
Iterative Utterance Segmentation for Neural Semantic Parsing

Yinuo Guo1∗, Zeqi Lin2, Jian-Guang Lou2, Dongmei Zhang2

1Key Laboratory of Computational Linguistics, School of EECS, Peking University
2Microsoft Research Asia

gyn0806@pku.edu.cn, {Zeqi.Lin, jlou, dongmeiz}@microsoft.com

Abstract

Neural semantic parsers usually fail to parse long and complex
utterances into correct meaning representations, due to the lack
of exploiting the principle of compositionality. To address this
issue, we present a novel framework for boosting neural se-
mantic parsers via iterative utterance segmentation. Given an
input utterance, our framework iterates between two neural
modules: a segmenter for segmenting a span from the utter-
ance, and a parser for mapping the span into a partial meaning
representation. Then, these intermediate parsing results are
composed into the final meaning representation. One key ad-
vantage is that this framework does not require any handcraft
templates or additional labeled data for utterance segmentation:
we achieve this through proposing a novel training method,
in which the parser provides pseudo supervision for the seg-
menter. Experiments on GEO, COMPLEXWEBQUESTIONS
and FORMULAS show that our framework can consistently
improve performances of neural semantic parsers in different
domains. On data splits that require compositional generaliza-
tion, our framework brings significant accuracy gains: GEO
63.1 → 81.2, FORMULAS 59.7 → 72.7, COMPLEXWE-
BQUESTIONS 27.1→ 56.3.

Introduction
Semantic parsing is the task of mapping natural language
utterances to machine interpretable meaning representations.
Many semantic parsing methods are based on the princi-
ple of semantic compositionality (aka, compositional seman-
tics) (Pelletier 1994), of which the main idea is to put together
the meanings of utterances by combining the meanings of
the parts (Zelle and Mooney 1996; Zettlemoyer and Collins
2005, 2007; Liang, Jordan, and Klein 2011; Pasupat and
Liang 2015). However, these methods suffer from heavy de-
pendence on handcrafted grammars, lexicons, and features.

To overcome this problem, many neural semantic parsers
have been proposed and achieved promising results (Jia and
Liang 2016; Dong and Lapata 2016; Ling et al. 2016; Dong
and Lapata 2018; Shaw et al. 2019). However, due to the lack
of capturing compositional structures in utterances, neural
semantic parsers usually have poor generalization ability to
handle unseen compositions of semantics (Finegan-Dollak

∗Work done during an internship at Microsoft Research Asia.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Iterative Utterance Segmentation for Neural Semantic Parsing

Yinuo Guo1∗, Zeqi Lin2, Jian-Guang Lou2, Dongmei Zhang2

1Key Laboratory of Computational Linguistics,
School of EECS, Peking University,

2Microsoft Research Asia
1gyn0806@pku.edu.cn,

2{Zeqi.Lin, jlou, dongmeiz}@microsoft.com

Abstract

Neural semantic parsers usually fail to parse long and complex
utterances into correct meaning representations, due to the lack
of exploiting the principle of compositionality. To address this
issue, we present a novel framework for boosting neural se-
mantic parsers via iterative utterance segmentation. Given an
input utterance, our framework iterates between two neural
modules: a segmenter for segmenting a span from the utter-
ance, and a parser for mapping the span into a partial meaning
representation. Then, these intermediate parsing results are
composed into the final meaning representation. One key ad-
vantage is that this framework does not require any handcraft
templates or additional labeled data for utterance segmentation:
we achieve this through proposing a novel training method,
in which the parser provides pseudo supervision for the seg-
menter. Experiments on GEO, COMPLEXWEBQUESTIONS
and FORMULAS show that our framework can consistently
improve performances of neural semantic parsers in different
domains. On data splits that require compositional generaliza-
tion, our framework brings significant accuracy gains: GEO
63.1 → 81.2, FORMULAS 59.7 → 72.7, COMPLEXWE-
BQUESTIONS 27.1→ 56.3.

1 Introduction
Semantic parsing is the task of mapping natural language
utterances to machine interpretable meaning representations.
Many semantic parsing methods are based on the princi-
ple of semantic compositionality (aka, compositional seman-
tics) (Pelletier 1994), of which the main idea is to put together
the meanings of utterances by combining the meanings of the
parts (Zelle and Mooney 1996; Zettlemoyer and Collins 2005,
2007; Liang, Jordan, and Klein 2011; Berant et al. 2013; Pa-
supat and Liang 2015; Berant and Liang 2015). However,
these methods suffer from heavy dependence on handcrafted
grammars, lexicons, and features.

To overcome this problem, many neural semantic parsers
have been proposed and achieved promising results (Jia and
Liang 2016; Dong and Lapata 2016; Ling et al. 2016; Dong
and Lapata 2018; Shaw et al. 2019). However, due to the lack
of capturing compositional structures in utterances, neural
semantic parsers usually have poor generalization ability to

∗Work done during an internship at Microsoft Research Asia.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Q How many rivers run through the states border-
ing colorado

M count(river(traverse 2(state(
next to 2(stateid(′colorado′))))))

Q1 the states bordering colorado
M1 state(next to 2(stateid(′colorado′)))
Q2 rivers run through $state$
M2 river(traverse 2($state$))
Q3 How many $river$
M3 count($river$)

Table 1: An example of iterative utterance segmentation for
semantic parsing. The first cell shows an utterance (Q) and
its meaning representation (M). The following three cells
show how we iterate between: (1) segmenting the utterance
to obtain a simpler span (Q1/Q2/Q3); (2) parsing the span
into a partial meaning representation (M1/M2/M3). Finally,
we compose M1, M2 and M3 into the final result (M).

handle unseen compositions of semantics (Finegan-Dollak
et al. 2018). For example, a parser trained on “How many
rivers run through oklahoma?” and “Show me states border-
ing colorado?” may not perform well on “How many rivers
run through the states bordering colorado?”.

In this paper, we propose a novel framework to boost
neural semantic parsers with the principle of composition-
ality (Pelletier 1994). It iterates between segmenting a span
from the utterance and parsing it into a partial meaning
representation. Table 1 shows an example. Given an utter-
ance “How many rivers run through the states bordering col-
orado?”, we parse it through three iterations: (1) we segment
a span “the states bordering colorado” from the utterance,
and parse it into state(next to 2(stateid(′colorado′))); (2)
as the utterance is reduced to “How many rivers run through
$state$?”, we segment a span “rivers run through $state$”
from it, and parse it into river(traverse 2($state$)); (3)
the utterance is further reduced to “How many $river$?”, and
we parse it into count($river$). We compose these partial
meaning representations into the final result.

Our framework consists of two neural modules: an utter-
ance segmentation model (segmenter for short) and a base
parser (parser for short). The former is in charge of segment-
ing a span from an utterance, and the latter is in charge of
parsing the span into its meaning representation. These two

Figure 1: An example of iterative utterance segmentation for
semantic parsing. The first cell shows an utterance (Q) and
its meaning representation (M). The following three cells
show how we iterate between: (1) segmenting the utterance
to obtain a simpler span (Q1/Q2/Q3); (2) parsing the span
into a partial meaning representation (M1/M2/M3). Finally,
we compose M1, M2 and M3 into the final result (M).

et al. 2018). For example, a parser trained on “How many
rivers run through oklahoma?” and “Show me states border-
ing colorado?” may not perform well on “How many rivers
run through the states bordering colorado?”.

In this paper, we propose a novel framework to boost
neural semantic parsers with the principle of composition-
ality (Pelletier 1994). It iterates between segmenting a span
from the utterance and parsing it into a partial meaning
representation. Figure 1 shows an example. Given an utter-
ance “How many rivers run through the states bordering col-
orado?”, we parse it through three iterations: (1) we segment
a span “the states bordering colorado” from the utterance,
and parse it into state(next to 2(stateid(′colorado′))); (2)
as the utterance is reduced to “How many rivers run through
$state$?”, we segment a span “rivers run through $state$”
from it, and parse it into river(traverse 2($state$)); (3)
the utterance is further reduced to “How many $river$?”, and
we parse it into count($river$). We compose these partial
meaning representations into the final result.

Our framework consists of two neural modules: an utter-
ance segmentation model (segmenter for short) and a base
parser (parser for short). The former is in charge of segment-
ing a span from an utterance, and the latter is in charge of
parsing the span into its meaning representation. These two

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12937

Dataset Example

GEO
x: “How many rivers run through the states bordering colorado?”
y: count(river(traverse 2(state(next to 2(stateid(’colorado’))))))

COMPLEX
WEBQUESTIONS

x: “What is the mascot of the school where Thomas R. Ford is a grad student?”
y: SELECT ?x WHERE {

?c ns:education.educational institution.students graduates ?k .
?k ns:education.education.student ns:m.0 thgpt .
?c ns:education.educational institution.mascot ?x }

FORMULAS
x: “What is the smaller value between F14 divided by E14 and the largest number in A1:D10.”
y: MIN(F14/E14, MAX(A1:D10))

Table 1: Examples of natural language utterances (x) paired with their structured meaning representations (y) from our
experimental datasets.

modules work together to parse complex input utterances in
a divide-and-conquer fashion.

One key advantage of this framework is that it does not
require any handcraft templates or additional labeled data for
utterance segmentation: we achieve this through proposing a
novel training method, in which the base parser provides
pseudo supervision to the utterance segmentation model.
Specifically: we train a preliminary base parser on the original
train data; then, for each train sample (x, y), we leverage the
preliminary base parser to collect all reasonable spans (those
can be parsed to a part of y by the preliminary base parser).
Finally, we use these collected spans as pseudo supervision
signals for training the utterance segmentation model, with-
out requiring any handcraft templates or additional labeled
data.

In summary, our proposed framework has four advantages:
(1) the base parser learns to parse simpler spans instead
of whole complex utterances, thus alleviating the training
difficulties and improving the compositional generalization
ability; (2) our framework is flexible to incorporate vari-
ous popular encoder-decoder models as the base parser; (3)
our framework does not require any handcraft templates or
additional labeled data for utterance segmentation; (4) our
framework improves the interpretability of neural semantic
parsing by providing explicit alignment between spans and
partial meaning representations.

We conduct experiments on three datasets: GEO (Zelle and
Mooney 1996), COMPLEXWEBQUESTIONS (Talmor and Be-
rant 2018), and FORMULAS (a new dataset introduced in this
paper). They use different forms of meaning representations:
FunQL, SPARQL, and Spreadsheet Formula. Experimen-
tal results show that our framework consistently improves
the performances of neural semantic parsers in different do-
mains. On data splits that require compositional generaliza-
tion, our framework brings significant accuracy gain: GEO
63.1 → 81.2, FORMULAS 59.7 → 72.7, COMPLEXWE-
BQUESTIONS 27.1→ 56.3.

Related Work
Semantic Parsing
There are two major paradigms of semantic parsing: composi-
tional semantic parsing (Zelle and Mooney 1996; Zettlemoyer
and Collins 2005; Liang, Jordan, and Klein 2011; Pasupat
and Liang 2015; Berant and Liang 2015), and neural seman-

tic parsing (Jia and Liang 2016; Dong and Lapata 2016; Ling
et al. 2016; Dong and Lapata 2018; Shaw et al. 2019). Our
work aims to combine their respective advantages.

In neural semantic parsing, various efforts have been made
to leverage the syntax of meaning representations (typically,
the tree structures) to enhance decoders (Dong and Lapata
2016; Yin and Neubig 2017; Guo et al. 2019). In these works,
encoders treat input utterances as sequential tokens, with-
out considering their compositional structures. On the other
hand, some researchers focus on exploring data augmenta-
tion techniques to provide a compositional inductive bias
in models (Jia and Liang 2016; Andreas 2019). However,
they rely on exact matching of spans, which work well on
word/phrase-level re-combination or simple domains (e.g.,
GEO and SCAN (Lake and Baroni 2018)), but is not suitable
for more complex scenarios (e.g., diverse subsentences in
COMPLEXWEBQUESTIONS). Therefore, the lack of compo-
sitional generalization ability is still a challenging problem in
neural semantic parsing (Finegan-Dollak et al. 2018; Keysers
et al. 2020).

Utterance Segmentation

In Question Answering, question segmentation has been suc-
cessfully applied to help answer questions requiring multi-
hop reasoning (Kalyanpur et al. 2012; Talmor and Berant
2018; Qi et al. 2019). A key challenge in these works is to
derive supervision for question segmentation. Kalyanpur et al.
(2012) segments questions based on predominantly lexico-
syntactic features. Talmor and Berant (2018) leverages simple
questions to derive distant supervision. Min et al. (2019) uses
additional labeled data to fine-tune a BERT-based model; Qi
et al. (2019) utilizes the longest common strings/sequences
between utterances and their supporting context documents
for segmentation.

In Semantic Parsing, Zhang et al. (2019) proposes HSP, a
novel hierarchical semantic parsing method, which utilizes
the decompositionality of complex utterances for semantic
parsing. This method requires (utterance, sub-utterances,
meaning representation) instances for training. Pasupat et al.
(2019) proposes a span-based hierarchical semantic parsing
method for task-oriented dialog. This method requires span-
based annotations for training.

12938

How many rivers run through the states bordering colorado

state(next_to_2(stateid(‘colorado’)))

How many rivers run through $state$

river(traverse_2($state$))

How many $river$

count($river$)

Base Parser

Final parsing result:
count(

river(traverse_2(
state(next_to_2(stateid(‘colorado’)))

)))

Utterance
Segmentation

Model

Iteration 1

Iteration 2

Iteration 3

Figure 2: Framework overview. Given a natural language utterance, the framework iteratively segments a span (yellow highlight)
from it and parses the span to a partial meaning representation (green). We obtain span meanings via neural semantic parsing,
then piece them to assemble whole-utterance meaning.

Framework
Problem Statement
Our goal is to learn semantic parsers from D, a set of in-
stances of natural language utterances paired with their struc-
tured meaning representations. We wish to estimate p(y|x),
the conditional probability of meaning representation y given
utterance x. Table 1 shows examples from different datasets.

Framework Overview
Neural semantic parsers usually have poor generalization abil-
ity to handle unseen compositions of semantics. To address
this problem, we propose to segment a complex utterance
into simpler sub-utterances. We obtain partial meanings via
neural semantic parsing, and then compose them together as
the entire meaning representation.

Specifically, our framework consists of an utterance seg-
mentation model and a base neural semantic parser. It parses
utterances in an iterative “segment-and-parse” fashion. The
k-th iteration process is detailed in the following four steps:

1. Segmentation. Given an input utterance x(k) (x(1) is the
original input utterance), our utterance segmentation model
predicts a span x̂ = x

(k)
i:j (1 ≤ i < j ≤ |x(k)|), represent-

ing an independent clause of x(k).

How many rivers run through

x̂︷ ︸︸ ︷
the states bordering colorado ?︸ ︷︷ ︸

x(k)

2. Parsing. The base parser maps span x̂ to a partial meaning
representation ŷ.

x̂→

ŷ︷ ︸︸ ︷
state(next to 2(stateid(′colorado′))

3. Reducing. Based on z, we reduce x(k) to x(k+1) through
substituting x̂ with d(ŷ):

x(k+1) = [x̂ 7→ d(ŷ)]x(k) (1)

where the notation [u 7→ v]p refers to the result of replac-
ing span u in p (an utterance or meaning representation)

with v, and d(ŷ) is the denotation type (i.e., answer type)
of ŷ1.

How many rivers run through

d(ŷ)︷ ︸︸ ︷
$state$?︸ ︷︷ ︸

x(k+1)

4. Iteration. If s 6= x(k), start the (k + 1) -th iteration. Oth-
erwise, stop the iteration process, and compose the partial
meaning representations produced in the iterations into the
final result.

How many

x̂︷ ︸︸ ︷
rivers run through $state$?︸ ︷︷ ︸

x(k+1)

Figure 2 illustrates how our framework parses a natural
language utterance to its meaning representation through
iterative utterance segmentation.

Probabilistic Reformulation
To be more formal, in this section we rephrase Section using
conditional probability.

Firstly, the conditional probability p(y|x) is decomposed
into a two-stage generation process:

p(y|x) =
∑
x̂⊂x

p(y|x, x̂)p(x̂|x) (2)

where p(x̂|x) represents the conditional probability of seg-
menting a span x̂ from x, and p(y|x, x̂) represents the condi-
tional probability of parsing x to meaning representation y
after the segmentation.

Then, we further decompose p(y|x, x̂) into a two-stage
generation process:

p(y|x, x̂) =
∑
ŷ

p(y|x, x̂, ŷ)p(ŷ|x, x̂) (3)

As x̂ represents an independent clause in x (which means
that ŷ is independent of x given x̂), we have p(ŷ|x, x̂) =
p(ŷ|x̂).

1Implementation details of d(ŷ) in different domains are pre-
sented in Section .

12939

Now we consider p(y|x, x̂, ŷ):

p(y|x, x̂, ŷ) = p(reduced y|reduced x)
reduced x = [x̂ 7→ d(ŷ)]x

reduced y = [ŷ 7→ d(ŷ)]y

(4)

This corresponds to the iteration mechanism in our frame-
work.

According to Equation 2, 3 and 4, the overall conditional
probability p(y|x) consists of three components:

• p(x̂|x): an utterance segmentation model that predicts a
span x̂ from x. Section details this component.

• p(ŷ|x̂): a base parser that map x̂ to a partial meaning rep-
resentation ŷ. In this work, we make it a neural semantic
parser based on encoder-decoder architecture. A simple
implementation is detailed in Section .

• p(y|x, x̂, ŷ): the iteration mechanism.

Base Parser
Our framework is flexible to incorporate various popular
encoder-decoder models as the base parser. Without loss of
generality, we use a typical sequence-to-sequence semantic
parsing model proposed by Dong and Lapata (2016) as a
default base parser.

The encoder is a bi-directional RNN with gated recurrent
units (GRU, Cho et al. (2014)):

enc = Bi-GRUenc(s) (5)

The decoder is another GRU network with attention com-
ponent (Luong, Pham, and Manning 2015):

dec = Attn-Bi-GRUdec(enc) (6)

Then, p(ŷt|ŷ<t, x̂), the conditional probability for generat-
ing the next word ŷt, is estimated via

p(ŷt|ŷ<t, x̂) = softmaxzt(Linear(dect)) (7)

The base parser will be initially trained on D (the origi-
nal train set), and further fine-tuned on pseudo supervision
signals (detailed in Section).

Utterance Segmentation
We train an utterance segmentation model Seg that learns to
predict a span (i.e., the start position i and end position j of
the span) from x.

Span Prediction In Seg, we use a GRU to encode x:

U = GRUseg(x) ∈ Rm×u (8)

Then, the span x̂ is predicted via:

p(i|x) = softmaxi(UWI)

p(j|x) = softmaxj(UWJ)
(9)

where WI ,WJ ∈ Ru.

Training
Pseudo Supervision Training the utterance segmentation
model is non-trivial, because: (1) there is usually no labeled
data of how utterances should be segmented; (2) we do not
manage to use handcraft utterance segmentation templates
aiming to have better generalization ability. To address this
problem, we propose to leverage the base parser to derive
pseudo supervision for utterance segmentation.

Take the aforementioned utterance “How many rivers run
through the states bordering colorado?” as an example. As
described in , we have a preliminary base parser which is
trained on the original train set D. For each span x̂ in utter-
ance x, we use this preliminary base parser to check whether
this span is a “good” span. Specifically: we use the prelimi-
nary base parser to parse x̂ into ŷ; if ŷ is a part of the target
meaning representation y, we call x̂ a good span. For exam-
ple, “the states bordering colorado” is a good span:

How many rivers run through

state(next to 2(stateid(′CO′))︷ ︸︸ ︷
the states bordering colorado ?

As a comparison, “run through the states bordering col-
orado” is not a good span (because the corresponding ŷ is
not a part of y):

How many rivers

state(traverse 2(stateid(′CO′))︷ ︸︸ ︷
run through the states bordering colorado ?

Each utterance may have several good spans. We define
the best span as the shortest good span, with a constraint
that the parsing result of the best span should not contain any
“ghost” entity. For example, “the states bordering” is regarded
as a good span, since the preliminary base parser parses
it into “state(traverse 2(stateid(′colorado′)))”. We think
“stateid(′colorado′)” is a ghost entity, as it is not mentioned
in the span. We do not think such spans should be segmented,
so we restrict that none of they should be the best span. If a
span has no best span, we regard itself as its best span.

For each utterance in the train set D, we use the best
span as a pseudo supervision signal for training the utterance
segmentation model. We denote all these pseudo supervision
signals as A.

Training Objective The overall training objective is:

J (φ, θ) = JSeg(φ) + JBp(θ)

JSeg(φ) =
∑

(x,x̂)∈A

log p(x̂|x)

JBp(θ) =
∑

(x,y)∈D

log p(y|x) +
∑

(x̂,ŷ)∈D̂

log p(ŷ|x̂)
(10)

where JSeg(φ) is the training objective of the utterance seg-
mentation model, and JBp(θ) is the training objective of the
base parser. φ and θ refer to learnable parameters in them re-
spectively. D̂ consists of two parts: (1) best spans paired with
their partial meaning representations; (2) reduced utterances
paired with their partial meaning representations.

12940

Inference
At inference time, we iteratively “segment-and-parse” the
utterance. In the k-th iteration, we predict a span x̂∗ from
x(k) by x̂∗ = argmaxx̂ p(x̂|x(k)), then parse x̂∗ to ŷ∗ by
ŷ∗ = argmaxŷ p(ŷ|x̂∗). Then, we let x(k+1) = [x̂∗ 7→
d(ŷ∗)]x(k) and start the (k + 1) -th iteration, until x(k+1) =
x(k). Partial meaning representation outputs (ŷ∗, ...) during
these iterations are composed deterministically to form the
final meaning representation.

Experiments
Datasets
We conduct experiments on three datasets: GEO (Zelle and
Mooney 1996), COMPLEXWEBQUESTIONS (Talmor and
Berant 2018) and FORMULAS (a new dataset). Examples of
(utterance, meaning representation) instances in these three
datasets are shown in Table 1.

GEO GEO is a standard semantic parsing benchmark about
U.S. geography (Zelle and Mooney 1996), which consists
of 880 English questions paired with their meaning repre-
sentations. These meaning representations can be expressed
as four equivalent expressions, namely λ−calculus, Prolog,
SQL, and FunQL (Functional Query Language) (Kate, Wong,
and Mooney 2005). Considering the compatibility with the
proposed framework, we use FunQL in this paper.

GEO can be splitted into train/test sets in two different
ways: (1) Standard split (Zettlemoyer and Collins 2005):
this split ensures that no natural language question is re-
peated between the train and test sets; (2) Compositional split
(Finegan-Dollak et al. 2018): this split ensures that neither
questions nor meaning representations(anonymizing named
entities) are repeated . We evaluate our framework on both
two splits: standard split for comparing with previous sys-
tems, and compositional split for measuring the composi-
tional generalization ability. To have a fair comparsion with
previous work, we use the preprocessed dataset provided
by Dong and Lapata (2016), which does lemmatization for
each natural language question and replaces entity mentions
by numbered markers. For example, “How many rivers run
through the states bordering colorado” will be preproccessed
to “How many river run through the state border state 0”.

COMPLEXWEBQUESTIONS This dataset (Talmor and
Berant 2018) contains questions paired with SPARQL queries
for Freebase (Bollacker et al. 2008). “Complex” means that
all questions in this dataset are long and complex, requiring
multi-hop reasoning to solve. There are 27,734/3,480/3,475
train/dev/test examples in this dataset. Following the settings
in Zhang et al. (2019), we use the V1.0 version of this dataset,
and replace entities in SPARQL queries with placeholders
during training and inference. In the test set, 11.9% SPARQL
queries (after anonymizing entities, numbers and dates) have
never been seen in the train set. We use this subset to measure
the compositional generalization ability.

FORMULAS People need to write formulas to manipu-
late/analyze their tabular spreadsheet data, but it is difficult
for them to learn and remember the names and usages of

various functions. We want to help people interact with
their tabular spreadsheet data using natural language: in-
put natural language commands (e.g., “show me the largest
number in A1:D10”), and the corresponding formulas (e.g.
MAX(A1:D10)) will be returned automatically. Therefore, we
construct FORMULAS, a semantic parsing dataset containing
(natural language command, spreadsheet formula) instances.
We invited 16 graduate students majoring in computer sci-
ence (all of them master spreadsheet formulas) as volunteers
for manual annotations. They annotate 1,336 formulas (407
single-function formulas and 929 compound formulas) for
30 real-world spreadsheet files. There are total 28 functions
used in these formulas, e.g., SUM, MAX, FIND, CONCAT
and LOOKUP. We randomly split this dataset into three parts:
800 instances for training, 268 instances for development,
and 268 instances for test. We also replace entity mentions by
typed markers, for example, replacing “A1:D10” by “ $cell-
range$”. In the test set, 29.8% formulas (after anonymizing
entities, numbers and dates) have never been seen in the
train set. We use this subset to measure the compositional
generalization ability.

Implementation Details
Base Parsers Besides the Seq2Seq base parser intro-
duced in Section , we also implement (1) Seq2Tree (Dong
and Lapata 2016) for GEO and FORMULAS; (2) Trans-
former (Vaswani et al. 2017) for COMPLEXWEBQUESTIONS.
We do not utilize transformer on GEO/FORMULAS, because
they only have hundreds of instances for training. For COM-
PLEXWEBQUESTION, we switch to transformer in order to
have a fair comparison with HSP (state-of-the-art).

Model Configuration We set the dimension of word em-
bedding to 300. In SEQ2SEQ/SEQ2TREE base parsers, we
set the dimension of hidden vector to 512. In the utterance
segmentation model, the dimension of hidden vector is set
to 300. We use the Adam optimizer with default settings (in
PYTORCH) and a dropout layer with the rate of 0.5. The
training process lasts 100 epochs with batch size 64. For the
TRANSFORMER base parser in COMPLEXWEBQUESTIONS,
we follow the settings in Vaswani et al. (2017).

Restricted Copy Mechanism HSP (Zhang et al. 2019) in-
corporates copy mechanism (Gu et al. 2016) to tackle OOV
tokens in COMPLEXWEBQUESTIONS and shows its high im-
portance. Observing that most OOV tokens are values (e.g.,
numbers and dates), we further propose a restricted copy
mechanism (denoted as COPY*): recognize values in utter-
ances via regex-based patterns, and constrain that only these
terms can be copied.

Span Substitution In our framework, we need to imple-
ment d(z) for each domain, which represents the denotation
type of partial meaning representation z (see Equation 4). For
GEO and FORMULAS, we directly infer d(z) from z through
a syntax-directed translation algorithm (Aho and Ullman
1969): For GEO, d(z) can be “$state$”, “$city$”, “$river$”,
“$place$”, “$mountain$” or “$lake$”; For FORMULAS, d(z)
can be “$number$”, “$string$”, “$date$”, “$bool$”, “$cell$”
or “$cellrange$”. For COMPLEXWEBQUESTIONS, we define

12941

Compositional Semantic Parser Accuracy
ZC07 (Zettlemoyer and Collins 2007) 86.1%
DCS (Liang, Jordan, and Klein 2011) 87.9%
TISP (Zhao and Huang 2015) 88.9%
Neural Semantic Parser
SEQ2SEQ (Dong and Lapata 2016) 84.6%
SEQ2TREE (Dong and Lapata 2016) 87.1%
DATARECOMBINE (Jia and Liang 2016) 89.3%
SCANNER∗ (Cheng et al. 2017) 86.7%
ASN (Rabinovich, Stern, and Klein 2017) 87.1%
COARSE2FINE (Dong and Lapata 2018) 88.2%
GNN∗ (Shaw et al. 2019) 89.3%

+BERT∗ 92.5%
SEQ2SEQ∗ 85.6%

+ PDE∗ 90.7%
SEQ2TREE∗ 84.2%

+ PDE∗ 88.9%

Table 2: Accuracies on GEO (standard split). Methods marked
with ∗ use FunQL as meaning representations.

d(z) as the first noun phrase in the span, and we compute
[u 7→ v]y (y, u and v are meaning representations) based on
SPARQL semantics (rather than the basic string matching-
based definition in Section). Moreover, as COMPLEXWE-
BQUESTIONS contains not only nesting questions but also
conjunctive questions, we use a simple but effective heuristic
rule to extend our framework: if a span is at the beginning of
the utterance, we combine generated partial SPARQL queries
using conjunction operation; otherwise we combine them
using nesting operation.

Pre-Training In our framework, we need to pre-train the
base parser to make it capable to parse simple spans at initial
time. For GEO and FORMULAS, we pre-train the base parser
using the original training dataset D which contains many
simple instances. In contrast, all questions in COMPLEXWE-
BQUESTIONS are complex, thus the original training dataset
is not suitable for pre-training the base parser. COMPLEXWE-
BQUESTIONS is constructed through (1) simple instance com-
bination, and (2) crowdsourcing rephrasing. We denote these
simple instances as Dseed. However, Dseed is also not suit-
able for pre-training the base parser, since questions in it
are lack of diverse linguistic expression (half of them are
machine-generated via fixed templates). To tackle this issue,
we use a heuristic algorithm to rephrase questions in Dseed.
Suppose that: (x, y) ∈ Dseed, and there exists (x̃, ỹ) ∈ D
and (x′, y′) ∈ Dseed such that ỹ is a combination of y and y′.
We find a span s in x̃, which maximizes score(s|x, x̃, x′):

score(s|x, x̃, x′) = sim(s, x)

+ sim([s 7→ d(y′)]x̃, x′)

sim(s, s′) =
∑
w∈s

max
w′∈s′

cos(w,w′)
(11)

where w and w′ represent fasttext word embeddings (Bo-
janowski et al. 2016) of word w and w′, respectively. Then,
we treat s as a rephrase of x and add (s, y) to D′. We use D′
to pre-train our base parser.

Method Accuracy
SCANNER (Cheng et al. 2017) 82.8%
COARSE2FINE (Dong and Lapata 2018) 83.2%
SEQ2SEQ (Dong and Lapata 2016) 80.9%

+ PDE 84.7%
SEQ2TREE (Dong and Lapata 2016) 82.1%

+ PDE 85.4%

Table 3: Accuracies on FORMULAS

Method Accuracy
SEQ2SEQ (Dong and Lapata) 47.3%
SEQ2TREE (Dong and Lapata) 49.7%
POINTERGENERATOR (See, Liu, and Manning) 51.0%
TRANSFORMER (Vaswani et al.) 53.4%
COARSE2FINE (Dong and Lapata) 58.1%
HSP (Zhang et al.) 66.2%
BASEPARSER 1 (SEQ2SEQ+COPY*) 58.4%

+ PDE 64.5%
BASEPARSER 2 (TRANSFORMER+COPY*) 62.8%

+ PDE 72.2%

Table 4: Accuracies on COMPLEXWEBQUESTIONS.

Results and Analysis
We denote our framework as PDE (i.e., Parsing via Divide-
and-conquEr) and make a comparison against several previ-
ously published systems. We use accuracy as the evaluation
metric.

GEO and FORMULAS Table 2 presents the results on GEO.
Compared with previous work using syntax-aware decoders,
PDE performs competitively whereas adopts a relatively
simple Seq2Seq model. For the Seq2Seq/Seq2Tree base
parser, our segmentation mechanism brings accuracy gains
of 5.1% and 4.7%, respectively. Table 3 presents results on
FORMULAS, where we observe similar tendencies. For the
Seq2Seq/Seq2Tree base parser, our segmentation mechanism
brings accuracy gains of 3.8% and 3.3%, respectively.

COMPLEXWEBQUESTIONS Results on COMPLEXWE-
BQUESTIONS are shown in Table 4. We compare PDE
against the state-of-the-art model HSP (Zhang et al. 2019)
as well as some other baseline models. The results show that
PDE is superior to all baseline models. For BASEPARSER 1
(SEQ2SEQ + COPY*), our segmentation mechanism (+ PDE)
achieves an accuracy gain of 6.1% (from 58.4% to 64.5%).
For BASEPARSER 2 (TRANSFORMER + COPY*), the accu-
racy gains brought by PDE is 9.4% (from 62.8% to 72.2%).
All these “+ PDE” results in Table 2, 3 and 4 show that: our
framework can consistently boost the performance of dif-
ferent neural semantic parsers in different semantic parsing
tasks.

Compositional Generalization Ability To demonstrate
the compositional generalization ability of PDE, we conduct
evaluation on the compositional split for GEO and unseen
split for COMPLEXWEBQUESTIONS and FORMULAS (see
details in section). In Table 5, we show results on GEO
and FORMULAS, together with other two data augmentation
baselines. The training data of “+GECA” (Andreas 2019)

12942

Method GEO FORMULAS
SEQ2SEQ 63.1% 59.7%

+ GECA 68.2% 64.6%
+ PDE (only DA) 79.1% 66.8%
+ PDE 81.2% 72.7%

SEQ2TREE 48.7% 63.8%
+ GECA 60.3% 67.5%
+ PDE (only DA) 79.4% 74.2%
+ PDE 80.5% 77.6%

Table 5: Evaluation of compositional generalization ability on
GEO (compositional split) and FORMULAS (unseen subset).

Model SEEN (88.1%) UNSEEN (11.9%)
HSP 69.8% 40.8%
BASEPARSER 2 67.7% 27.1%

+ PDE 74.4% 56.3%

Table 6: Evaluation of compositional generalization ability
on COMPLEXWEBQUESTIONS (unseen subset).

is augmentated by the protocol which seeks to provide a
compositional inductive bias in sequence models. To further
validate the effectiveness of PDE, we conduct another base-
line “+only DA”, which only trained on the mixture of real
data and pseudo supervision (generated by the PDE). Com-
pared to those baselines, PDE provides explicit alignments
between spans and meaning representations, thus achieving
the best performance. For COMPLEXWEBQUESTIONS, we
make a comparison with HSP (Zhang et al. 2019) and show
the results in Figure 3. As we can see, the results on all three
datasets consistently prove that PDE brings significant ac-
curacy gains (GEO 63.1→ 81.2, FORMULAS 59.7→ 72.7,
COMPLEXWEBQUESTIONS 27.1 → 56.3) on splits which
require compositional generalization.

Impact of Different Question Types As there are four
question types (conjunction, nesting, superlative, and compar-
ative) in COMPLEXWEBQUESTIONS, we further investigate
the impact of question types on model performances (Table
7). The segmentation mechanism improves the accuracy by a
large margin on CONJ/NEST/COMPAR questions, while
it is not good at dealing with SUP questions.

Qualitative Analysis of Segmentation To verify whether
PDE can provide meaningful segmentations of complex utter-
ances, we conduct a human evaluation on a sample of 50 test
questions: given spans predicted by PDE, three non-native,
but fluent-English speakers are asked to label whether the
segmentation is meaningful or not. These questions are all
from COMPLEXWEBQUESTIONS dataset. PDE performs
well on segmenting 41 out of 50 questions, which indicates
the “segment-and-parse” mechanism can explicitly capture
some meaningful compositional semantics (Figure 3). We
observe three types of error cases:

1. Conjunction Scope. For example, in E1 (the first error case
in Figure 3), the segmentation model mistakenly regards
that the scope of conjunction “and” is the whole question,
while the real scope is “cigarettes and chocolate milk”. In
our future work, we expect to solve this problem through

Model CONJ NEST SUP COMPAR
(41.5%) (47.6%) (5.0%) (6.0%)

HSP 66.2% 68.3% 68.3% 46.6%
BASEPARSER 2 64.8% 62.2% 53.2% 62.2%

+ PDE 71.2% 75.7% 49.1% 70.3%

Table 7: Accuracies of different question types on COM-
PLEXWEBQUESTIONS dataset.

Method GEO FORMULAS
SEQ2SEQ 63.1% 59.7%

+ GECA 68.2% 64.6%
+ PDE (only DA) 79.1% 66.8%
+ PDE 81.2% 72.7%

SEQ2TREE 48.7% 63.8%
+ GECA 60.3% 67.5%
+ PDE (only DA) 79.4% 74.2%
+ PDE 80.5% 77.6%

Table 6: Evaluation of compositional generalization ability on
GEO (compositional split) and FORMULAS (unseen subset).

Model SEEN (88.1%) UNSEEN (11.9%)
HSP 69.8% 40.8%
BASEPARSER 2 67.7% 27.1%

+ PDE 74.4% 56.3%

Table 7: Evaluation of compositional generalization ability
on COMPLEXWEBQUESTIONS (unseen subset).

is augmentated by the protocol which seeks to provide a
compositional inductive bias in sequence models. To further
validate the effectiveness of PDE, we conduct another base-
line “+only DA”, which only trained on the mixture of real
data and pseudo supervision (generated by the PDE). Com-
pared to those baselines, PDE provides explicit alignments
between spans and meaning representations, thus achieving
the best performance. For COMPLEXWEBQUESTIONS, we
make a comparison with HSP (Zhang et al. 2019) and show
the results in Table 7. As we can see, the results on all three
datasets consistently prove that PDE brings significant ac-
curacy gains (GEO 63.1→ 81.2, FORMULAS 59.7→ 72.7,
COMPLEXWEBQUESTIONS 27.1 → 56.3) on splits which
require compositional generalization.

Impact of Different Question Types As there are four
question types (conjunction, nesting, superlative, and compar-
ative) in COMPLEXWEBQUESTIONS, we further investigate
the impact of question types on model performances (Table
8). The segmentation mechanism improves the accuracy by a
large margin on CONJ/NEST/COMPAR questions, while
it is not good at dealing with SUP questions.

Qualitative Analysis of Segmentation To verify whether
PDE can provide meaningful segmentations of complex utter-
ances, we conduct a human evaluation on a sample of 50 test
questions: given spans predicted by PDE, three non-native,
but fluent-English speakers are asked to label whether the
segmentation is meaningful or not. These questions are all
from COMPLEXWEBQUESTIONS dataset. PDE performs
well on segmenting 41 out of 50 questions, which indicates
the “segment-and-parse” mechanism can explicitly capture
some meaningful compositional semantics (Table 9). We
observe three types of error cases:

1. Conjunction Scope. For example, in E1 (the first error case
in Table 9), the segmentation model mistakenly regards
that the scope of conjunction “and” is the whole question,
while the real scope is “cigarettes and chocolate milk”. In
our future work, we expect to solve this problem through

Model CONJ NEST SUP COMPAR
(41.5%) (47.6%) (5.0%) (6.0%)

HSP 66.2% 68.3% 68.3% 46.6%
BASEPARSER 2 64.8% 62.2% 53.2% 62.2%

+ PDE 71.2% 75.7% 49.1% 70.3%

Table 8: Accuracies of different question types on COM-
PLEXWEBQUESTIONS dataset.

Label Count Examples

Correct 41

What other films have the actor who
played Periwinkle been in?
What famous facility in Charlotte is
home to the Carolina Cougar?

Error 9

Who is the person nominating for
an award for cigarettes and chocolate
milk currently married to?
Which movie stars both Mario Lopez
and Erick Estrada?
When did the Red Sox win their first
pennant?

Table 9: Human evaluation of utterance segmentation on a
random sample of 50 test questions.

incorporating syntactic information (e.g., syntax tree) into
the utterance segmentation model.

2. Shared Predicates. For example, in E2, the reduced ques-
tion is “movie and Erick Estrada?”, which lacks a pred-
icate (“stars”). In our future work, we expect to solve
this problem through measuring completeness of reduced
utterances and accordingly performing span substitution.

3. Superlative Constraint. For example, E3: “When did the
Red Sox win their pennant” constrained by a superlative
“first”, which cannot be linearly segmented. To address
this problem, we need to guide PDE not to segment such
utterances (through predicting s = x) and leave them to
the base parser. This is a general principle for dealing with
complex language phenomena that exposes the limitation
of linear segmentation in complex utterances. We also
leave this to future work.

5 Conclusion
In this paper, we propose a novel framework for boosting
neural semantic parsers via iterative utterance segmentation.
The insight is a bottom-up divide-and-conquer mechanism,
which significantly improves the compositional generaliza-
tion ability and interpretability of neural semantic parsers.
Considering the usual absence of labeled data for utterance
segmentation, we propose a cooperative training method to
tackle this problem. Experimental results show that our frame-
work consistently improves the performance of different neu-
ral semantic parsers across tasks.

In the future, we plan to improve the robustness of our
framework for various complex language phenomena. We
also plan to apply this framework to more semantic parsing
tasks such as text-to-SQL and text-to-code.

Figure 3: Human evaluation of utterance segmentation on a
random sample of 50 test questions.

incorporating syntactic information (e.g., syntax tree) into
the utterance segmentation model.

2. Shared Predicates. For example, in E2, the reduced ques-
tion is “movie and Erick Estrada?”, which lacks a pred-
icate (“stars”). In our future work, we expect to solve
this problem through measuring completeness of reduced
utterances and accordingly performing span substitution.

3. Superlative Constraint. For example, E3: “When did the
Red Sox win their pennant” constrained by a superlative
“first”, which cannot be linearly segmented. To address
this problem, we need to guide PDE not to segment such
utterances (through predicting s = x) and leave them to
the base parser. This is a general principle for dealing with
complex language phenomena that exposes the limitation
of linear segmentation in complex utterances. We also
leave this to future work.

Conclusion
In this paper, we propose a novel framework for boosting
neural semantic parsers via iterative utterance segmentation.
The insight is a bottom-up divide-and-conquer mechanism,
which significantly improves the compositional generaliza-
tion ability and interpretability of neural semantic parsers.
Considering the usual absence of labeled data for utterance
segmentation, we propose a cooperative training method to
tackle this problem. Experimental results show that our frame-
work consistently improves the performance of different neu-
ral semantic parsers across tasks.

In the future, we plan to improve the robustness of our
framework for various complex language phenomena. We
also plan to apply this framework to more semantic parsing
tasks such as text-to-SQL and text-to-code.

12943

References
Aho, A. V.; and Ullman, J. D. 1969. Syntax Directed Trans-
lations and the Pushdown Assembler. J. Comput. Syst.
Sci. 3(1): 37–56. ISSN 0022-0000. doi:10.1016/S0022-
0000(69)80006-1. URL http://dx.doi.org/10.1016/S0022-
0000(69)80006-1.

Andreas, J. 2019. Good-enough compositional data augmen-
tation. arXiv preprint arXiv:1904.09545 .

Berant, J.; and Liang, P. 2015. Imitation Learning of Agenda-
based Semantic Parsers. Transactions of the Association
for Computational Linguistics 3: 545–558. doi:10.1162/
tacl a 00157. URL https://www.aclweb.org/anthology/Q15-
1039.

Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2016.
Enriching Word Vectors with Subword Information. arXiv
preprint arXiv:1607.04606 .

Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase: a collaboratively created graph database
for structuring human knowledge. In Proceedings of the 2008
ACM SIGMOD international conference on Management of
data, 1247–1250. AcM.

Cheng, J.; Reddy, S.; Saraswat, V.; and Lapata, M. 2017.
Learning Structured Natural Language Representations for
Semantic Parsing. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers), 44–55. Vancouver, Canada: Association for
Computational Linguistics. doi:10.18653/v1/P17-1005. URL
https://www.aclweb.org/anthology/P17-1005.

Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using RNN encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078
.

Dong, L.; and Lapata, M. 2016. Language to Logical Form
with Neural Attention. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 33–43. Berlin, Germany: Associ-
ation for Computational Linguistics. doi:10.18653/v1/P16-
1004. URL https://www.aclweb.org/anthology/P16-1004.

Dong, L.; and Lapata, M. 2018. Coarse-to-Fine Decoding for
Neural Semantic Parsing. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 731–742. Melbourne, Australia:
Association for Computational Linguistics. doi:10.18653/
v1/P18-1068. URL https://www.aclweb.org/anthology/P18-
1068.

Finegan-Dollak, C.; Kummerfeld, J. K.; Zhang, L.; Ra-
manathan, K.; Sadasivam, S.; Zhang, R.; and Radev, D.
2018. Improving Text-to-SQL Evaluation Methodology.
In Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Pa-
pers), 351–360. Melbourne, Australia: Association for Com-
putational Linguistics. doi:10.18653/v1/P18-1033. URL
https://www.aclweb.org/anthology/P18-1033.

Gu, J.; Lu, Z.; Li, H.; and Li, V. O. 2016. Incorporat-
ing Copying Mechanism in Sequence-to-Sequence Learn-
ing. In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long
Papers), 1631–1640. Berlin, Germany: Association for Com-
putational Linguistics. doi:10.18653/v1/P16-1154. URL
https://www.aclweb.org/anthology/P16-1154.
Guo, J.; Zhan, Z.; Gao, Y.; Xiao, Y.; Lou, J.-G.; Liu, T.;
and Zhang, D. 2019. Towards Complex Text-to-SQL in
Cross-Domain Database with Intermediate Representation.
In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 4524–4535. Florence, Italy:
Association for Computational Linguistics. doi:10.18653/
v1/P19-1444. URL https://www.aclweb.org/anthology/P19-
1444.
Jia, R.; and Liang, P. 2016. Data Recombination for Neural
Semantic Parsing. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), 12–22. Berlin, Germany: Association for
Computational Linguistics. doi:10.18653/v1/P16-1002. URL
https://www.aclweb.org/anthology/P16-1002.
Kalyanpur, A.; Patwardhan, S.; Boguraev, B.; Lally, A.; and
Chu-Carroll, J. 2012. Fact-based question decomposition
in DeepQA. IBM Journal of Research and Development
56(3.4): 13–1.
Kate, R. J.; Wong, Y. W.; and Mooney, R. J. 2005. Learning to
transform natural to formal languages. In AAAI, 1062–1068.
Keysers, D.; Schärli, N.; Scales, N.; Buisman, H.; Furrer,
D.; Kashubin, S.; Momchev, N.; Sinopalnikov, D.; Stafiniak,
L.; Tihon, T.; Tsarkov, D.; Wang, X.; van Zee, M.; and
Bousquet, O. 2020. Measuring Compositional Generaliza-
tion: A Comprehensive Method on Realistic Data. In In-
ternational Conference on Learning Representations. URL
https://openreview.net/forum?id=SygcCnNKwr.
Lake, B.; and Baroni, M. 2018. Generalization without
systematicity: On the compositional skills of sequence-to-
sequence recurrent networks. In International Conference on
Machine Learning, 2873–2882. PMLR.
Liang, P.; Jordan, M.; and Klein, D. 2011. Learning
Dependency-Based Compositional Semantics. In Proceed-
ings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies, 590–
599. Portland, Oregon, USA: Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P11-
1060.
Ling, W.; Blunsom, P.; Grefenstette, E.; Hermann, K. M.;
Kočiský, T.; Wang, F.; and Senior, A. 2016. Latent Pre-
dictor Networks for Code Generation. In Proceedings
of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), 599–609.
Berlin, Germany: Association for Computational Linguistics.
doi:10.18653/v1/P16-1057. URL https://www.aclweb.org/
anthology/P16-1057.
Luong, T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive Approaches to Attention-based Neural Machine Transla-
tion. In Proceedings of the 2015 Conference on Empirical

12944

Methods in Natural Language Processing, 1412–1421. Lis-
bon, Portugal: Association for Computational Linguistics.
doi:10.18653/v1/D15-1166. URL https://www.aclweb.org/
anthology/D15-1166.

Min, S.; Zhong, V.; Zettlemoyer, L.; and Hajishirzi, H. 2019.
Multi-hop Reading Comprehension through Question De-
composition and Rescoring. In Proceedings of the 57th
Annual Meeting of the Association for Computational Lin-
guistics, 6097–6109. Florence, Italy: Association for Com-
putational Linguistics. doi:10.18653/v1/P19-1613. URL
https://www.aclweb.org/anthology/P19-1613.

Pasupat, P.; Gupta, S.; Mandyam, K.; Shah, R.; Lewis, M.;
and Zettlemoyer, L. 2019. Span-based Hierarchical Semantic
Parsing for Task-Oriented Dialog. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 1520–1526.

Pasupat, P.; and Liang, P. 2015. Compositional Seman-
tic Parsing on Semi-Structured Tables. In Proceedings of
the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long
Papers), 1470–1480. Beijing, China: Association for Com-
putational Linguistics. doi:10.3115/v1/P15-1142. URL
https://www.aclweb.org/anthology/P15-1142.

Pelletier, F. J. 1994. The Principle of Semantic Composition-
ality. Topoi 13(1): 11–24. ISSN 1572-8749. doi:10.1007/
BF00763644. URL https://doi.org/10.1007/BF00763644.

Qi, P.; Lin, X.; Mehr, L.; Wang, Z.; and Manning, C. D. 2019.
Answering Complex Open-domain Questions Through Iter-
ative Query Generation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), 2590–2602.
Hong Kong, China: Association for Computational Linguis-
tics. doi:10.18653/v1/D19-1261. URL https://www.aclweb.
org/anthology/D19-1261.

Rabinovich, M.; Stern, M.; and Klein, D. 2017. Abstract
Syntax Networks for Code Generation and Semantic Pars-
ing. In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long
Papers), 1139–1149. Vancouver, Canada: Association for
Computational Linguistics. doi:10.18653/v1/P17-1105. URL
https://www.aclweb.org/anthology/P17-1105.

See, A.; Liu, P. J.; and Manning, C. D. 2017. Get To
The Point: Summarization with Pointer-Generator Networks.
In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Pa-
pers), 1073–1083. Vancouver, Canada: Association for Com-
putational Linguistics. doi:10.18653/v1/P17-1099. URL
https://www.aclweb.org/anthology/P17-1099.

Shaw, P.; Massey, P.; Chen, A.; Piccinno, F.; and Altun,
Y. 2019. Generating Logical Forms from Graph Repre-
sentations of Text and Entities. In Proceedings of the
57th Annual Meeting of the Association for Computational

Linguistics, 95–106. Florence, Italy: Association for Com-
putational Linguistics. doi:10.18653/v1/P19-1010. URL
https://www.aclweb.org/anthology/P19-1010.
Talmor, A.; and Berant, J. 2018. The Web as a Knowledge-
Base for Answering Complex Questions. In Proceedings
of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), 641–651. New
Orleans, Louisiana: Association for Computational Linguis-
tics. doi:10.18653/v1/N18-1059. URL https://www.aclweb.
org/anthology/N18-1059.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems, 5998–6008.
Yin, P.; and Neubig, G. 2017. A Syntactic Neural Model
for General-Purpose Code Generation. In Proceedings of
the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 440–450. Van-
couver, Canada: Association for Computational Linguistics.
doi:10.18653/v1/P17-1041. URL https://www.aclweb.org/
anthology/P17-1041.
Zelle, J. M.; and Mooney, R. J. 1996. Learning to Parse
Database Queries Using Inductive Logic Programming. In
Proceedings of the Thirteenth National Conference on Arti-
ficial Intelligence - Volume 2, AAAI’96, 1050–1055. AAAI
Press. ISBN 0-262-51091-X. URL http://dl.acm.org/citation.
cfm?id=1864519.1864543.
Zettlemoyer, L.; and Collins, M. 2007. Online Learning of
Relaxed CCG Grammars for Parsing to Logical Form. In Pro-
ceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), 678–687. Prague,
Czech Republic: Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/D07-1071.
Zettlemoyer, L. S.; and Collins, M. 2005. Learning to
Map Sentences to Logical Form: Structured Classification
with Probabilistic Categorial Grammars. In Proceedings
of the Twenty-First Conference on Uncertainty in Artifi-
cial Intelligence, UAI’05, 658–666. Arlington, Virginia,
United States: AUAI Press. ISBN 0-9749039-1-4. URL
http://dl.acm.org/citation.cfm?id=3020336.3020416.
Zhang, H.; Cai, J.; Xu, J.; and Wang, J. 2019. Complex Ques-
tion Decomposition for Semantic Parsing. In Proceedings
of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, 4477–4486. Florence, Italy: Association
for Computational Linguistics. doi:10.18653/v1/P19-1440.
URL https://www.aclweb.org/anthology/P19-1440.
Zhao, K.; and Huang, L. 2015. Type-Driven Incremental
Semantic Parsing with Polymorphism. In Proceedings of
the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, 1416–1421. Denver, Colorado: Association for
Computational Linguistics. doi:10.3115/v1/N15-1162. URL
https://www.aclweb.org/anthology/N15-1162.

12945

