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Abstract

Discourse information, as postulated by popular discourse
theories, such as RST and PDTB, has been shown to im-
prove an increasing number of downstream NLP tasks, show-
ing positive effects and synergies of discourse with impor-
tant real-world applications. While methods for incorporating
discourse become more and more sophisticated, the growing
need for robust and general discourse structures has not been
sufficiently met by current discourse parsers, usually trained
on small scale datasets in a strictly limited number of do-
mains. This makes the prediction for arbitrary tasks noisy and
unreliable. The overall resulting lack of high-quality, high-
quantity discourse trees poses a severe limitation to further
progress. In order the alleviate this shortcoming, we propose
a new strategy to generate tree structures in a task-agnostic,
unsupervised fashion by extending a latent tree induction
framework with an auto-encoding objective. The proposed
approach can be applied to any tree-structured objective, such
as syntactic parsing, discourse parsing and others. However,
due to the especially difficult annotation process to gener-
ate discourse trees, we initially develop a method to generate
larger and more diverse discourse treebanks. In this paper we
are inferring general tree structures of natural text in multiple
domains, showing promising results on a diverse set of tasks.

Introduction
Discourse Parsing is a key Natural Language Processing
(NLP) task for processing multi-sentential text. Most re-
search in the area focuses on one of the two main dis-
course theories – RST (Mann and Thompson 1988) or
PDTB (Prasad et al. 2008). The latter thereby postulates
shallow discourse structures, combining adjacent sentences
and mainly focuses on explicit and implicit discourse con-
nectives. The RST discourse theory, on the other hand,
proposes discourse trees over complete documents in a
constituency-style manner, with tree leaves as so called Ele-
mentary Discourse Units (or EDUs), representing span-like
sentence fragments. Internal tree-nodes encode discourse re-
lations between sub-trees as a tuple of {Nuclearity, Rela-
tion}, where the nuclearity defines the sub-tree salience in
the local context, and the relation further specifies the type
of relationship between the binary child nodes (e.g. Elab-
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oration)1. While both discourse theories are of great value
to the field of NLP, and have stimulated much progress in
discourse parsing, there are major drawbacks when data is
annotated according to these theories:
(1) Since both theories rely on annotation-guidelines rather
than data-driven algorithms, the human factor plays a sub-
stantial role in generating treebanks, posing a difficult task
on linguistic experts. In this work, we are eliminating the hu-
man component from the annotation process by employing
a data-driven approach to generate discourse trees directly
from natural language, capturing commonly occurring phe-
nomena in an unsupervised manner.
(2) The annotation process following human-generated
guidelines, especially following the RST discourse theory, is
expensive and tedious, as the annotation itself requires lin-
guistic expertise and a full understanding of the complete
document. This limits available RST-style discourse corpora
in both, size and number of domains where gold-standard
datasets exist. Using an automated, data-driven approach as
described in this paper allows us to crucially expand the size
and domain-coverage of datasets annotated with RST-style
discourse structures.

With the rapidly growing need for robust and general dis-
course structures for many downstream tasks and real-world
applications (e.g. Gerani et al. (2014); Nejat, Carenini, and
Ng (2017); Ji and Smith (2017); Xiao, Huber, and Carenini
(2020); Huber and Carenini (2020a)), the current lack of
high-quality, high-quantity discourse treebanks poses a se-
vere shortcoming.

Fortunately, more data-driven alternatives to infer dis-
course structures have been previously proposed. For exam-
ple, our recently published MEGA-DT discourse treebank
(Huber and Carenini 2020b) with automatically inferred dis-
course structures and nuclearity attributes from large-scale
sentiment datasets already reached state-of-the-art (SOTA)
performance on the inter-domain discourse parsing task.
Similarly, Liu and Lapata (2018) infer latent discourse trees
from the text classification task, and Liu, Titov, and Lapata
(2019) employ the downstream task of summarization us-
ing a transformer model to generate discourse trees. Outside
the area of discourse parsing, syntactic trees have previously

1We only generate plain discourse structures in this work, not
considering nuclearity and relation labels.
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been inferred according to several strategies, e.g. Socher
et al. (2011); Yogatama et al. (2016); Choi, Yoo, and Lee
(2018); Maillard, Clark, and Yogatama (2019).

In general, the approaches mentioned above have shown
to capture valuable structural information. Some models
outperform baselines trained on human-annotated datasets
(see Huber and Carenini (2020b)), others have proven to en-
hance diverse downstream tasks (Liu and Lapata 2018; Liu,
Titov, and Lapata 2019; Choi, Yoo, and Lee 2018). However,
despite these initial successes, one critical limitation that all
aforementioned models share is the task-specificity, possibly
only capturing downstream-task related information. This
potentially compromises the generality of the resulting trees,
as for instance shown for the model using text classification
data (Liu and Lapata 2018) in Ferracane et al. (2019). In or-
der to alleviate this limitation of task-specificity, we propose
a new strategy to generate tree structures in a task-agnostic,
unsupervised fashion by extending the latent tree induction
framework proposed by Choi, Yoo, and Lee (2018) with an
auto-encoding objective. Our system thereby extracts impor-
tant knowledge from natural text by optimizing both the un-
derlying tree structures and the distributed representations.
We believe that the resulting discourse structures effectively
aggregate related and commonly appearing patterns in the
data by merging coherent text spans into intermediate sub-
tree encodings, similar to the intuition presented in Drozdov
et al. (2019). However, in contrast to the approach by Droz-
dov et al. (2019), our model makes discrete structural deci-
sions, rather than joining possible subtrees using a soft atten-
tion mechanism. We believe that our discrete tree structures
allow the model to more efficiently achieve the autoencoder
objective in reconstructing the inputs, directly learning how
written language can be aggregated in the wild (comparable
to previous work in language modelling (Jozefowicz et al.
2016)). In general, the proposed approach can be applied
to any tree-structured objective, such as syntactic parsing,
discourse parsing and further problems outside of NLP, like
tree-planning (Guo et al. 2014) and decision-tree generation
(Irsoy and Alpaydin 2016). Yet, due to the especially diffi-
cult annotation process to generate discourse trees, we ini-
tially develop a method to generate much larger and more
diverse discourse treebanks.

Related Work
Within the last decade, general autoencoder frameworks
have been frequently used to compress data, such as in
Srivastava, Mansimov, and Salakhudinov (2015). More re-
cently, sequential autoencoders have been applied in the area
of NLP (Li, Luong, and Jurafsky 2015), with many popu-
lar approaches, such as sequence-to-sequence learning mod-
els (Sutskever, Vinyals, and Le 2014) having strong ties to
sequential autoencoders. Based on the promising results of
the sequential autoencoder, researchers started to compress
and reconstruct more general structures in tree-style models,
such as Chen, Liu, and Song (2018) showing that with avail-
able gold-standard trees, the programming-language trans-
lation task (e.g. from CoffeeScript to JavaScript) can be
learned with a tree-to-tree style neural autoencoder network.
Furthermore, variational autoencoders have been shown ef-

fective for the difficult task of grammar induction (Kusner,
Paige, and Hernández-Lobato 2017).

While both previously mentioned applications for tree-
style autoencoder models require readily available tree
structures to guide the aggregation process, another line of
work by Socher et al. (2011) overcomes this requirement by
using the reconstruction error of an autoencoder applied to
every two adjacent text spans as an indicator for syntactic
correctness within a sentence. In their model, Socher et al.
(2011) combine the tree-inference objective with the au-
toencoder topology, training an unsupervised tree-structured
model, which is subsequently fine-tuned on a small-scale su-
pervised dataset. While their model is clearly comparable
to our approach, there are three major differences: (1) They
make sequential, local decisions on the aggregation of spans
to generate a tree structure, rather than optimizing the com-
plete process holistically. (2) Their model uses an unsuper-
vised objective in the initial step but requires supervision in
later stages and (3) The model has been only applied to syn-
tactic parsing. In contrast, we apply our model to discourse
parsing, which arguably introduces further difficulties, as we
will discuss later.

Recently, Choi, Yoo, and Lee (2018) showed a promis-
ing approach to infer tree structures in a holistic and paral-
lelizable manner, generating task-depended trees solely re-
lying on sentiment-related information. In their model, they
make use of the Gumbel-Softmax (Jang, Gu, and Poole
2016) (also used in similar ways in Corro and Titov (2018,
2019)), allowing the neural network to make discrete de-
cisions while still being able to use standard approaches
like back-propagation to optimize the model. By combin-
ing a similar objective to Socher et al. (2011) and Chen, Liu,
and Song (2018), we utilize the discrete decision-process in
Choi, Yoo, and Lee (2018), positioning our work at the in-
tersection of these two lines of research. The general task
of tree inference has been mostly explored on sentence-
level. For instance in Choi, Yoo, and Lee (2018) and Socher
et al. (2011) as described above, or by applying a reinforce-
ment approach (Yogatama et al. 2016) or CKY methodology
(Maillard, Clark, and Yogatama 2019) to syntactic parsing.
Our work employs a novel, fully differentiable approach to
a similar problem in the area of discourse parsing.

In discourse parsing itself, there have been multiple at-
tempts to overcome the aforementioned limitations of small-
scale human annotated datasets. However, all previous mod-
els (such as Liu and Lapata (2018); Huber and Carenini
(2019); Liu, Titov, and Lapata (2019); Huber and Carenini
(2020b)) use downstream tasks to infer discourse structures.
While this is a valid strategy, shown to achieve SOTA re-
sults on the inter-domain discourse parsing task (Huber and
Carenini 2020b), as well as performance gains on down-
stream tasks (e.g., Liu and Lapata (2018); Liu, Titov, and
Lapata (2019)), those discourse structures are likely task-
depended and need to be either combined across multiple
downstream tasks or can only be applied in similar domains.
Further work has been trying to infer RST-style discourse
structures in a linguistically supervised manner (Nishida and
Nakayama 2020), showing good performance when heav-
ily exploiting syntactic markers in combination with general
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Figure 1: T-AE (Tree-AutoEncoder) topology for unsupervised tree inference. Inputs and outputs are dense encodings, Comp =
Compression, Reco = Reconstruction, Êncx represents reconstruction of spans. ℘ represents the pointer-network, g ∼ G(0, 1)
denotes the Gumbel-softmax (in the forward-pass with an additional straight-through computation, not shown here).
Grey /Dashed components represent actions outside the computational path chosen. red = model inputs/outputs, blue =

TreeLSTM cells, green = discrete structure selector as in Choi, Yoo, and Lee (2018), yellow = hidden subtree encodings,
orange = hidden state of the complete input.

linguistic priors. Yet, the approach appears to be very spe-
cific to the data at hand – News articles from the Wall Street
Journal – raising questions in regards to overfitting.

In this work, we explore a purely unsupervised approach:
instead of relying on domain specific syntactic features,
we infer general discourse trees (structure only) by ex-
ploiting inherently available information from natural data
(not requiring any supervision), making our model simi-
lar to approaches in language modelling (Jozefowicz et al.
2016). More specifically, our proposal extends the previ-
ously proposed Gumbel-TreeLSTM method (Choi, Yoo, and
Lee 2018) by substituting the original downstream-task re-
lated objective with an autoencoder-style reconstruction.

Unsupervised Tree Autoencoder
We now outline our general tree autoencoder model. The
description is thereby purposely general, as the model is in-
dependent of a specific application and we believe can be
utilized in manifold scenarios.

Generally speaking, our proposed model induces tree
structures through compression and reconstruction of raw
inputs in a tree autoencoder style architecture. The model is
similar in spirit to the commonly used sequence-to-sequence
(seq2seq) architecture (Sutskever, Vinyals, and Le 2014),
which has also been interpreted as a sequential autoencoder
(Li, Luong, and Jurafsky 2015). However, our approach gen-
eralizes on the seq2seq model, which is essentially a special
(left-branching) case of a tree-structured autoencoder. While
the sequential structure of a document is naturally given by
the order of words, EDUs, and sentences, moving towards
more general tree representations adds the additional dif-
ficulty to infer valid tree structures alongside the hidden
states. To generate these discrete tree structures during train-
ing, in conjunction with the hidden states of the neural net-
work, we make use of the Gumbel-softmax decision frame-

work, allowing us to discretely generate tree-aggregations
alongside intermediate sub-tree encodings (Gumbel 1948;
Maddison, Tarlow, and Minka 2014; Jang, Gu, and Poole
2016). As presented in Figure 1, the structure of our novel
T-AE (Tree-AutoEncoder) model comprises of an encoder,
compressing the input into a fixed-size hidden vector and a
subsequent decoder component, reconstructing the inputs in
an autoencoder-style fashion.

Encoder Component
The computational steps performed in our encoder are akin
to the approach described in Choi, Yoo, and Lee (2018),
computing a single document encoding through a tree-style
aggregation procedure. Our approach generates a hidden
state Encl,r = [cp, hp] = LSTMCompress(l, r) for ev-
ery two adjacent input embeddings l = [cl, hl] (left) and
r = [cr, hr] (right) using a binary TreeLSTM cell as pro-
posed by Tai, Socher, and Manning (2015)2.


i
fl
fr
o
u

 =


σ
σ
σ
σ

tanh

 · (W
[
hl
hr

]
+ b)

cp = fl · cl + fr · cr + i · u
hp = o · tanh(cp)

(1)

With W ∈ IR5|hp|×2|hp| and b ∈ IR2|hp|. Based on the
(n − 1) sub-tree candidates Encl,r with 0 ≤ l < (n − 1)
and r = l + 1 of the given inputs I (|I| = n), an un-
normalized attention computation (or pointer network) ℘ =
Pointer(·, ·) (Vinyals, Fortunato, and Jaitly 2015) is used

2Equation 1 is modified from Choi, Yoo, and Lee (2018) and
Tai, Socher, and Manning (2015).
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to predict which two adjacent units should be merged. Ran-
domly uniform Gumbel noise, obtained from the Gumbel
distribution G(0, 1), effectively sampling g ∼ G(0, 1) as
gi = −log(−log(ui)) and ui = Uniform(0, 1) is added
to the un-normalized scores. Subsequently, the scores are
normalized across aggregation candidates according to the
temperature coefficient τ to obtain p(l, r) (see equation 2).

p(l, r) =
exp[(℘(l, r) + g)/τ ]

n−1∑
k=0

exp[(℘(Ik, Ik+1) + g)/τ ]

(2)

In the forward pass, the straight-through (ST) Gumbel-
distribution is used to enforce a discrete selection pst, as
commonly done using the Gumbel-softmax trick (see equa-
tion 3 (Jang, Gu, and Poole 2016; Choi, Yoo, and Lee 2018;
Corro and Titov 2018, 2019)).

pst(l, r) =

{
1, if arg max

k=0,...,n−2
p(Ik, Ik+1) = l

0, otherwise
(3)

Given this one-hot encoding for a set of aggregation
candidates, the most appropriate aggregation, as predicted
by the pointer component and pertubed with the Gumbel-
softmax, is executed. All other inputs with pst = 0 are di-
rectly forwarded to the next step and the respective TreeL-
STM computations are discarded (grey/dashed boxes in Fig-
ure 1). In the example shown in Figure 1, Enc1 and Enc2 are
aggregated, while Enc3 is directly forwarded to the next step
without any aggregation computation.

We recursively generate n − 1 tree-candidates using the
TreeLSTM cell in conjunction with the pointer-component
and the Gumbel-softmax to build a discrete tree in bottom-
up fashion, along with sub-tree hidden states3. Once the tree
is aggregated, a single hidden-state represents the complete
input. Given this dense hidden-state (orange in Fig. 1), Choi,
Yoo, and Lee (2018) add a multi-layer-perceptron (MLP) to
predict the sentence-level sentiment on the Stanford Senti-
ment Treebank (SST) (Socher et al. 2013). As a result, the
obtained tree structures are mostly task-dependent, as shown
in Williams, Drozdov, and Bowman (2018). With the goal to
generate task-independent structures, we replace the task-
dependant MLP layer with our autoencoder objective to re-
construct the original inputs.

Decoder Component
Besides similar pointer network and Gumbel softmax com-
ponents as used in the encoder, the decoder component is
implemented as an inverse TreeLSTM containing two in-
dependent LSTM cells, recursively splitting hidden states
into two separate encodings to reconstruct the left and right
child-node states (cl, hl and cr, hr) for a given parent node
(cp, hp), as shown in equation 4).

3Please note that the computation of the hidden states in the
TreeLSTM cell and the tree structure prediction using the pointer-
network with Gumbel pertubation are non-overlapping, allowing
for independent optimization of either component.
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cl = fl · cp + il · ul
cr = fr · cp + ir · ur
hl = ol · tanh(cl)
hr = or · tanh(cr)

(4)

WithW ∈ IR8|hp|×|hp| and b ∈ IR|hp|. Guided by the pre-
dicted tree structure of the ST Gumbel-softmax, as shown in
Figure 1 and equations 2 and 3, the structural decision pro-
cess in the reconstruction phase selects the highest scoring
node to be further subdivided into a local sub-tree. This re-
construction approach, generating two child-node encodings
given the parent encoding Encp → [Encl, Encr] is recur-
sively applied top-down until the original number of inputs
|I| = n is reached. Finally, the reconstructed dense encod-
ings [Ênc1, ..., Êncn] are evaluated against the model input
encodings, following the autoencoder objective.

Discourse Tree Generation

The T-AE approach described above has been kept delib-
erately general. In this section, we outline the application-
specific extensions required in order to deal with the inputs,
assumptions, and granularity of the discourse parsing task.
First, for the task of discourse parsing, the model inputs I are
clause-like EDUs, representing sentence fragments contain-
ing multiple words. While the input- and output-encodings
for word-level autoencoders are naturally represented as the
respective one-hot vectors of words in the vocabulary, this
approach is not directly applicable for discourse parsing.
Hence, we encode the EDUs as dense representations and
execute the autoencoder objective directly on these embed-
dings (Press and Wolf 2016). Second, as discourse parsing
considers complete documents, frequently containing a large
number of sentences with oftentimes diverse content, we
apply a commonly used approach in this area by separat-
ing within-sentence and between-sentence sub-trees (Joty,
Carenini, and Ng 2015). In this setup, we apply the model
described above for each sentence individually, trying to in-
fer general patterns on sentence-level and subsequently us-
ing the learned sentence encodings (orange in Figure 1) as
the starting point of the document-level T-AE. Having two
separate models on sentence- and document-level further
aligns with previous work in discourse parsing, postulating
different sets of features relevant on different levels of the
tree-generation process (Joty, Carenini, and Ng 2015; Wang,
Li, and Wang 2017).
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Evaluation
Tasks
To fully evaluate the performance of our T-AE method, we
conduct experiments on three distinct tasks, focusing on the
two learning goals of our model: (1) Evaluating if the model
is able to infer valuable and general discourse-structures
and (2) Assessing the ability of the model to learn task-
independent hidden states, capturing important relationships
between instances. The three tasks are:
Alignment with existing RST-style Discourse Structures:
Proposing an unsupervised approach to generate (discourse)
tree structures allows us, in principle, to generate trees in any
domain with sufficient raw text for training. However, due to
the expensive and tedious annotation of gold-standard dis-
course trees, only very few datasets in some narrow domains
are augmented with full RST-style trees, required to evaluate
our generated structures. Despite their limited coverage, we
believe that comparing the discourse-structures produced by
our newly proposed model on the alignment with human-
annotated discourse structures can be insightful.
Ability to Predict Important Downstream Tasks: Besides
evaluating the overlap with existing, human-annotated dis-
course trees, we investigate into the generality of the T-AE
model by evaluating the performance when applied to an im-
portant downstream task in NLP – sentiment analysis. We
therefore use the document-level hidden state of our model
(orange in Figure 1), trained on the unsupervised autoen-
coder objective, and add a single feed-forward neural net-
work layer on top, reducing the hidden state of our model to
the number of sentiment classes required for the sentiment
prediction task. Training this linear combination on top of
the model’s document-level encoding gives further insight
into the information contained in the hidden state and its
alignment with the downstream task of sentiment analysis.
General Representational Consistency: In this third
task, we further explore the information captured by the
document-level hidden state by qualitatively comparing the
dense encoding of a random (short) sample document with
its most similar/most different documents, giving intuition
about the relatedness of similarly encoded documents.

Datasets
The RST-DT Treebank published by Carlson, Marcu, and
Okurowski (2003) is the most popular RST treebank. It con-
tains 385 documents of the Wall Street Journal (WSJ) cor-
pus, split into 344 documents in the training-set and 39 doc-
uments in the test-portion. In order to obtain a development
set, we subdivide the training-portion into 308 documents
for training and 36 documents for a length-stratified devel-
opment set. Each document in the RST-DT treebank is an-
notated with a complete discourse tree according to the RST
discourse theory and segmented into EDUs by human anno-
tators. N-ary subtrees are converted into a sequence of right-
branching constituents.
The Yelp’13 Dataset by Tang, Qin, and Liu (2015) is a
review dataset published as part of the 2013 Yelp Dataset
Challenge. The corpus contains predominantly restaurant
reviews alongside a 5-point star rating. Frequently used

in previous work, the dataset has been pre-segmented into
EDUs by Angelidis and Lapata (2018), using the discourse-
segmenter proposed in Feng and Hirst (2012). The complete
dataset contains 335,018 documents in an 80-10-10 data-
split, resulting in 268,014 training documents and 33,502
documents each in the development and test sets.

Baselines
We compare our new model against a task-dependent set
of baselines. For the Alignment with RST-style Discourse
Structures, we evaluate three sets of related approaches:
For supervised models, we compare against a diverse set
of previously proposed, fully supervised discourse parsers,
trained and evaluated on the RST-DT dataset. These include
the CODRA model by Joty, Carenini, and Ng (2015), the
Two-Stage approach by Wang, Li, and Wang (2017) and
the neural topology by Guz, Huber, and Carenini (2020).
We further compare against our two distantly supervised
models recently proposed in Huber and Carenini (2019,
2020b), using sentiment analysis to inform the generation
of discourse structures with distant supervision. Our last
set of baselines for this task contains linguistically super-
vised approaches. We compare our model against fully left-
and right-branching trees, as well as hierarchically left-
and right-branching tree structures (separated on sentence-
level), encoding basic rhetorical strategies. Left-branching
trees generally reflect a common sequential strategy while
right-branching tree structures oftentimes accurately repre-
sent documents where the main objective is initially ex-
pressed and then further evaluated throughout the document
(e.g. news)4. For these reasons, we consider the left- and
right-branching tree structures as linguistically supervised
approaches. We further show the recently proposed model
by Nishida and Nakayama (2020) in our evaluation. In their
best model setting, Nishida and Nakayama (2020) also heav-
ily exploit basic rhetorical strategies of natural language
by aggregating a document into right-branching trees on
sentence- and paragraph-level and joining paragraphs using
left-branching constituents. Starting from this linguistically
inspired tree (already achieving remarkable performance on
the well-structured news documents), they apply a Viterbi
EM algorithm to achieve further improvements. Despite the
promising results on RST-DT, we believe that such high per-
formance is mostly due to the well-structured nature of news
documents and not generally applicable to other domains –
the main objective of our presented approach.

Building on the intuition given in Huber and Carenini
(2019, 2020a,b), we further evaluate our model regarding the
Ability to Predict Important Downstream Tasks. More
precisely, we evaluate the sentiment prediction performance
of the document-level hidden-state of our model against the
HAN model proposed by Yang et al. (2016), the LSTM-
GRNN approach by Tang, Qin, and Liu (2015) as well as
a document encoding build from average random word en-
codings and the majority class baseline.

4Right-branching trees are further artificially favoured in dis-
course parsing, since most parsing models convert n-ary sub-trees
into a sequence of right-branching constituents.
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Model Structure
Human (2017) 88.30

Supervised
CODRA(2015) 83.84
Two-Stage(2017) 86.00
Neural-SR(2020) 86.47

Distantly Supervised
Two-StageYelp13-DT(2019) 76.41
Two-StageMEGA-DT(2020b) 77.82

Linguistically Supervised
Left Branching 53.73
Right Branching 54.64
Hier. Left Branching 70.58
Hier. Right Branching 74.37
ViterbiEM(2020) 84.30

Unsupervised
OursRST-DT 69.68
OursYelp’13 71.32

Table 1: Results of the average micro-precision measure,
evaluated on the RST-DT corpus. Subscripts identify train-
ing sets. Best model in each subset is bold.

Hyper-Parameters Settings
We select our hyper-parameters based on the development-
set performance of the respective datasets. Despite the fact
that we are training two unsupervised models (on RST-DT
and Yelp’13) we use a single set of hyper-parameters, to
be more general. We train all models using the Adam op-
timizer (Kingma and Ba 2014) with the standard learning
rate of 0.001. As mentioned before, we are directly training
on dense representations of input EDU embeddings, com-
paring them to the reconstructed representations of EDUs.
This setup makes the Kullback-Leibler Divergence (KLD)
or the Mean-Squared-Error (MSE) the natural choice for the
loss function. In this work we employ MSE due to its su-
perior performance observed on the development-set. Each
EDU in the input document is represented as the average
GloVe word-embedding (Pennington, Socher, and Manning
2014) as in Choi, Yoo, and Lee (2018). The loss is com-
puted on the softmax of the respective inputs and outputs.
We train our model on mini-batches of size 20, due to com-
putational restrictions5 and apply regularization in form of
20% dropout on the input embeddings, the document-level
hidden state and the output embeddings (Choi, Yoo, and Lee
2018). We clip gradients to a max norm of 2.0 to avoid ex-
ploding gradients. Documents are limited to 150 EDUs per
document and a maximum of 50 words per EDU, similar to
Huber and Carenini (2019). We restrict the vocabulary size
to the most frequent 50, 000 words with an additional min-
imal frequency requirement of 10. We train the sentence-
and document-level model for 40 epochs and select the best
performing generation on the development set. The hidden
dimension of our LSTM modules as well as the pointer
component is set to 64, due to computational restrictions.
To avoid our model to interfere with the input GloVe em-

5Trained on a Nvidia GTX 1080 Ti GPU with 11GB of memory.

Model Accuracy
HAN(2016) 66.20
LSTM-GRNN(2015) 65.10
OursYelp’13 42.69
OursRST-DT 40.41
Random Encoding 37.30
Majority Class 35.63

Table 2: Five-class sentiment accuracy scores trained and
tested on the Yelp’13 dataset, subscripts in model-names in-
dicate dataset for unsupervised training. Best model is bold.

beddings, we freeze the word representations. To promote
consistency between the encoding and decoding, we tie the
decoder tree-decisions to the encoder predictions, enabling
a more consistent tree-embedding in the compression and
reconstruction phase. Furthermore, to disentangle the opti-
mization of structures and hidden states, we apply a phased
approach, alternating the training of the two components in
a conditional back-propagation loop with a single objective
in each pass over the data (see footnote 3). This way, the hid-
den states are recalculated based on the last epoch’s structure
prediction and vice-versa. To be able to explore diverse tree
candidates in early epochs and further improve them during
later epochs, we start with the diversity factor τ = 5 and
linearly reduce the parameter to τ = 1 (see Choi, Yoo, and
Lee (2018)) over 3 structure-learning epochs.

Experiments
In this section we evaluate our novel T-AE model on the
three tasks described above. Table 1 shows the results on the
first task, evaluating our model on RST-style discourse struc-
tures from the RST-DT treebank. The first sub-table shows
three top-performing, completely supervised models, reach-
ing a structure-prediction performance of 86.47% using the
neural approach by Guz, Huber, and Carenini (2020). In
comparison, the second sub-table contains our distantly su-
pervised models, achieving a performance of 77.82% (Hu-
ber and Carenini 2020b). The third sub-table presents the
linguistically supervised models, showing a clear advan-
tage of the right-branching models over left-branching ap-
proaches, in line with our intuition given above. Further-
more, considering sentence boundaries and generating hi-
erarchical baselines significantly improves the performance,
reaching 74.37% with the hierarchical right branching base-
line and 70.58% on the left-branching structures. The lin-
guistically supervised Viterbi EM approach by Nishida and
Nakayama (2020) reaches a performance of 84.30% with
their multi-level hierarchical approach. Our newly proposed,
truly unsupervised and purely data-driven approach is shown
in the fourth sub-table. In comparison to the aforemen-
tioned linguistically supervised models, this set of results
makes no assumptions on the underlying data except the sen-
tence/document split. When trained on the raw-text of the
small-scale RST-DT dataset, our T-AE approach reaches a
performance of 69.68%, slightly below the linguistically su-
pervised hierarchical left-branching model. Even though the
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Document Prices were cheap, however food was served well after others who came in and they literally put brown
gravy on the Mexican food, staff ignored simple requests. Only reason for 1 star was due to price.

Similar-1 This establishment has a good 10$ lunch special with plenty of varity in the bento they offer, service is
usually good polite and efficient the only thing that makes me crazy is the crappy usually too loud caned
pop music they play.

Similar-2 The good: Awesome complimentary breakfasts, warm gooey chocolate chip cookie at check in, nice pool
and and hot tub at the center, fairly large room with 2 TVs (flat screen) and a huge comfortable bed with
down pillows. The bad: Not a bad fitness room but could be larger, it doesn’t have the feel look of a fancy
hotel at first. More like a Motel (but the rooms are nice and the restaurant too). The ugly: No free internet

Similar-3 Just the facts: Great options for healthier eating, unique non-meat sandwich options at lunch (portabello,
grilled zucchini, black bean, etc.), decent coffee, cute atmosphere and fun s&p shakers at the table, kind of
pricey. I want to go back to try breakfast.

Different-1 Forgot to mention the prices are great & just had the baklava yummm to die for delicious!
Different-2 Bit pricey, but it’s always been our favorite place to go for treats.
Different-3 Decent place, but the drinks are too expensive unless its a buy 1 get 1 night.

Table 3: Representationally similar/different document-encodings based on the cosine similarity. For more examples of the
representational similarity and additional tree structure comparisons, please check out the arXiv version of our paper.

unsupervised training corpus is within the same domain as
the test dataset, the very limited amount of data seems insuf-
ficient for the unsupervised model. Training our model on
the nearly three orders of magnitude larger Yelp’13 dataset,
we reach a performance of 71.32% evaluating the tree struc-
tures on RST-DT. This result shows that a larger training
dataset, even though containing out-of-domain documents
(reviews vs. news), can improve the performance over the
within-domain model trained on a small-scale dataset and
the hierarchical left-branching model.

To evaluate the ability of our model to capture valid
information to represent input documents, we assess the
document-level hidden state’s ability to capture useful infor-
mation for the downstream task of sentiment analysis. The
results of this experiment are provided in Table 2, show-
ing the accuracy of our models when compared against
commonly used approaches. The best system (the HAN
model) reaches an accuracy of 66.2%, while the random
baseline reaches 37.30% and the simple majority class base-
line achieves 35.63%. Our models based on the T-AE hid-
den states obtain accuracy scores in-between those results,
reaching 40.41% and 42.69% when trained on RST-DT and
the much larger Yelp’13 respectively. While this perfor-
mance is still far from the results of completely supervised
models, the improvements over the simple baselines suggest
the usefulness of our learned document-level encodings.

In our third and last experiment, we aim to further eval-
uate the quality of the document encodings in a qualitative
manner. We therefore compare the hidden-state of a random
document from the Yelp’13 test-set against all datapoints in
the test-portion and show the three most similar/most differ-
ent documents according to the cosine similarity measure in
Table 3. It can be observed that closely related documents
have a similar argumentative structure as the core-document
(top row in Table 3), initially describing a positive aspect and
subsequently evaluating on negative components. The most
different documents tend to have an inverse structure.

Conclusion and Future Work

In this paper, we proposed a truly unsupervised and purely
data-driven tree-style autoencoder to compress and recon-
struct textual data. We show the potential of our T-AE ap-
proach on the task of discourse parsing, which severely suf-
fers from training-data sparsity, due to the tedious and ex-
pensive annotation process. Our unsupervised model outper-
forms one of the commonly used, linguistically supervised
approaches, without making any assumptions on the under-
lying data, except the sentence/document split. The supe-
rior performance compared to the hierarchical left branch-
ing baseline plausibly indicates that our unsupervised struc-
tures could be valuable when combined with supervised or
distantly supervised models to further improve their joint
performance. Furthermore, the superior performance of the
large out-of-domain model trained on the Yelp’13 dataset
over the small-scale within-domain model trained on the raw
text of the RST-DT dataset shows the synergies between
these corpora as well as strong potential for even larger
datasets to enhance the performance of the approach.

In the future, we intend to extend this work in several
ways: First, we want to explore the application of generative
models, employing a variational autoencoder. Second, we
plan to study further tasks besides predicting discourse, such
as syntactic parsing, as well as additional synergistic down-
stream tasks (e.g. summarization, text classification). To im-
prove our model on important downstream tasks (such as
sentiment analysis), we want to explore a pre-training/fine-
tuning approach, similar to contextualized language mod-
els, such as BERT. Combining our novel approach with
distantly-supervised and supervised models is another fu-
ture direction we want to explore. Lastly, we plan to evaluate
additional model adaptions, such as two independent mod-
els on sentence- and document-level, incorporating a BERT
EDU encoder and an end-to-end model with soft-constraints
on sentence-level.
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