inherent biases
in word representation models. In Proceedings of the 2017
conference on empirical methods in natural language pro-
cessing, 1136–1145.
Gidaris, S.; Singh, P.; and Komodakis, N. 2018. Unsuper-
vised representation learning by predicting image rotations.
International Conference on Learning Representations .
Hamilton, W. L.; Leskovec, J.; and Jurafsky, D. 2016a. Cul-
tural shift or linguistic drift? comparing two computational
measures of semantic change. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Process-
ing. Conference on Empirical Methods in Natural Language
Processing, volume 2016, 2116. NIH Public Access.
Hamilton, W. L.; Leskovec, J.; and Jurafsky, D. 2016b. Di-
achronic Word Embeddings Reveal Statistical Laws of Se-
mantic Change. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers), 1489–1501.
Joulin, A.; Bojanowski, P.; Mikolov, T.; Jégou, H.; and
Grave, E. 2018. Loss in Translation: Learning Bilingual
Word Mapping with a Retrieval Criterion. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, 2979–2984. Brussels, Belgium: Associa-
tion for Computational Linguistics. doi:10.18653/v1/D18-
1330.
Kulkarni, V.; Al-Rfou, R.; Perozzi, B.; and Skiena, S. 2015.
Statistically significant detection of linguistic change. In
Proceedings of the 24th International Conference on World
Wide Web, 625–635.
Kutuzov, A.; Øvrelid, L.; Szymanski, T.; and Velldal, E.
2018. Diachronic word embeddings and semantic shifts: a
survey. In Proceedings of the 27th International Conference
on Computational Linguistics, 1384–1397. Santa Fe, New
Mexico, USA: Association for Computational Linguistics.
Kutuzov, A.; Velldal, E.; and Øvrelid, L. 2017. Temporal
dynamics of semantic relations in word embeddings: an ap-
plication to predicting armed conflict participants. In Pro-
ceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, 1824–1829.
McGillivray, B.; and Kilgarriff, A. 2013. Tools for historical
corpus research, and a corpus of Latin. New Methods in
Historical Corpus Linguistics 1(3): 247–257.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.

12900



of Oxford, U. 2007. The British National Corpus (BNC
XML Edition). URL http://www.natcorp.ox.ac.uk/. Ac-
cessed: 2020-07-03.
Rudolph, M.; and Blei, D. 2018. Dynamic embeddings for
language evolution. In Proceedings of the 2018 World Wide
Web Conference, 1003–1011.
Sagi, E.; Kaufmann, S.; and Clark, B. 2009. Semantic den-
sity analysis: Comparing word meaning across time and
phonetic space. In Proceedings of the Workshop on Geo-
metrical Models of Natural Language Semantics, 104–111.
Association for Computational Linguistics.
Schlechtweg, D.; Hätty, A.; Del Tredici, M.; and Schulte im
Walde, S. 2019. A Wind of Change: Detecting and Eval-
uating Lexical Semantic Change across Times and Do-
mains. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 732–746. Flo-
rence, Italy: Association for Computational Linguistics. doi:
10.18653/v1/P19-1072.
Schlechtweg, D.; McGillivray, B.; Hengchen, S.; Du-
bossarsky, H.; and Tahmasebi, N. 2020. SemEval-2020 Task
1: Unsupervised Lexical Semantic Change Detection. In To
appear in Proceedings of the 14th International Workshop
on Semantic Evaluation. Barcelona, Spain: Association for
Computational Linguistics.
Schmidt, K. H. 1963. Ullmann Stephen. Semantics. An In-
troduction to the Science of Meaning (Book Review). In-
dogermanische Forschungen 68: 183.
Schönemann, P. H. 1966. A generalized solution of the or-
thogonal procrustes problem. Psychometrika 31(1): 1–10.
von der Berlin-Brandenburgischen Akademie der Wis-
senschaften, H. 2017. Deutsches Textarchiv. Grundlage für
ein Referenzkorpus der neuhochdeutschen Sprache. URL
http://www.deutschestextarchiv.de/. Accessed: 2020-08-15.
Wang, Z.; Xie, J.; Xu, R.; Yang, Y.; Neubig, G.; and Car-
bonell, J. 2019. Cross-lingual Alignment vs Joint Training:
A Comparative Study and A Simple Unified Framework.
arXiv preprint arXiv:1910.04708 .
Yao, Z.; Sun, Y.; Ding, W.; Rao, N.; and Xiong, H. 2018.
Dynamic word embeddings for evolving semantic discovery.
In Proceedings of the eleventh acm international conference
on web search and data mining, 673–681.
Yehezkel Lubin, N.; Goldberger, J.; and Goldberg, Y. 2019.
Aligning Vector-spaces with Noisy Supervised Lexicon. In
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short
Papers), 460–465. Minneapolis, Minnesota: Association for
Computational Linguistics. doi:10.18653/v1/N19-1045.
Yin, Z.; Sachidananda, V.; and Prabhakar, B. 2018. The
global anchor method for quantifying linguistic shifts and
domain adaptation. In Advances in neural information pro-
cessing systems, 9412–9423.
Zhang, R.; Isola, P.; and Efros, A. A. 2016. Colorful image
colorization. In European conference on computer vision,
649–666. Springer.

zu Berlin, S. 2018a. Berliner Zeitung. Diachronic newspaper
corpus published by Staatsbibliothek zu Berlin. URL http:
//zefys.staatsbibliothek-berlin.de/index.php?id=155. Ac-
cessed: 2020-08-15.
zu Berlin, S. 2018b. Neues Deutschland. Diachronic news-
paper corpus published by Staatsbibliothek zu Berlin. URL
http://zefys.staatsbibliothek-berlin.de/index.php?id=156.
Accessed: 2020-08-15.

12901


