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Abstract

The great success of Transformer-based models benefits from
the powerful multi-head self-attention mechanism, which
learns token dependencies and encodes contextual informa-
tion from the input. Prior work strives to attribute model deci-
sions to individual input features with different saliency mea-
sures, but they fail to explain how these input features interact
with each other to reach predictions. In this paper, we pro-
pose a self-attention attribution method to interpret the infor-
mation interactions inside Transformer. We take BERT as an
example to conduct extensive studies. Firstly, we apply self-
attention attribution to identify the important attention heads,
while others can be pruned with marginal performance degra-
dation. Furthermore, we extract the most salient dependencies
in each layer to construct an attribution tree, which reveals the
hierarchical interactions inside Transformer. Finally, we show
that the attribution results can be used as adversarial patterns
to implement non-targeted attacks towards BERT.

Introduction
Transformer (Vaswani et al. 2017) is one of state-of-the-art
NLP architectures. For example, most pre-trained language
models (Devlin et al. 2019; Liu et al. 2019; Dong et al. 2019;
Bao et al. 2020; Clark et al. 2020; Conneau et al. 2020; Chi
et al. 2020a,b) choose stacked Transformer as the backbone
network. Their great success stimulates broad research on
interpreting the internal black-box behaviors. Some prior ef-
forts aim at analyzing the self-attention weights generated
by Transformer (Clark et al. 2019; Kovaleva et al. 2019). In
contrast, some other work argues that self-attention distribu-
tions are not directly interpretable (Serrano and Smith 2019;
Jain and Wallace 2019; Brunner et al. 2020). Another line
of work strives to attribute model decisions back to input to-
kens (Sundararajan, Taly, and Yan 2017; Shrikumar, Green-
side, and Kundaje 2017; Binder et al. 2016). However, most
previous attribution methods fail on revealing the informa-
tion interactions between the input words and the composi-
tional structures learnt by the network.

To address the above issues, we propose a self-attention
attribution method (ATTATTR) based on integrated gradi-
ent (Sundararajan, Taly, and Yan 2017). We conduct ex-
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periments for BERT (Devlin et al. 2019) because it is one
of the most representative Transformer-based models. No-
tice that our method is general enough, and can be applied
to other Transformer networks without significant modifica-
tions. Results show that our method well indicates the in-
formation flow inside Transformer, which makes the self-
attention mechanism more interpretable.

Firstly, we identify the most important attention connec-
tions in each layer using ATTATTR. We find that attention
weights do not always correlate well with their contributions
to the model prediction. We then introduce a heuristic algo-
rithm to construct self-attention attribution trees, which dis-
covers the information flow inside Transformer. In addition,
a quantitative analysis is applied to justify how much the
edges of an attribution tree contribute to the final prediction.

Next, we use ATTATTR to identify the most important at-
tention heads and perform head pruning. The derived algo-
rithm achieves competitive performance compared with the
Taylor expansion method (Michel, Levy, and Neubig 2019).
Moreover, we find that the important heads of BERT are
roughly consistent across different datasets as long as the
tasks are homogeneous.

Finally, we extract the interaction patterns that contribute
most to the model decision, and use them as adversarial trig-
gers to attack BERT-based models. We find that the fine-
tuned models tend to over-emphasize some word patterns to
make the prediction, which renders the prediction process
less robust. For example, on the MNLI dataset, adding one
adversarial pattern into the premise can drop the accuracy
of entailment from 82.87% to 0.8%. The results show
that ATTATTR not only can interpret the model decisions,
but also can be used to find anomalous patterns from data.

The contributions of our work are as follows:

• We propose to use self-attention attribution to interpret the
information interactions inside Transformer.

• We conduct extensive studies for BERT. We present how
to derive interaction trees based on attribution scores,
which visualizes the compositional structures learnt by
Transformer.

• We show that the proposed attribution method can be used
to prune self-attention heads, and construct adversarial
triggers.
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(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger val-
ues. The prediction of the sentence from MNLI dataset is
contradiction. ATTATTR tends to identify more sparse
word interactions that contribute to the final model decision.

Background
Transformer (Vaswani et al. 2017) Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X0 =
[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X l = Transformerl(X

l−1), l ∈ [1, L].
The core component of a Transformer block is multi-head

self-attention. The h-th self-attention head is described as:

Qh = XWQ
h , K = XWK

h , V = XWV
h (1)

Ah = softmax(
QhK

ᵀ
h√

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K ∈ Rn×dk , V ∈ Rn×dv , and the score Ai,j in-
dicates how much attention token xi puts on xj . There are
usually multiple attention heads in a Transformer block. Let
|h| denote the number of attention heads in each layer, the
output of multi-head attention is given by MultiH(X) =
[H1, · · · , H|h|]W o, where W o ∈ R|h|dv×dx , [·] means con-
catenation, and Hi is computed as in Equation (3).

BERT (Devlin et al. 2019) We conduct all experiments
on BERT, which is one of the most successful applications
of Transformer. The pretrained language model is based
on bidirectional Transformer, which can be fine-tuned to-
wards downstream tasks. Notice that our method can also be
applied to other multi-layer Transformer models with few
modifications. For single input, a special token [CLS] is

added to the beginning of the sentence, and another token
[SEP] is added to the end. For pairwise input, [SEP] is
also added as a separator between the two sentences. When
BERT is fine-tuned on classification tasks, a softmax classi-
fier is added on top of the [CLS] token in the last layer to
make predictions.

Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A
(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
∫ 1

α=0

∂F(αA)

∂Ah
dα ∈ Rn×n

where � is element-wise multiplication, Ah ∈ Rn×n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and ∂F(αA)

∂Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (α = 0) of the integration represents
that all tokens do not attend to each other in a layer. When α
changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah
m
�

m∑
k=1

∂F( kmA)

∂Ah
(4)
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Figure 2: Effectiveness analysis of ATTATTR. The blue and
red lines represent pruning attention heads according to at-
tribution scores, and attention scores, respectively. The solid
lines mean the attention heads with the smallest values are
pruned first, while the dash lines mean the largest values are
pruned first. The results show that ATTATTR better indicates
the importance of attention heads.

where m is the number of approximation steps. In our ex-
periments, we set m to 20, which performs well in practice.

Figure 1 is an example about the attention score map
and the attribution score map of a single head in fine-tuned
BERT. We demonstrate that larger attention scores do not
mean more contribution to the final prediction. The atten-
tion scores between the [SEP] token and other tokens are
relatively large, but they obtain little attribution scores. The
prediction of the contradiction class attributes most to
the connections between “don’t” in the first segment and “I
know” in the second segment, which is more explainable.

Experiments
We employ BERT-base-cased (Devlin et al. 2019) in our ex-
periments. The number of BERT layers |l| = 12, the num-
ber of attention heads in each layer |h| = 12, and the size
of hidden embeddings |h|dv = 768. For a sequence of 128
tokens, the attribution time of the BERT-base model takes
about one second on an Nvidia-v100 GPU card. Moreover,
the computation can be parallelized by batching multiple in-
put examples to increase throughput.

We perform BERT fine-tuning and conduct experiments
on four classification datasets. MNLI (Williams, Nangia,
and Bowman 2018) Multi-genre Natural Language Infer-
ence is to predict whether a premise entails the hypoth-
esis (entailment), contradicts the given hypothesis (con-
tradiction), or neither (neutral). RTE (Dagan, Glickman,
and Magnini 2006; Bar-Haim et al. 2006; Giampiccolo
et al. 2007; Bentivogli et al. 2009) Recognizing Textual
Entailment comes from a series of annual textual entail-
ment challenges. SST-2 (Socher et al. 2013) Stanford Sen-
timent Treebank is to predict the polarity of a given sen-
tence. MRPC (Dolan and Brockett 2005) Microsoft Re-

search Paraphrase Corpus is to predict whether the pairwise
sentences are semantically equivalent. We use the same data
split as in (Wang et al. 2019). The accuracy metric is used for
evaluation. When fine-tuning BERT, we follow the settings
and the hyper-parameters suggested in (Devlin et al. 2019).

Effectiveness Analysis
We conduct a quantitative analysis to justify the self-
attention edges with larger attribution scores contribute more
to the model decision. We prune the attention heads incre-
mentally in each layer according to their attribution scores
with respect to the golden label and record the performance
change. We also establish a baseline that prunes attention
heads with their average attention scores for comparison.

Experimental results are presented in Figure 2, we ob-
serve that pruning heads with attributions scores conduces
more salient changes on the performance. Pruning only two
heads within every layer with the top-2 attribution scores can
cause an extreme decrease in the model accuracy. In con-
trast, retaining them helps the model to achieve nearly 97%
accuracy. Even if only two heads are retained in each layer,
the model can still have a strong performance. Compared
with attribution scores, pruning heads with average atten-
tion scores are less remarkable on the performance change,
which proves the effectiveness of our method.

Use Case 1: Attention Head Pruning
According to the previous section, only a small part of atten-
tion heads contribute to the final prediction, while others are
less helpful. This leads us to the research about identifying
and pruning the unimportant attention heads.

Head Importance The attribution scores indicate how
much a self-attention edge attributes to the final model deci-
sion. We define the importance of an attention head as:

Ih = Ex[max(Attrh(A))] (5)

where x represents the examples sampled from the held-out
set, and max(Attrh(A)) is the maximum attribution value
of the h-th attention head. Notice that the attribution value
of a head is computed with respect to the probability of the
golden label on a held-out set.

We compare our method with other importance metrics
based on the accuracy difference and the Taylor expan-
sion, which are both proposed in (Michel, Levy, and Neu-
big 2019). The accuracy difference of an attention head is
the accuracy margin before and after pruning the head. The
method based on the Taylor expansion defines the impor-
tance of an attention head as:

Ih = Ex

∣∣∣∣Aᵀ
h

∂L(x)

∂Ah

∣∣∣∣ (6)

where L(x) is the loss function of example x, and Ah is the
attention score of the h-th head as in Equation (2).

For all three methods, we calculate Ih on 200 examples
sampled from the held-out dataset. Then we sort all the
heads according to the importance metrics. The less impor-
tant heads are first pruned.
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Figure 3: Evaluation accuracy as a function of head prun-
ing proportion. The attention heads are pruned according to
the accuracy difference (baseline; dash yellow), the Taylor
expansion method (Michel, Levy, and Neubig 2019; solid
red), and ATTATTR (this work; solid blue).

Evaluation Results of Head Pruning Figure 3 describes
the evaluation results of head pruning. The solid red lines
represent pruning heads based on our method ATTATTR. We
observe that pruning head with attribution score is much bet-
ter than the baseline of accuracy difference.

Moreover, the pruning performance of ATTATTR is com-
petitive with the Taylor expansion method, although AT-
TATTR is not specifically designed for attention head prun-
ing. The result show that attention attribution successfully
indicates the importance of interactions inside Transformer.
On the MNLI dataset, when only 10% attention heads are re-
tained, our method can still achieve approximately 60% ac-
curacy, while the accuracy of the Taylor expansion method
is about 40%.

Universality of Important Heads Previous results are
performed on specific datasets respectively. Besides iden-
tifying the most important heads of Transformer, we in-
vestigate whether the important heads are consistent across
different datasets and tasks. The correlation of attribution
scores of attention heads between two different datasets is
measured by the Pearson coefficient. As described in Fig-
ure 4, as long as the tasks are homogeneous (i.e., solv-
ing similar problems), the important attention heads are
highly correlated. The datasets RTE, MPRC, and MNLI
are about entailment detection, where the important self-
attention heads (i.e., with large attribution scores) of BERT
are roughly consistent across the datasets. In contrast, the
dataset SST-2 is sentiment classification. We find that the
important heads on SST-2 are different from the ones on
RTE, and MRPC. In conclusion, the same subset of atten-
tion heads is fine-tuned for similar tasks.

Figure 4: Correlation of attribution scores of different atten-
tion heads between datasets. Each point represents the attri-
bution scores of a single attention head on two datasets.

Use Case 2: Visualizing Information Flow Inside
Transformer
We propose a heuristic algorithm to construct attribution
trees, the results discover the information flow inside Trans-
former, so that we can know the interactions between the
input words and how they attribute to the final predic-
tion. Such visualization can provide insights to understand
what dependencies Transformer tends to capture. The post-
interpretation helps us to debug models and training data.

The problem is a trade-off between maximizing the sum-
mation of attribution scores and minimizing the number of
edges in the tree. We present a greedy top-down algorithm to
efficiently construct attribution trees. Moreover, we conduct
a quantitative analysis to verify the effectiveness.

Attribution Tree Construction After computing self-
attention attribution scores, we can know the interactions be-
tween the input words in each layer and how they attribute
to the final prediction. We then propose an attribution tree
construction algorithm to aggregate the interactions. In other
words, we build a tree to indicate how information flows
from input tokens to the final predictions. We argue that such
visualization can provide insights to understand what depen-
dencies Transformer tends to capture.

For each layer l, we first calculate self-attention attribu-
tion scores of different heads. Then we sum them up over
the heads, and use the results as the l-th layer’s attribution:

Attr(Al) =

|h|∑
h=1

Attrh(Al) = [ali,j ]n×n

where larger ali,j indicates more interaction between xi and
xj in the l-th layer in terms of the final model predictions.
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(a) Example from MNLI (b) Example from SST-2

Figure 5: Examples of attribution trees. (a) is from MNLI, which is predicted as entailment by BERT. (b) is from SST-2,
which is predicted as positive by BERT. The grey words from the inputs do not appear in the attribution trees.

(a) MNLI (b) SST-2

Figure 6: Distance distribution of interactions extracted by
the attribution tree in each layers.

The construction of attribution trees is a trade-off between
maximizing the summation of attribution scores and min-
imizing the number of edges in the tree. The objective is
defined as:

Tree = arg max
{El}|l|l=1

|l|∑
l=1

∑
(i,j)∈El

ali,j − λ
|l|∑
l=1

|El|,

El ⊂ {(i, j)|
ali,j

max(Attr(Al))
> τ}

where |El| represents the number of edges in the l-th layer,
λ is a trade-off weight, and the threshold τ is used to filter
the interactions with relatively large attribution scores.

Rather than solving a combinatorial optimization prob-
lem, we use a heuristic top-down method to add these edges
to the attribution tree. The process is detailed in Algorithm 1.

Settings We set τ = 0.4 for layers l < 12. The larger
τ tends to generate more simplified trees, which contains
the more important part of the information flow. Because
the special token [CLS] is the terminal of the information
flow for classification tasks, we set τ to 0 for the last layer.
We observe that almost all connections between [CLS] and
other tokens in the last layer have positive attribution scores
with respect to model predictions.

Case Studies As shown in Figure 5, the two attribution
trees are from MNLI and SST-2, respectively. The attribu-
tion tree Figure 5a is generated from MNLI, whose golden
label is entailment. At the bottom of Figure 5a, we find
that the interactions are more local, and most information
flows are concentrated within a single sentence. The in-
formation is hierarchically aggregated to “supplement” and
“extra” in each sentence. Then the “supplement” token ag-
gregates the information in the first sentence and “add some-
thing extra” in the second sentence, these two parts “supple-
ment” and “add something extra” have strong semantic rele-
vance. Finally, all the information flows to the terminal token
[CLS] to make the prediction entailment. The attribu-
tion tree interprets how the input words interacts with each
other, and reach the final prediction, which makes model de-
cisions more interpretable.

Figure 5b is an example from SST-2, whose golden label
is positive, correctly predicted by the model. From Fig-
ure 5b, we observe that information in the first part of the
sentence “seldom has a movie so closely” is aggregated to
the “has” token. Similarly, information in the other part of
the sentence “the spirit of a man and his work” flows to the
“spirit” token, which has strong positive emotional tenden-
cies. Finally, with the feature interactions, all information
aggregates to the verb “matched”, which gives us a better
understanding of why the model makes the specific decision.

Receptive Field The self-attention mechanism is sup-
posed to have the ability to capture long-range dependen-
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Algorithm 1 Attribution Tree Construction

Input: [ali,j ]n×n: Attribution scores

{El}|l|l=1: Retained attribution edges
Output: V, E : Node set and edge set of Attr tree

1: . Initialize the state of all tokens
2: for i← n, · · · , 1 do
3: Statei ← NotAppear

4: . Choose the top node of the attribution tree
5: [AttrAlli]n =

∑|l|
l=1

∑n
j=1,j 6=i a

l
i,j

6: TopNode = arg max([AttrAlli]n)
7: V ← {TopNode}; StateTopNode ← Appear
8: . Build the attribution tree downward
9: for l← |l| − 1, · · · , 1 do

10: for (i, j)li6=j ∈ El do
11: if Statei is Appear and
12: Statej is NotAppear then
13: E ← E

⋃
{(i, j)}; V ← V

⋃
{j}

14: Statei ← Fixed; Statej ← Appear

15: if Statei is Fixed and
16: Statej is NotAppear then
17: E ← E

⋃
{(i, j)}; V ← V

⋃
{j}

18: Statej ← Appear

19: . Add the terminal of the information flow
20: V ← {[CLS]}
21: for j ← n, · · · , 1 do
22: if Statej ∈ {Appear, Fixed} then
23: E ← E

⋃
{([CLS], j)}

24: return {V, E}

cies. In order to better understand the layer-wise effective
receptive field in Transformer, we plot the distance distri-
bution of interactions extracted by the attribution tree. As
shown in Figure 6, we observe that for the paired input of
MNLI, the effective receptive field is relatively local in the
first two layers and the 6-8th layers, while are more broad in
the top three layers. For the single input of SST-2, the effec-
tive receptive field is monotonically increasing along with
the layer number. Generally, the effective receptive field in
the second layer is more restricted, while the latter layers
extract more broad dependencies. Moreover, for pairwise-
input tasks (such as MNLI), the results indicate that Trans-
former models tend to first conduct local encoding and then
learn to match between the pair of input sentences, which is
different with training from scratch (Bao et al. 2019).

Use Case 3: Adversarial Attack
The model decision attributes more to the attention con-
nections with larger attribution scores. We observe that the
model tends to over-emphasize some individual patterns
to make the prediction, while omitting most of the input.
We then use the over-confident patterns as adversarial trig-
gers (Wallace et al. 2019) to attack the BERT model.

Trigger Construction We extract the attention dependen-
cies with the largest attribution scores across different layers

Figure 7: We use ATTATTR to extract the trigger (i.e., high-
lighted word patterns) from the MNLI instance that is la-
beled as contradict. After adding the adversarial trigger
to the examples in other categories, the model predictions
flip from neutral and entailment to contradict.

(i.e., maxLl=1 {ali,j}) from the input, and employ these pat-
terns as the adversarial triggers. During the attack, the ad-
versarial triggers are inserted into the test input at the same
relative position and segment as in the original sentence.

The specific attack process is shown in Figure 7. The two
patterns “floods-ice” and “Iowa-Florida” contribute most
to the prediction contradict in the source sentence.
Next we employ them as the trigger to attack other exam-
ples, the model predictions flip from both neutral and
entailment to contradict. Our attack method relies
on attribution scores, which utilizes the gradient informa-
tion, therefore it belongs to white-box non-targeted attacks.

We extract the dependencies with the largest attribution
scores as the adversarial triggers from 3,000 input exam-
ples. Each trigger contains less than five tokens. The score of
a trigger is defined as the maximum attribution value iden-
tified within it. When attacking the BERT model on SST-
2, we use a lexicon1 to blacklist the words with the obvi-
ous emotional tendencies (such as “disgust” for negative
triggers). The adversarial triggers are inserted into the attack
text at the same relative position as in the original sentence.

Results of Attack We conduct the adversarial attacks on
multiple datasets. The top-3 adversarial triggers for MNLI
and SST-2 are listed in Table 1. We report the attack results
with these triggers in Table 2. For MNLI, after inserting the

1www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html
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MNLI SST-2
contradict entailment neutral positive negative

Trigger1 {also, sometimes, S} {with, math} {floods, Iowa,
ice, Florida} {[CLS], nowhere} {remove, ##fies}

Trigger2 {nobody, should, not} {light, morning} {never, but} {but, has, nothing} {not, alien, ##ate}

Trigger3 {do, well, Usually, but} {floods, Iowa,
ice, Florida}

{Massachusetts,
Mexico} {offers, little} {##reshing, ##ly}

Table 1: Top-3 adversarial triggers for the MNLI and SST-2 datasets. The tokens are inserted into input sentences at the specific
positions for non-targeted attacks. We omit the tokens’ positions in the table for brevity.

MNLI SST-2 MRPC RTE
contra- entail- neutral pos- neg- equal not- entail- not-

Baseline 84.94 82.87 82.00 92.79 91.82 90.32 72.87 72.60 65.65

Trigger1 34.17 0.80 34.77 54.95 72.20 29.39 51.94 9.59 59.54
Trigger2 39.81 1.83 47.36 59.68 74.53 32.62 55.04 11.64 62.50
Trigger3 41.83 2.99 51.49 70.50 77.80 36.56 58.91 13.70 62.60

Avg. ∆ -46.34 -80.00 -37.46 -31.08 -16.98 -57.46 -17.57 -60.96 -12.31

Table 2: Attack results of the top-3 triggers. We abbreviate not equal and not entailment to not- for MRPC and
RTE, respectively. The baseline represents the original accuracy of model on each category.

words (“with”, and “math”) to the second segment of the
input sentences, the model accuracy of the entailment
class drops from 82.87% to 0.8%. For SST-2, adding the
top-1 adversarial trigger to the input causes nearly 50%
positive examples to be misclassified.

Analysis of Triggers For both MNLI and RTE, the
entailment class is more vulnerable than others, because
the current models and data seem to heavily rely on word
matching, which would result in spurious patterns. More-
over, we also observe that the trigger is sensitive to the in-
sertion order and the relative position in the sentence, which
exhibits the anomalous behaviors of the model, i.e., over-
relying on these adversarial triggers to make the prediction.

Related Work
Previous work has explored attributing predictions to the
input features with various saliency measures, such as
DeepLift (Shrikumar, Greenside, and Kundaje 2017), layer-
wise relevance propagation (Binder et al. 2016), and Inte-
grated Gradients (IG; Sundararajan, Taly, and Yan 2017).

Specific to the NLP domain, Murdoch and Szlam (2017)
introduce a decomposition method to track the word impor-
tance in LSTM (Hochreiter and Schmidhuber 1997). Mur-
doch, Liu, and Yu (2018) extend the above method to con-
textual decomposition in order to capture the contributions
of word combinations. Another strand of previous work
generates the hierarchical explanations, which aims at re-
vealing how the features are composed together (Jin et al.
2020; Chen, Zheng, and Ji 2020). However, they both de-
tect interaction within contiguous chunk of input tokens. The
attention mechanism (Bahdanau, Cho, and Bengio 2015)
rises another line of work. The attention weights generated

from the model indicate the dependency between two words
intuitively, but Jain and Wallace (2019) and Serrano and
Smith (2019) draw the same conclusion that they largely do
not provide meaningful explanations for model predictions.
However, Wiegreffe and Pinter (2019) propose several alter-
native tests and conclude that prior work does not disprove
the usefulness of attention mechanisms for interpretability.
Furthermore, Ghaeini, Fern, and Tadepalli (2018) aim at in-
terpreting the intermediate layers of NLI models by visual-
izing the saliency of attention and LSTM gating signals.

For Transformer, Clark et al. (2019) propose a attention-
based visualization method and a probing classifier to ex-
plain the behaviors of BERT (Devlin et al. 2019). Brunner
et al. (2020) study the identifiability of attention weights of
BERT, which shows that self-attention distributions are not
directly interpretable. Moreover, some work extracts the la-
tent syntactic trees from hidden representations (Hewitt and
Manning 2019; Rosa and Marecek 2019; Coenen et al. 2019)
and attention weights (Marecek and Rosa 2019).

Conclusion
We propose self-attention attribution (ATTATTR), which in-
terprets the information interactions inside Transformer and
makes the self-attention mechanism more explainable. First,
we conduct a quantitative analysis to justify the effective-
ness of ATTATTR. Moreover, we use the proposed method
to identify the most important attention heads, which leads
to a new head pruning algorithm. We then use the attribution
scores to derive the interaction trees, which visualizes the
information flow of Transformer. We also understand the re-
ceptive field in Transformer. Finally, we show that ATTATTR
can also be employed to construct adversarial triggers to im-
plement non-targeted attacks.
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