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Abstract

Question generation is a challenging task and has attracted
widespread attention in recent years. Although previous stud-
ies have made great progress, there are still two main short-
comings: First, previous work did not simultaneously capture
the sequence information and structure information hidden
in the context, which results in poor results of the gener-
ated questions. Second, the generated questions cannot be an-
swered by the given context. To tackle these issues, we pro-
pose an entity guided question generation model with con-
textual structure information and sequence information cap-
turing. We use a Graph Convolutional Network and a Bidi-
rectional Long Short Term Memory Network to capture the
structure information and sequence information of the con-
text, simultaneously. In addition, to improve the answerabil-
ity of the generated questions, we use an entity-guided ap-
proach to obtain question type from the answer, and jointly
encode the answer and question type. Both automatic and
manual metrics show that our model can generate comparable
questions with state-of-the-art models. Our code is available
at https://github.com/VISLANG-Lab/EGSS.

Introduction
The Question Generation (QG) task is defined as the gener-
ation of a sentence-related, answerable, and grammatically
correct question from a given passage, which is widely ap-
plied in the dialogue system (Wang et al. 2018), question an-
swering (Tang et al. 2017), machine reading comprehension
(Yuan et al. 2017), and automatic tutoring systems (Danon
et al. 2017).

Traditional QG methods rely on manually curated rules
or templates (Heilman et al. 2009; Hussein et al. 2014),
which usually suffer from time-consuming, low generaliz-
ability and low scalability. Benefiting from the success of
the encoder-decoder structure in machine translation (Bah-
danau et al. 2015), Du et al. (2017) proposed a sequence-
to-sequence model with attention mechanism for QG and
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Context sequence：
Tom was officially promoted to deputy financial manager.

Question： To what position was Tom promoted ?
entity

Syntactic structure：

Figure 1: An example from SQuAD (Simplified for the sake
of description). The phrase in red is the target answer. Syn-
tactic structure information (obtained by Universal Stanford
dependencies tool), sequence information of the context, and
entities in the answer will boost question generation.

achieved promising results. Since then, a surge of follow-up
enhanced models (Zhou et al. 2017; Song et al. 2018a; Ku-
mar et al. 2018a) have been proposed, most of them purely
leverage Recurrent Neural Networks (RNNs) to capture se-
quence information of the context to generate questions.
However, these sequence-information-aware models ignore
rich structure information (e.g., syntactic dependency rela-
tions) hidden in the context.

Dependency relations, especially long distance syntactic
relations, are very useful for understanding complex sen-
tence structures (e.g., long clauses or complex scoping). For
the strong ability of aggregation, Graph Neural Networks
(GNN) are applied to capture the dependency structure of
the input passage to generate questions (Chen et al. 2020;
Chai et al. 2020). Chen et al. (2020) applied a Bidirec-
tional Gated GNN to capture the structure information be-
tween words in a sentence. Chai et al. (2020) used GNNs
to encode the context and answer, respectively, to obtain the
fused representations. Pan et al. (2020) used semantic infor-
mation to construct an attention-based Gated Graph Neural
Networks for generating deep questions. All of these models
have shown strong abilities to capture structure information.

Although these graph-based studies have made marked
progress in QG, a significant gap on performance still re-
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mains between machines and human. We consider that prob-
able causes are twofold: First, using alone graphs pruned
by DP is insufficient to convey the total information of the
passage, namely, sequence information in the passage is not
captured by the graph. Second, the DP, especially obtained
by external tools, may bring error propagation problem.

Taking the aforementioned two classes of approaches into
overall consideration, we argue that the structure informa-
tion and sequence information of the context should be cap-
tured simultaneously, while the absence of either one may
affect the quality of the generation question. As shown in
Figure 1, the dependency relation case between “to” and
“manager” will facilitate the generation of the leading words
“To what” in the question sentence.

Furthermore, some generated questions cannot be an-
swered by the context (e.g. “Why was Tom promoted to a
deputy position?”), which is fatal to QG and also means that
the generated questions are insufficient in answerability. We
deem that the answerability of a question is mainly influ-
enced by the interrogative words and the relevance between
the question and the answer. Previous studies mainly applied
neural networks to predict the types of questions from the
answers (Zhou et al. 2019; Wu et al. 2020), or used the pre-
dicted types of questions combined with the position infor-
mation of the answers to improve the accuracy of generating
interrogative words and the relevance between the questions
and the answers (Hu et al. 2018; Zi et al. 2019; Chen et al.
2019). However, these approaches are implicit and difficult
to ensure the types of questions predicted are correct. There-
fore, we consider introducing entity-guided and rule-based
approach which will be helpful to more accurately gener-
ate interrogative word. In Figure 1, the entity “manager” can
help to generate the interrogative “what”.

Inspired by above, we propose an Entity-Guided dual-
channel encoding framework to capture contextual Struc-
ture information and Sequence information (EGSS) simul-
taneously. Specifically, we introduce DP to build syntactic
relations and Graph Convolutional Networks (GCNs) over
it to aggregate adjacent nodes and update the representa-
tion of structure information. Meanwhile, we employ a Bidi-
rectional Long Short Term Memory Network (Bi-LSTM) to
capture the contextual sequence information. We propose an
entity guided method to guarantee a strong correlation be-
tween an answer and the generated interrogative word. First,
we identify the answer by a named entity. Then, each entity
is mapped to a corresponding question type in a rule-based
way. Finally, we encode both the answer and the question
type to guide the question generation. The method models
the answer and question type in an explicit way, and consid-
ers the interrogative word and the answer’s relevance to the
question, thus improving the answerability of the generated
question.

We conclude the contributions as follows:

• We propose a dual-channel encoding question generation
model based on GCN and Bi-LSTM to capture structure
information and sequence information of the context.

• We propose an entity-guided method to guarantee a corre-
lation between an answer and the generated interrogative

word, which can markedly improve the accuracy of ques-
tion types and the answerability of generated questions.

• Experiments show that our model outperforms existing
stong baselines (except for the state-of-the-art pre-trained
language models) by a significant margin on the widely-
used SQuAD dataset. Human evaluations show that our
model can generate questions with better grammaticality,
relevancy, and answerability.

Related Work
In recent years, question generation has attracted the atten-
tion of researchers. Previous methods on this task can be
roughly categorized into two lines: rule-based approaches
and neural network-based approaches.

Rule-based techniques for QG usually rely on manually-
designed rules or templates to transform a piece of given text
to questions (Heilman, 2010; Chali and Hasan, 2012; Lind-
berg et al. 2013; Labutov et al. 2015; Dhole et al. 2020).
This rule-based approach requires a lot of labor. These rules
or templates have many limitations that make them difficult
to generalize. Moreover, the generated questions lack diver-
sity due to the limited number of rules or templates.

To make up for the deficiency of rule-based methods, Du
et al. (2017) applied sequence-to-sequence model to the QG
task for the first time and obtained surprising performance.
After that, many studies have been done on the basis of
Seq2Seq (Zhao et al. 2018b; Kim et al. 2019; Li et al. 2019a;
Wang et al. 2020; Yu et al. 2020). To make the model learn
more language features and answer-related information, to-
ken lexical features and answer position information are usu-
ally input into the model (Zhou et al. 2017; Song et al. 2018;
Kim et al. 2019; Jia et al. 2020). Similar to other text gener-
ation tasks, many previous work on QG also employ pointer
or copy mechanism to overcome the OOV problem (Du and
Cardie, 2018; Zhang and Bansal, 2019). Some works im-
prove the quality of the generated questions by predicting
the type of question or directly encoding the answer infor-
mation (Hu et al. 2018; Zhou et al. 2019; Zi et al. 2019; Chen
et al. 2020; Wu et al. 2020).

In recent years, because graph neural networks (Kipf et al.
2016; Gilmer et al. 2017; Hamilton et al. 2017) have made
great progress in representation learning, many researchers
use it to capture the relationship between words in context
(Fan et al. 2019; Huang et al. 2020). Some researchers have
also begun to explore the role of GNNs in the QG task. Liu
et al. (2019) employed a GCN onto a Dependency Parsing
(DP) tree to predict potential clue words, then fed them to-
gether with other features into a RNN-based encoder to en-
code the context. Chen et al. (2020) proposed the graph-to-
sequence model for QG. The authors applied a Bidirectional
Gated GNN to capture the structure information between
words in a sentence. Chai et al. (2020) used GNNs to in-
teractive answer and passage to obtain new representations.
To generate deep questions, Pan et al. (2020) employed an
attention-based Gated GNNs model to encode semantic in-
formation of the context.

In addition, due to the continuous expansion of large-
scale corpus, some pre-training models have also achieved
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remarkable performance in QG tasks (Qi et al. 2020; Bao et
al. 2020; Xiao et al. 2020).

Model
Overview
The task of question generation can be formulated as fol-
lows: given a sentence X = x1x2 . . . xn (containing n
words) with an answer A = a1a2 . . . am (containing m
words), the purpose of QG is to generate a corresponding
question Y = y1y2 . . . yl (containing l words).

Different from the common encoder-decoder architecture
of previous work, we use a GCN encoder, a multi-feature en-
coder, and an AT encoder respectively in the encoding stage
(cf. Figure 2). Among them, the GCN encoder is used to cap-
ture the structure information of context, the multi-feature
encoder is used to capture contextual sequence information,
and the AT encoder is employed to guide interrogative word
generation and enhance the relevance of the generated ques-
tion to the answer.

GCN Encoder
In natural language processing, GCN can effectively capture
the relationship between words, well represent the context
information, and play a very important role in text genera-
tion. In this section, we use GCN to encode sentences and
get their representation, and then we focus on graph con-
struction and node representation update.
Graph Construction For a sentence X = x1x2 . . . xn,
we treat each word xk as a node and the feature of node
is the corresponding word representation hsk, where hsk
is obtained through Glove embedding (Pennington et al.
2014). For edges, we first consist a fully-connected undi-
rected graph, then prune some irrelevant edges through the
dependency parsing tree to obtain a sparse graph. A sentence
graph G is constructed as follows:

G = (V, ξ), (1)

where V represents the set of nodes and ξ represents the set
of edges that connect these nodes.

We represent the graph structure with n×n adjacency ma-
trix Λ, the adjacency matrix represents the relationship be-
tween nodes in GCN, and its initial state is a fully connected
graph. By removing the unrelated edges with DP, a sparse
graphical structure is obtained. Specifically, we use the Uni-
versal Stanford dependencies tool (De Marneffe et al. 2014)
to obtain the relationship between words in the sentence. If
there is some relationship between words xi and xk, we set
the corresponding element in the adjacency matrix to 1, oth-
erwise it is 0.
Node Update Representation Given a target node i and a
neighboring node j∈N (i) in a sentence, where N (i) is the
set of nodes neighboring with node i. hsi and hsj are re-
spectively the representations of node i and node j. We fur-
ther learn a fully connected layer over concatenated node
features hsi and hsj to obtain the correlation score between
node i and j:

sij = wT
0 σ(W0[hsi;hsj ] + b0), (2)

where w0, W0 and b0 are learned parameters, σ is the non-
linear activation function, and [hsi;hsj ] represents the con-
catenation operation of hsi and hsj . To obtain the edge
weight βij between node i and node j, softmax operation
was performed on the correlation score sij to obtain it. The
calculation formula is as follows:

βij =
exp(sij)∑

j∈N (i)exp(sij)
. (3)

Further, we update the hsi of k + 1 layer by aggregating
the information of the neighbor node j of node i and node i
at k layer. This propagation is denoted as:

h
(l+1)
si = σ(h

(l)
si +

∑
j∈N (i)

Λijβij(W1h
(l)
sj + b1)), (4)

where σ denotes a non-linear function, W1 and b1 are
learned parameters, Λij represents an element in the adja-
cency matrix. Finally, the output Hs of a stacked l-layer
GCN can be obtained according to the following formula:

Hs = {h(l+1)
si }ni=1. (5)

Multi-feature Encoder
The input of multi-feature encoder contains word embed-
dings, linguistic features, and answer tags. We use pretrained
Glove embeddings (Pennington et al. 2014) to represent
each word xgi . For linguistic features, we transform POS and
NER tags into continuous representation zpi and zni , respec-
tively. Following (Zhou et al. 2017), we adopt a BIO label to
indicate the relative position of the answer in the sentence.
Then we get the embedding zbi of answer tags. The final em-
bedding of the i-th word in the sentence is denoted as:

xfei = [xgi ; zpi ; zni ; zbi ], (6)

where [; ] denotes the concatenation operation.
We employ a Bi-LSTM to encode the input

Xfe = {xfei }ni=1 to get a contextualized representation for
each token:

hri = BiLSTM(hr(i−1), x
fe
i ), (7)

where hri = [
−→
hri;
←−
hri] is the hidden states at the i-th time

step of Bi-LSTM. The contextualized representation of the
sentence can be denoted as Hr = (hr1, hr2, . . . , hrn).

Finally, we use a concatenation operation to fuse outputs
of GCN-Encoder and multi-feature Encoder, and get the fi-
nal contextualized representation Hd = [Hs;Hr] .

AT Encoder
Inspired by the question-type driven question generation
proposed by Zhou et al. (2019), we propose an Entity
Guided Interrogative Generation method to initialize the de-
coder with the answer information and question types to im-
prove the answerability of the generated questions. Differ-
ent from Zhou’s approach that utilizes the hidden layer vec-
tor of the answer position to predict the type of question,
we obtained the type of the question through the rule-based
method, which was more accurate in classifying the ques-
tion. More specifically, we first perform NER on the answer.
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Figure 2: Illustration of our proposed EGSS model for QG task. A GCN encoder is used to capture contextual structure infor-
mation, a Bi-LSTM encoder is used to capture contextual sequence information, and an AT encoder is used to encode question
types and answers to guide the generation of interrogative words and improve the relevance of the question to the answer. In
addition, DP represents dependency parsing, update denotes the update of the node.

Second, classify the question. If the answer is a person’s
name, place, time, and number, the corresponding question
types are who, where, when, and how many/much, re-
spectively. If the answer is a noun or a noun phrase, the ques-
tion type is what. If the answer is a sequence word or an ad-
jective comparative, then the question type is set towhich. If
the answer contains keywords such as “reason”, “because”,
the question type is why. The settings other than these types
are other.

We employ a Bi-LSTM as the AT encoder, and input the
answerA = a1, a2, . . . , am and question types s into the AT
encoder. The final input form As of the AT encoder is the
answer and question type separated by separator |, As thus
can be described as:

As = a1, a2, . . . , am, |, s. (8)

For the convenience of the following application, we further
express As as:

As = as1, as2, . . . , asp, (9)

where asi represents Glove embedding of the i-th token in
As. Finally, last hidden state hap of the AT encoder is ob-
tained by the following formula:

hai = BiLSTM(ha(i−1), asi), (10)

where hai = [
−→
hai;
←−
hai] is the hidden states at the i-th time

step (hap denotes the last hidden state).

Decoder
We employ an LSTM as the decoder to generate the ques-
tion. The hidden state ut of LSTM at time t is denoted as:

ut = LSTM(ut−1, yt−1), (11)

where ut−1 represents the hidden state of LSTM at time t-
1, yt−1 represents the word generated by the decoder at time
t-1. When t=0, u0 = hap stands for the decoder’s initial state.

We employ the Luong et al. (2015)’s attention mechanism
to obtain row attention scores rt over the input sequence
which has a vocabulary of Vs:

rt = Hd
TW2ut, (12)

where Hd denotes contextualized representation of the sen-
tence, W2 stands for a learning matrix. Then, we obtain the
context vector ct and update the decoder state ut to get û:

ct = Hdsoftmax(rt), (13)

ût = tanh(W3[ut; ct]). (14)

To solve the problem of rare words, the decoder applies
a copy mechanism (See et al. 2017). Similar to (Zhao et al.
2018), we directly leverage row attention scores rt as the
score of the copy mechanism score1. Further, we calculated
the score for words generated from the high frequency vo-
cabulary Vh:

score2 = WVh ût. (15)

Finally, the probability distribution p(yt|{y<t})final of each
word at t step can be calculated as follow:

p(yt|{y<t})final = softmax([score1; score2]), (16)

where the dimension of [score1; score2] is |Vh| + |Vs|. If a
word appears in both Vs and Vh, we sum up the probabilities
of the two parts as its final probability.
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Models Split2 Split1
B1 B2 B3 B4 R-L ME B1 B2 B3 B4 R-L ME

Seq2Seq (Du et al. 2017) - - - - - - - - - - - - 43.09 25.96 17.50 12.28 39.75 16.62
NQG++ (Zhou et al. 2017) 42.36 26.33 18.46 13.51 - - - - - - - - - - - - - - - -
S2Sa-at-mp-gsa (Zhao et al. 2018) 44.51 29.07 21.06 15.82 44.24 19.67 43.47 28.23 20.40 15.32 43.91 19.29
NQG-Knowledge (Gupta et al. 2019) 42.78 26.68 18.48 13.30 41.22 19.15 - - - - - - - - - - - -
ASs2s (Kim et al. 2019) - - - - - - 16.17 43.96 19.92 - - - - - - 16.20 43.96 19.92
Unified-model (Zhou et al. 2019) 43.11 29.13 21.39 16.31 - - - - - - - - - - - - - - -
CGC-QG (Liu et al. 2019) 46.58 30.9 22.82 17.55 44.53 21.24 - - - - - - - - - - - -
CS2S-VR-A (Liu et al. 2020) 45.28 29.58 21.45 16.13 43.98 20.59 - - - - - - - - - - - -
Multi-stage Att (Tuan et al. 2020) 46.60 31.94 23.44 17.76 45.89 21.56 45.13 30.44 23.40 17.09 45.81 21.25
Refine Net (Nema et al. 2019) 47.27 31.88 23.65 18.16 47.14 23.40 - - - - - - - - - - - -
Ans-pivot-QG (Wang et al. 2020) 48.26 29.23 22.37 16.42 43.07 18.95 - - - - - - - - - - - -
G2Ss-Bert-RL (Chen et al. 2020)* - - - - - - 18.30 45.98 21.70 - - - - - - 17.94 46.02 21.76
Syn-QG (Dhole et al. 2020)* 45.55 30.24 23.84 18.72 - - - - - - - - - - - - - - - -
EGSS w/o (Answer & QType) 49.53 32.58 23.86 18.01 45.27 22.38 49.20 32.57 23.72 17.99 45.23 21.88
EGSS (ours) 50.86 34.42 25.44 19.45 47.29 23.54 50.11 33.26 24.20 18.47 47.04 21.93

Table 1: Automatic evaluation on Split1 and Split2 of SQuAD. ∗ are dependency-based models, while other baselines are
sequence-based. B1 is short for BLEU-1, B2 for BLEU-2, B3 for BLEU-3, B4 for BLEU-4, ME for METEOR, and R-L for
ROUGE-L. We conduct experiments on their released codes or copy from their paper. In each column, we bold / underline the
best performance over all / baseline methods, respectively. Our EGSS model significantly outperforms baselines with p<0.001.

Models B4 R-L ME
GPT2-ACS (Liu et al. 2020) 18.87 43.6 25.15
UniLMv2 (Bao et al. 2020) 26.29 53.22 27.16
Ernie-Gen (Xiao et al. 2020) 25.57 53.31 26.89
ProphnetNet (Qi et al. 2020) 26.72 53.79 27.64
EGSS (ours) 19.45 47.29 23.54

Table 2: Comparative experiments between EGSS and pre-
trained language models on Split2.

Experiments
Dataset
We conduct experiments on the accessible part of widely-
used SQuAD datasets (Rajpurkar et al. 2016). Specifically,
we conduct sentence-level question generation experiments
on Split1 (Du et al. 2017) and Split2 (Zhou et al. 2017), re-
spectively. In Split1, the original dev set is used as test set,
and the original training set is randomly divided into training
set and dev set at a 9:1 ratio. In Split2, the SQuAD training
set remains the same and the original dev set is randomly
split into our dev set and test set with the ratio 1:1.

Evaluation Metrics
Automatic Evaluation Metric We conduct automatic
evaluation with the following metrics:

BLEU (Papineni et al. 2002) measures precision by how
much the words in predictions appear in reference sentences.
BLEU-1 (B1), BLEU-2 (B2), BLEU-3 (B3), and BLEU-4
(B4) use 1-gram to 4-gram for calculation, respectively.

METEOR (ME) (Denkowski and Lavie, 2014) is based
on the harmonic mean of unigram precision and recall, with

recall weighted higher than precision.
ROUGE-L (R-L) (Lin, 2014) measures recall by how

much the words in reference sentences appear in predictions
using Longest Common Subsequence based statistics.
Human Evaluation Metric To further assess the qual-
ity of generated questions, we perform human evaluation to
compare our model with Seq2Seq (Du et al. 2017), S2Sa-at-
mp-gsa (Zhao et al. 2018), G2S-Bert-RL (Chen et al. 2020),
and Syn-QG (Dhole et al. 2020).

We randomly select 100 samples from the generated
questions and hire 5 evaluators to evaluate them according
to three aspects: Grammaticality (GRAM) to measure the
grammatical correctness and fluency of the generated ques-
tions, Relevancy (REL) to measure whether the generated
question is relevant to the context, and Answerability (ANS)
to assess whether the generated question can be answered by
the context. For fair comparison, score 1/2/3/4/5 is applied to
each metric during annotation following (Dhole et al. 2020).
For each metric, we averaged the scores of the five evalua-
tors as the final score.

Baselines
Seq2Seq: Du et al. (2017) proposed a seq2seq model with
attention mechanism.
NQG++: Zhou et al. (2017) devised a seq2seq model with
copy and attention mechanism, enhanced with answer posi-
tion features and lexical features.
S2sa-at-mp-gsa: Zhao et al. (2018) used a gated attention
encoder and a maxout pointer decoder for the QG task.
NQG-Knowledge: Gupta et al. (2019) used external knowl-
edge to enhance question generation models.
ASs2s: Kim et al. (2019) proposed an answer-separated
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Seq2Seq model by replacing the answer in the input se-
quence with some specific words.
Unified-model: Zhou et al. (2019) proposed a question-type
driven question generation model that used neural networks
to predict question types from answers.
CGC-QG: Liu et al. (2019) proposed a multi-task learning
framework to guide the model to learn the accurate bound-
aries between copying and generation.
G2Ss-Bert-RL: Chen et al. (2020) proposed a RL based
Graph2Seq model for QG.
Refine Net: Nema et al. (2019) leveraged a Preliminary De-
coder and a Refinement Decoder with Dual Attention Net-
work to generate questions.
Multi-stage Att: Tuan et al. (2020) represented the relevant
context via a multi-stage attention mechanism to incorporate
interactions across multiple sentences.
Syn-QG: Dhole et al. (2020) proposed a QG method based
on syntactic and shallow semantic rules.
CS2S-VR-A: Liu et al. (2020) proposed an ACS-aware QG
model. For fair comparison, we just introduce its CS2S-VR-
A version, which only input passages and answers.

Experiments Settings
We utilize pre-trained Glove word embeddings, which di-
mension is set to 300. We set the dimension of Answer tags,
POS tags, and NER tags with 100, 60, and 50, respectively.
The hidden size of LSTM are 300 for all encoder and de-
coder. For the GCN encoder, the level of stacked layer is 4.
We make the vocabulary with top 45000 frequency words.
When training, we use SGD optimizer with 0.2 dropout rate,
0.01 learning rate and train our model for 30 epochs. For the
decoder part, we use beam search with beam size of 12 to
get the final result.

Results and Analysis
Automatic Evaluation Table 1 shows experimental re-
sults of our EGSS model on SQuAD.

For Split2, we achieve a strong improvement in BLEU,
R-L and ME. It can be seen that our model significantly out-
performs other baselines on B1, B2 and B3, respectively. In
terms of B4 that is often regarded as the main evaluation
metric for QG, our model outperforms the previous best re-
sult by 0.73% which are a large margin for this challenging
task. Compared to Refine Net the best previous model on
the R-L and ME of Split2, our model obtains improvement
of 0.15% and 0.14%, respectively. We have done signifi-
cant test comparing our model with NQG++, S2Sa-at-mp-
gsa, Unified-model, Refine Net and G2S-Bert-RL. We run
all these models ten times. The results shows that our model
significantly outperforms them with all p-values <0.001. In
general, the experimental results of our model are better than
those that only rely on textual structure information or se-
quence information, which proves the validity of our model.

We also conduct experiments follow the split of Du et al.
(2017). Similarly, our model achieves good performance in
Split1 on each metric. Specially, our model outperforms the
previous best result (i.e., G2S-Bert-RL) on B4, R-L, and

ME, by 0.53%, 1.02%, and 0.17%, respectively. Our full
model removing AT encoder module (i.e., Ans and Qtype)
also achieves a comparable performance with baselines.

We further compare our EGSS with pre-trained language
models (cf. Table 2). Although there is a gap between EGSS
and the state-of-the-art pre-trained models, our model ex-
ceeds GPT2-ACS on B4 and R-L metrics. In general, our
model achieves comparable results at a lower cost without
the need for large amounts of external data and computing
resources.

In addition, we compare our model with two question
type-driven QG models on the accuracy of interrogative
words (cf. Table 3). It can be seen that our model im-
proved by 1.12% over the Unified model and by 29.18%
over NQG++. It shows that the entity-guided and rule-based
interrogative words generation approach is more effective
than pure neural network-based methods. It also shows that
injecting external symbolic representations could be helpful
for neural language generation models.
Manual Evaluation We conducted human evaluations to
analyze the quality of the question generated by EGSS. As
shown in Table 4, our EGSS model outperforms the strong
baseline models on all metrics. Specifically, our model
achieves improvements of 3% on ANS (4.01 vs 3.89), 1%
on REL (4.37 vs 4.33), and on GRAM (4.06 vs 3.93). Strong
baselines (such as G2S-Bert-RL, Syn-QG) and our model
both use DP. The evaluation results show that DP is bene-
ficial to improve grammaticality of the generated question.
Furthermore, our model achieve the best GRAM score, in-
dicating that our GCN encoder is useful for capturing rich
structure information hidden in the text. From Table 4, we
also find that our model is better than the other baselines in
terms of answerability, suggesting that the introduction of
question types is beneficial for answerability. We will show
some cases and analyze them detailedly in case study.
Ablation Study To investigate the effects of the GCN en-
coder module, the DP module, and the AT module in the
EGSS model, we perform ablation studies. The results are
shown in Table 5. It shows that the answer information pro-
vides certain performance improvement by 0.34% on B4.
The question type information provides improvement by
1.1% on B4, 1.72% on R-L, 0.88% on ME. Compared to an-
swer information, the question type information shows more
important. We also remove answer and question type infor-
mation together, namely removing the AT encoder part, the
model produce massive drops by 1.44% on B4, 2.02% on R-
L, 1.16% on ME. It can be seen that the AT encoder is one
of the most important part in model.

Furthermore, we compare the influence of DP, GCN and
Bi-LSTM parts to model in Table 5. When our model has
only one vanilla GCN encoder, the scores of all metrics are
relatively low. The scores of B4, R-L, and Meteor are 7.59,
37.23, and 15.12, respectively. Similarly, when our model
has only one Bi-LSTM encoder, the performances are rel-
atively low. Such modification only achieves 13.32 on B4,
39.66 on R-L, 17.39 on ME. However, we combine GCN
and Bi-LSTM as encoders, the performance of our model
is improved to 16.71 on B4, 44.43 on R-L and 21.51 on
ME. Besides, the part of DP provides further improved by
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Models bqwa on split2
NQG++ (Zhou et al. 2017) 46.35%

Unified-model (Zhou et al. 2019) 74.41%
EGSS (ours) 75.53%

Table 3: Experiments on the beginning interrogative word
accuracy (bqwa).

Models GRAM REL ANS
Seq2Seq (Du et al. 2017) 3.48 3.28 3.18

S2Sa-at-mp-gsa (Zhao et al. 2018) 3.71 3.77 3.32
Unified-model (Zhou et al. 2019) 3.65 4.29 3.89
G2S-Bert-RL (Chen et al. 2020) 3.86 4.33 3.78

Syn-QG (Dhole et al. 2020) 3.93 4.28 3.85
EGSS (ours) 4.06 4.37 4.01

Table 4: Human evaluation results on the Split2 of SQuAD.
GRAM is short for Grammaticality, REL for Relevancy, and
ANS for Answerability.

1.3% on B4, 0.84% on R-L and 0.87% on ME. It can be
concluded that using GCN and Bi-LSTM to simultaneously
capture structure information and sequence information of
context, respectively, is conducive to improving the perfor-
mance of the model.
Case Study We present some examples of generated
questions in Table 6. In Case 1, the Seq2Seq model lacks the
ability to capture contextual structure information, leading
to its failure to learn that “it” refers to “St. Johns River”. The
G2S-Bert-RL model does not make full use of the sequence
information between words, resulting in the generated ques-
tions inconsistent with the context facts and unable to be
answered by the given answer “Jean ribault”. As for Refine
Net, although it generates question without grammatical er-
rors, it cannot be answered by given answers. In contrast,
the questions generated by our model are more specific, and
with better answerability and grammaticality.

In Case 2, Seq2Seq and G2S-Bert-RL do not make full
use of the structure information and sequence information
of the context, leading to the generation of low-quality
questions, and making the generated questions poor in an-
swerability. The question generated by Refine Net is bet-
ter than Seq2Seq and G2S-Bert-RL in terms of grammar
and answerability. But the question generated by our model
is much more specific, which is exactly what high-quality

Models B1 B2 B3 B4 R-L ME
Our full model 50.86 34.42 25.44 19.45 47.29 23.54

- ans 50.57 34.08 25.06 19.11 46.99 23.26
- ans, qtype 49.53 32.58 23.86 18.01 45.27 22.38

- ans, qtype, dp 48.08 31.11 22.42 16.71 44.43 21.51
- ans, qtype, dp, gcn 43.27 25.73 18.45 13.32 39.66 17.39
- ans, qtype, dp, lstm 41.01 21.10 12.38 7.59 37.23 15.12

Table 5: Ablation studies on the Split2 of SQuAD. “-” means
removing the corresponding modules.

Case 1

Context:

French huguenot explorer Jean ribault
charted the st. johns river in 1562 calling it
the river of May because he discovered it
in may.

Seq2Seq: What created it in May?
Unified-model: What discovered French huguenot explorer?
G2S-Bert-RL: Who discovered Jean ribault?
Refine Net: When did Jean ribault discovered johns

river?
Ours: Who charted the st. johns river in 1562?
Ground truth: Who mapped the st. johns river in 1562?

Case 2

Context:

As a result of the american revolution,
john wesley was compelled in 1784 to break
with standard practice and ordain two of his
lay preachers as presbyters, thomas vasey
and richard whatcoat.

Seq2Seq: What was the name of the american
revolution?

Unified-model: What was wesley compelled to?
G2S-Bert-RL: Why was thomas vasey and richard

whatcoat break with standard practice?
Refine Net: Why was wesley compelled to break with

standard practice?
Ours: Why was john wesley compelled in 1784 to

break with standard practice and ordain two
of his lay preachers as presbyters?

Ground truth:
Why was wesley compelled to break with
standard practice and ordain two of his lay
preachers as presbyters?

Table 6: Generated questions from different models. In all
cases, the underlined part of the context is the given answer.

questions require. In addition, we found that the Unified
model did not correctly predict the interrogative words by
the proposed implicit neural network predicting method.

The cases show that our model has ability to capture con-
textual structure and sequence information, thereby making
the quality of the generated questions better. Moreover, the
method of entity guiding question generation can improve
the accuracy of interrogative word generation.

Conclusion
In this paper, we propose an Entity-Guided dual-channel en-
coding framework for QG. Our model uses a GCN encoder
and a Multi-feature encoder to capture the structure informa-
tion and sequence information of the context, respectively, to
improve the quality of generated questions. Further, to im-
prove the accuracy of interrogative word generation, we em-
ploy an AT encoder to guide interrogative word generation.
Experimental results on SQuAD also show the effectiveness
of our proposed method. In the future, we will explore the
capture of structure information and sequence information
of multiple sentences or paragraphs for QG and explore the
generation of more inferential questions.
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