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Abstract

We propose a semi-supervised bootstrap learning framework
for few-shot text classification. From a small number of the
initial data, our framework obtains a larger set of reliable
training data by using the attention weights from an LSTM-
based trained classifier. We first train an LSTM-based text
classifier from a given labeled dataset using the attention
mechanism. Then, we collect a set of words for each class
called a lexicon, which is supposed to be a representative
set of words for each class based on the attention weights
calculated for the classification task. We bootstrap the clas-
sifier using the new data that are labeled by the combina-
tion of the classifier and the constructed lexicons to improve
the prediction accuracy. As a result, our approach outper-
forms the previous state-of-the-art methods including semi-
supervised learning algorithms and pretraining algorithms for
few-shot text classification task on four publicly available
benchmark datasets. Moreover, we empirically confirm that
the constructed lexicons are reliable enough and substantially
improve the performance of the original classifier.

Introduction
Recently, text classifiers using deep learning show great suc-
cess in various NLP tasks due to lots of labeled training data.
However, one critical limit is that these effective classifiers
are hard to make when there is not enough labeled data. Of-
ten it is difficult and expensive to obtain a reasonable num-
ber of labeled data since it requires many well-trained hu-
man annotators. On the other hand, a traditional approach
for text classification is to use a domain lexicon for clas-
sification since we can correctly decide a class using the
lexicon and the size of the training data is irrelevant. The
efforts to address the data sparsity problem are to make lexi-
cons of each domain and use it for text classification (Lu and
Tsou 2010; Lei et al. 2011; Hailong, Wenyan, and Bo 2014;
Bandhakavi et al. 2017; Lee et al. 2018). On the other hand,
it is not easy to automatically make a high-quality lexicon
for a new domain (and. Binbin Chen and Bernstein 2016;
Feng et al. 2018). Semi-Supervised Learning (SSL) is an ap-
proach to use both a small number of labeled data and a large
number of unlabeled data in training. The traditional SSL
methods based on neural network (Yarowsky 1995; Blum
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and Mitchell 1998; Li and Liu 2003; Zhu, Ghahramani, and
Lafferty 2003; Rosenberg, Hebert, and Schneiderman 2005;
Wang and Zhang 2007; Yaslan and Cataltepe 2010; Jo and
Cinarel 2019) use only high confidence predictions of classi-
fiers or utilize the agreement among the different classifiers,
for pseudo-labeling. These methods can lead to accumulated
classification errors along the training process. Therefore, it
remains challenging to train classifiers for text classification
under semi-supervision, because it still requires hundreds
of thousands of labeled training data to achieve satisfactory
performance.

We combine the deep learning classifier with the lexicon
and tackle the labeled-data sparsity problem. With respect to
the attention mechanism, important words often have high
attention weights for text classification (Cho et al. 2014;
Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and Ben-
gio 2015; Luong, Pham, and Manning 2015; Xu et al. 2015).
We visualize the attention layer and empirically confirm that
the attention mechanism indeed assigns higher weights to
words that can represent the class of input data. We also
observe that even though the performance of the initially
trained classifier is poor, the classifier assigns higher weights
to the important words of the data predicted with high con-
fidence. For instance, the following is a visualization exam-
ple of the attention mechanism on one of the IMDB review
dataset. We collect these high weight words from the atten-
tion mechanism and make a set of words (called lexicon) for
our semi-supervised classification.

This movie is stupid. There’s no getting around it. But so is dumb and
dumber. Mind you, dumb and dumber is significantly more funny than this.
However, I for one love seeing stupid movies (tail sting) and laughing with a
group of good friends over how bad it is. Call me callous, but see this
movie, and you’ll find that the only way you can laugh at it is if you laugh
at it instead of with it.

Figure 1: Visualization of the attention mechanism using a
LSTM-based classifier trained with few labeled data. Darker
colors indicate higher attention weights.

We propose a semi-supervised few-shot text classification
with attention-baed lexicon construction when there is only
a small number of labeled data. Our approach is closely re-
lated to neural bootstrapping methods. The bootstrapping
methods for SSL use only predictions of neural-based classi-
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fiers for labeling data. One major drawback of the bootstrap-
ping is that if the initially trained classifiers have very low
performance, then the new training set becomes unreliable
because it may contain lots of incorrectly-labeled data. We
overcome the problem by utilizing a set of words, which can
explicitly predict the unlabeled data using pattern matching.

We evaluate our approach using four publicly available
benchmark datasets and compare the performance with the
previous state-of-the-art methods including the other semi-
supervised learning algorithms (Yarowsky 1995; Jo and
Cinarel 2019) and pretraining algorithms (Gururangan et al.
2019; Devlin et al. 2019). The experimental results demon-
strate that our approach, Semi-supervised with Attention-
based Lexicon construction Network (SALNet), outper-
forms the previous state-of-the-art methods on four bench-
mark datasets.

Our main contributions are as follows:
• We propose a semi-supervised bootstrap learning frame-

work that utilizes lexicons constructed by attention mech-
anism, and our approach has improved accuracy of at least
1% to 8% from initially trained classifiers.

• We verify the effectiveness of the constructed lexicons by
improving the accuracy of at least 1% to 9% from the
original classifier.

• We demonstrate experimentally that our approach is an ef-
fective approach when there is an extremely small labeled
dataset.

Background
Here we provide some background knowledge on neural net-
work models discussed in our paper.

Attention mechanism. In the sequence-to-sequence
translation model, Bahdanau et al. (2015) hypothesize
that the fixed-length context vector c is a bottleneck since
the length of the input sequence can vary. They proposed
the attention mechanism that computes the context vector
by looking at relevant parts from the hidden states of
the encoder. Indeed, the attention mechanism has proven
surprisingly useful in many tasks in natural language
processing. They defined each conditional probability at
time i depending on a dynamically computed context vector
ci as follows:

p(yi|y1, y2, . . . , yi−1,x) = softmax(g(ŝi)),

where ŝi is the hidden state of the decoder RNN at time i
computed by ŝi = R(yi−1, ˆsi−1, ci).

The context vector ci is computed as a weighted sum of
the hidden states from encoder: ci =

∑n
j=1 αijhj , where

αij =
exp(score(si−1, hj))∑n

k=1 exp(score(sk−1, hj))
.

Here the function ‘score’ is called an alignment function
that computes how well the two hidden states from the en-
coder and the decoder, respectively, match. For example,
score(si, hj), where si is the hidden state of the encoder
at time i and hj is the hidden state of the decoder at time j

implies the probability of aligning the part of the input sen-
tence around position i and the part of the output sentence
around position j.

Transformer. Vaswani et al. (2017) propose the Trans-
former, a model architecture eschewing recurrence and in-
stead relying entirely on an attention mechanism to draw
global dependencies between input and output. The trans-
former consists of stacked multi-head attention and parame-
terized linear transformation layers for both the encoder and
decoder. At each layer, the multi-head attention employs h
attention heads and performs the self-attention mechanism
to capture various context of the input sentence.

Methods
The proposed method involves the following steps:

1. Create a base classifier from a given labeled data, which is
very few. Importantly, we train the base classifier to over-
fit the training set. The classifier must include an attention
mechanism to collect crucial words for each classifica-
tion.

2. Re-run the base classifier that has an attention mechanism
on the unlabeled dataset U .

3. Obtain a set of crucial words for predicting U , which we
call a lexicon of our method; in other words, we use U
and the classifier attention weights to create the lexicon
for sets of crucial words.

4. Predict the labels of the data in U using the trained clas-
sifier and the lexicons.

5. Add the new labeled data to the training set, and train the
classifiers again, starting with the first step.

6. Repeat the process above until pseudo-labeled data is no
longer added to training set. Using the development set at
each epoch, we do early-stopping during all the training.

Figure 2 is an overview of our method. We use an
attention-based LSTM (Wang et al. 2016) for constructing
a set of crucial words for text classification. The attention-
based LSTM extracts a set of relevant words based on their
attention weights for each class. Ruder and Plank (2018)
showed that the relative order of confidence is more robust
than absolute confidence and thus, we select the top n un-
labeled data with the highest confidence from the classifier
in each class. Then, we select m words that have the highest
attention weights from each of the selected n data, and make
n sets that consist ofm words. We regard the collected word
set as a lexicon for the corresponding class. Table 1 shows an
example of a set of crucial words in each lexicon of the AG
News dataset obtained from an initially trained classifier.

We count the number of matching words from unlabeled
data with respect to the lexicon of each class. Then, we re-
gard the number of matching words as a prediction confi-
dence of the corresponding class and assign the class of the
highest confidence as a predicted label. If there is a tie for the
number of matching words between two classes, then we ig-
nore both classes and do not predict the label since there is a
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Lexicon1 Lexicon2

{stupid, bad, · · · },
{worst, horrible, · · · },

· · ·
{awful, bad, · · · }

{excellent, good, · · · },
{great, superb, · · · },

· · ·
{great, usual, · · · }

Words
Attention

Score

This 0.024

movie 0.023

is 0.003

stupid 0.4

· · · · · ·
bad 0.35

Trained
LSTM-based

classifier

Labeled
Data

Pseudo
Labeled

Data

Unlabeled
Data

3. generating lexicons

4. pseudo-labeling

2. prediction

4. pseudo-labeling

+

1. train

5. adding pseudo-labeled data to train set

Example of IMDB review
(class: positive/negative)

Data
Correct
Label

Classifier’s
Prediction

Confidence of
the Classifier’s

Prediction

Lexicon’s Prediction
(Matching Number

of Words)

data1 1 1 0.90 1 (3)

data2 3 2 0.94 3 (4)

data3 6 5 0.78 6 (2)

data4 6 3 0.84 6 (5)

· · · · · · · · · · · · · · ·
datan 2 2 0.91 2 (5)

: case1 : case 2

Figure 2: Our proposed method, using both attention-based classifier and lexicons. We set the t1= 3 and t2 = 4 in our method
and set 0.9 as the threshold to verify the high confidence.

Class Each lexicon that consists of n word sets (m words per set)

World {Iraqi, hostage, Allawi, iyad, minister, prime}, {officials, · · · }, · · · ,{egypts, · · · }
Sports {yankees, championship, sox, league, game, series}, {beating, · · · }, · · · ,{outfielder, · · · }

Business {mae, fannie, mortgage, finance, company, accounting}, {stocks, · · · }, · · · ,{profits, · · · }
Science/Tech {concern, software, threats, infrastructure, cyber, viruses}, {system, · · · }, · · · ,{network, · · · }

Table 1: An example of four lexicons from the AG News dataset with four classes.

possibility of an incorrect prediction. We have two cases for
pseudo-labeling, as shown in Figure 2.

• Case 1: If the classifier predicts the unlabeled data with
high confidence and the lexicon has at least t1 matching
words, then we label the data according to the prediction
of the classifier. In Case 1, we use the lexicon for selecting
the correct label among the predictions of the classifiers.

• Case 2: If the lexicon has at least t2 matching words, then
we label the data according to the lexicon prediction. In
other words, in Case 2, we use the lexicon to decide the
label of unlabeled data that the classifier incorrectly pre-
dicts with low confidence.

If we use more than two classifiers in SALNet, we can add
the pseudo-labeled data by repeating the process of Case 1
and Case 2 for the additional classifiers. Once we obtain a
new dataset after pseudo-labeling, the new dataset may have
a different number of data in each class. This imbalance may
make a classifier overfit to larger classes. We avoid this prob-
lem by selecting the same number of data from each class,
which is the number of data in the smallest class, for the next
training step.

Experimental Setup
We describe the experimental setup for evaluation.

Datasets
We use four benchmark datasets to evaluate the performance
of our proposed method across different domains; IMDB re-
view (Maas et al. 2011), AG News (Zhang, Zhao, and Le-

Cun 2015), Yahoo! Answers (Chang et al. 2008), DBpe-
dia (Mendes, Jakob, and Bizer 2012). We take only 1% of
the original training data as our labeled data with random
sampling. In the new labeled dataset, we use 85% of its
data as a training set, and 15% of its data as a development
set. We remove the labels of the remaining 99% data. All
data have a balanced class distribution. We use the develop-
ment set to determine early-stopping at each epoch. Table 2
presents the data distribution.

Hyperparameters
We use pretrained GloVe (Pennington, Socher, and Man-
ning 2014) as word embedding for all experiments. GloVe
is trained on a dataset of 42 billion tokens with a vocabu-
lary of 1.9 million words and has 300 dimension embedding
vectors. Since attention-based LSTM (Wang et al. 2016) and
TextCNN (Kim 2014) are simple and have a high perfor-
mance, we select the two basic models as classifiers (Jo and
Cinarel 2019). The TextCNN consists of filter windows of
size 3, 4, 5 with 100 feature maps each of which is fol-
lowed by ReLU activation and max-pooling. The attention-
based LSTM consists of 300 hidden sizes. We train all clas-
sifiers with a batch size of 128, and optimize them using
the Adam optimizer (Kingma and Ba 2015) with 0.001 and
0.005 learning rates.

Our proposed method, SALNet, uses size 50 of lexicons
and three (=t1) and four (=t2) matching words for predicting
a classes of unlabeled data. With respect to size of lexicon,
our empirical study shows that when the data size is small or
the number of classes is large, it is better to have a small lex-
icon for each class. In regard to matching words, we empiri-
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Dataset Label Type Classes Max Length Train Dev Unlabeled Test

IMDB review Review Sentiment 2 300 212 38 24,750 25,000
AG News News Topic 4 150 1,020 180 118,800 7,600
Yahoo! Answer QA Topic 10 100 1,700 300 198,000 46,400
DBpedia Wikipedia Topic 14 200 1,190 210 138,600 70,000

Table 2: Data distribution of four benchmark datasets.

cally observe that the lexicon ambiguously predicts the class
of data with one or two matching words from each class. For
instance, our approach with one matching word incorrectly
predicts the following example from the Yelp review dataset
as positive, because it contains a positive word “good”.

“Even though Midler and Alvarado give good perfor-
mances this film really drags and I was bored silly by
the end”

Therefore, we assume that it would be better to have three
or more matching words for correctly identifying a class of
unlabeled data instead of one or two matching words with
respect to lexicons.

Baselines
We compare our method with a traditional SSL and three
state-of-the-art baselines to verify the effectiveness of our
approach. We set 0.9 as the threshold to verify the high con-
fidence for all bootstrapping methods.

• Self-training (Yarowsky 1995): Self-training is a one of
the simplest approach for SSL. Since the source code is
not available in public, we implement this method using
their pseudo algorithm.

• Delta-training (Jo and Cinarel 2019): Since the code
was not published, we implement it ourselves based on
the pseudo algorithm presented in their paper. Since all
baselines including our approach use high confidence as a
threshold, we use the high confidence instead of a model
ensemble in delta-training for the fairness of experiments.

• VAMPIRE (Gururangan et al. 2019): Variational Meth-
ods for Pretraining In Resource-limited Environments
(VAMPIRE) pretrained a unigram document model as a
variational autoencoder (VAE) on unlabeled data and used
its internal states as features in a downstream classifier.
We use the same hyperparameters used in their paper for
the experiments.

• BERT (Devlin et al. 2019): We use the pretrained BERT-
based-uncased-model and fine-tuned it for the text classi-
fication.

Experimental Results and Analysis
We evaluate our approach and baselines to test the effective-
ness of our approach for few-shot text classification task.

Main Results
Table 3 demonstrates that our approach outperforms all
the baselines, especially when the performance of initially

trained classifiers is less than 80%. The semi-supervised
bootstrapping approaches such as self-training and delta-
training, which uses only high confidence predictions of
classifiers, show low performance when the performance of
initially trained classifiers is lower than 75%. The results
show the drawback of the bootstrapping that it is only ef-
fective when the initially trained classifiers perform well.
On the other hand, SALNet shows relatively robust perfor-
mance, compared to other bootstrapping algorithms. The
performance slightly improves on Yahoo! Answer, since
there is a small number of data that the classifier predicted
with high confidence. On DBpedia, since the performance
of the initially trained classifier is already over 94%, the im-
provement of performance is very small.

We observe that fine-tuning the pretrained BERT achieves
the best performance on Yahoo! Answer and DBpedia. Re-
call that BERT uses word-piece tokenization and generates
a contextualized vector for each word while GloVe encodes
a word into a fixed-sized vector representation. Therefore,
each pretrained model may perform differently depending
on the characteristics of dataset. Importantly, our approach
with low resources can outperform pretrained BERT in cer-
tain domains, compared to pretrained BERT that requires a
significant amount of computational resources and a large-
scale dataset. Moreover, SALNet with BERT as a classifier
outperforms the original BERT and the self-training with
BERT on four benchmark datasets. The BERT in SALNet
repeats the fine-tuning process whenever additional pseudo-
labeled data is obtained.

Experiments for few-shot learning. We conduct exper-
iments to demonstrate the effectiveness of SALNet when
there is an extremely small number of labeled data. We
randomly select only 0.2% of the original training set and
assign 15% of the labeled training set to the development
set. As mentioned earlier, bootstrapping methods except for
SALNet lead to accumulated classification errors along the
semi-supervised learning process and eventually result in
low improvement of performance. On the other hand, SAL-
Net shows a stable improvement of performance for few
shot text classification since SALNet employs reliable lexi-
cons, as shown in Table 4. We observe that BERT exhibits
the best performance on two datasets (Yahoo! Answer and
DBpedia), compared to SALNet using the baseline classi-
fiers such as attention-based LSTM and TextCNN. However,
SALNet outperforms the original BERT and the self-training
with BERT when we use BERT in SALNet.

Empirically, we confirm the relative robustness of our ap-
proach when utilizing 0.2% to 0.9% of the original training
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Method IMDB review AG News Yahoo! Answer DBpedia
Baseline (attention-based LSTM) 74.35 (3.38) 85.78 (1.18) 49.77 (1.15) 94.41 (0.58)
Baseline (TextCNN) 75.39 (1.20) 88.08 (0.49) 49.66 (0.36) 96.10 (0.10)

Self-training (TextCNN) 76.43 (2.42) 88.71 (0.35) 51.35 (0.25) 97.05 (0.10)
Self-training (attention-based LSTM) 74.97 (4.05) 87.01 (1.19) 51.80 (1.50) 95.80 (0.47)
Self-training (BERT) 82.53 (4.20) 89.45 (0.21) 56.71 (3.06) 98.38 (0.18)
Delta-training 77.68 (1.49) 85.31 (0.56) 50.60 (0.46) 96.77 (0.14)

BERT (fine-tuning with 1% of the total labeled data) 79.74 (3.91) 88.76 (0.18) 57.58 (0.65) 98.01 (0.17)
VAMPIRE 64.64 (7.60) 85.88 (0.42) 50.57 (1.27) 92.29 (1.65)

SALNet (attention-based LSTM) 79.00 (2.06) 88.22 (0.28) 51.97 (1.14) 96.62 (0.28)
SALNet (attention-based LSTM + TextCNN) 80.33 (1.76) 89.23 (0.22) 53.48 (0.81) 97.48 (0.13)
SALNet (attention-based LSTM + BERT) 84.87 (1.40) 90.35 (0.26) 59.08 (0.76) 98.66 (0.24)

Table 3: Performance (test accuracy (%)) comparison with baselines. Each result is an average over five random samplings with
standard deviation in parentheses, and the highest mean result shown in bold.

Method IMDB review AG News Yahoo! Answer DBpedia
Training set (0.2% of total labeled data) 42 204 340 238
Dev set 8 36 60 42

Baseline (attention-based LSTM) 66.16 (1.18) 80.26 (3.81) 38.95 (0.87) 82.45 (3.14)
Baseline (CNN) 63.46 (3.16) 85.67 (0.78) 44.18 (0.67) 91.77 (0.44)

Self-training (TextCNN) 56.98 (3.87) 86.25 (0.96) 45.57 (1.57) 93.79 (0.50)
Self-training (attention-based LSTM) 59.65 (6.46) 81.09 (2.54) 41.20 (2.79) 84.30 (3.19)
Self-training (BERT) 55.25 (4.07) 87.68 (0.64) 46.47 (6.28) 97.96 (0.39)
Delta-training 55.79 (4.01) 86.18 (0.83) 46.44 (0.59) 92.85 (0.58)

BERT (fine-tuning with 0.2% of the total labeled data) 59.11 (2.54) 86.51 (0.75) 47.82 (1.36) 97.55 (0.51)
VAMPIRE 53.58 (7.38) 76.64 (1.68) 41.66 (2.13) 84.47 (1.86)

SALNet (attention-based LSTM) 69.94 (1.91) 85.59 (1.18) 43.08 (2.27) 92.76 (1.10)
SALNet (attention-based LSTM + TextCNN) 71.34 (3.22) 87.68 (0.57) 46.59 (1.26) 95.38 (0.71)
SALNet (attention-based LSTM + BERT) 75.77 (1.08) 88.59 (0.41) 53.65 (0.95) 98.23 (0.12)

Table 4: Experimental results using an extremely small number of labeled data. Each result is an average over five random
samplings with standard deviation in parentheses.

set. On the other hand, if we take less than 0.2% of the origi-
nal training set, the size of data is too small to contain words
that represent each class. Therefore, SALNet constructs the
unreliable lexicons, and it can lead to accumulated errors
along the training process.

Analysis
Attention mechanism. Figure 3 visualizes the attention
layer of the initially trained attention-based classifier for
identifying lexicon in our model: the darker the color, the
higher the score. We notice that the initially trained classi-
fier assigns a higher score to important words of the data
predicted with high confidence; in other words, the attention
mechanism successfully identifies relevant words for text
classification using attention scores. This is why the atten-
tion mechanism is crucial in our method for effective classi-
fication.

1.0

0.5

0.0

World
Iraqi PM #39;s cousin released by kidnappers: TV Kidnappers have released
Iraqi Prime Minister Iyad Allawi #39;s cousin after taking him hostage for
12days, the Arabic-language al-Arabiya TV channel reported Sunday.

Sports
Sox stun Yankees It is not a World Series championship, but for Boston Red
Sox fans who watched their team bring history to its knees, it must feel
even better.

Business
Fannie Mae to Defend Action to Congress Managers of mortgage finance
giant Fannie Mae will defend themselves before Congress on Wednesday
against government findings that they broke accounting rules to deliver.

Science/Technology
House to show quot;greater leadership quot; in guarding the nation #39;s
computer infrastructure from attacks by hackers and viruses.

Figure 3: Visualization of the attention score of data pre-
dicted by the initially trained classifier with high confidence.

Effectiveness of the constructed lexicons. In order to la-
bel the unlabeled data for semi-supervised learning, we pre-
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Lex. Size IMDB AG News Yahoo DBpedia

100 r. 13.98 16.00 10.22 37.72

ac. 86.17 92.93 81.54 94.06

150 r. 16.97 18.97 12.67 41.94

ac. 83.61 92.81 81.80 97.50

200 r. 19.86 20.90 14.92 44.08

ac. 81.47 92.86 80.19 94.54

Table 5: The ratio of data predicted by lexicons (r.) and test
accuracy of the lexicons (ac.).

BERT + Lex. IMDB AG News Yahoo DBpedia
BERT 80.25 87.64 54.49 98.25

BERT + 100 89.55 90.51 61.45 98.71

BERT + 150 87.79 90.43 59.93 98.30

BERT + 200 88.99 89.71 54.83 98.67

Table 6: Performance (test accuracy (%)) on four benchmark
datasets using added train set that obtained from lexicons.
Each result is an average over five random samplings.

dict the class of data when the data contains a word that is
contained in the lexicon for the class. Table 5 shows the ra-
tio of data predicted by lexicons and the accuracy of the lex-
icons. We also conduct experiments to verify the effective-
ness of the constructed lexicons. Since BERT shows the best
performance among the baselines, we use BERT to demon-
strate the effectiveness of lexicons. We obtain a new dataset
predicted by the lexicons, and select the same number of
data from each class to avoid overfitting to a larger class.
Then, we update the training dataset with the new dataset
and train BERT with the updated dataset. Table 6 demon-
strates that the constructed lexicons effectively improve the
performance of BERT. We remark that this experiment uses
BERT to verify the effectiveness of the constructed lexicons,
while the previous experiment uses BERT for bootstrapping
learning of SALNet.

Ablation study. We perform ablation studies to show the
effectiveness of each component in SALNet. We exclude the
lexicon in SALNet to verify the effectiveness of the lexi-
con. Table 7 shows that the combination of the lexicons and
the attention-based LSTM outperforms the model only with
attention-based LSTM on four datasets. The effectiveness
is especially prominent when labeled data is extremely lim-
ited. Since SALNet constructs the lexicons using the data
predicted by the classifier with high confidence and the con-
structed lexicons explicitly predict the unlabeled data us-
ing pattern matching, the lexicons improve the reliability
of pseudo-labeling. We conduct further experiments to ex-
plore the performance according to the number of classifiers
in SALNet, and the results are shown in Table 7. Since we

Method IMDB AG News Yahoo DBpedia

LSTM A 75.43 87.70 50.98 96.25

B 64.73 82.50 37.92 85.25

SALNet
(#)

A 79.00 88.22 51.97 96.62

B 69.94 85.59 43.08 92.76

LSTM+
CNN

A 77.85 88.78 53.16 96.99

B 68.31 85.12 44.33 90.06

SALNet
(*)

A 80.33 89.23 53.48 97.48

B 71.34 87.68 46.59 95.38

Table 7: Ablation experiments using 1% (A), 0.2% (B) of
the original training set. Each result is an average over five
random samplings. #: attention-based LSTM, *: attention-
based LSTM + CNN

can obtain an increased training set that consists of many
predicted labels with high confidence if we use two clas-
sifiers rather than one for pseudo-labeling, then using two
classifiers outperforms only using one classifier in SALNet.
Also, there is a difference in the performance of two classi-
fiers since the initial performance of TextCNN outperforms
attention-based LSTM on four datasets.

Analysis of failure cases. We manually categorize the re-
sulting errors into two types: type-1, involving short sen-
tences of fewer than ten words, and type-2, which involve
ambiguous crucial words from each lexicon. Table 8 shows
a few examples of types and errors. From type-1, we can
see that the short-sentences examples do not contain crucial
words for text classification. In this case, the lexicon con-
tains words that do not belong to the core of the class. For the
type-1 errors, we plan to exclude data of less than ten words
in the training set. Type-2 errors are caused by ambiguous
words of each class. For example, if there are classes such
as “artist” and “album”, the lexicon of each class can in-
clude “singer”, “sing”, “fan” and “guitar”. For type-2 errors,
we plan to count the number of the ambiguous words in each
class and assign a weight to keywords according to the con-
fidence value of the classifier.

Related Work
Most of the prior works on SSL for text classification has
been covered the type of bootstrapping, adversarial training
as well as the type of pretraining. In this section, we intro-
duce several studies for semi-supervised learning discussed
in our paper.

Bootstrapping Algorithms
The bootstrapping methods such as self-training (Yarowsky
1995), co-training (Blum and Mitchell 1998), tri-
training (Zhu 2005) leverage the predictions of the
neural network model on unlabeled data to obtain ad-
ditional information that can be used during training.
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Type Example Predicted Ground
Truth

Matching
words

where can sony ericsson? N E
Type-1 Antoinette Spaak Antoinette M. N O None

Ronald Isley Ronald Isley is an American recording artist songwriter
record producer and occasional actor.Isley is better known as the lead
singer and founding member of the family music group the Brothers.

Ar Al

artists,
songwriter,

record,
producer

Type-2

doswell is acity in virginia? Yep, it’s a city in Virginia. It is a small,
unincorporated town that’s doesn’t have too much,but it is located
close to Richmond. You can find out all about King’s Dominion on
their website about to host King’s Fest, a large Christian music
concert featuring artists like the David Crowder Band.

M C

concert,
band,
music,
artists

Table 8: Examples of errors by the constructed lexicons. N: None, E: Electronic, O: Office, Ar: Artist, Al: Album, M: Music,
C: Culture, S: Society, T: Transportation, At: Athlete

One major weakness of the bootstrapping is that if the
initially trained models have low performance, then it
can lead to accumulated errors along the process. Several
attempts (Abney 2008; Sogaard 2010) have been made to
overcome the limitations. Recently, Jo et al. (2019) propose
a variation of self-training framework for semi-supervised
text classification. The method stems from the hypothesis
that a classifier with pretrained word embedding always
outperforms the same classifier with randomly initialized
word embedding. Our approach and delta-training are
based on a self-training framework. Therefore, we use
delta-training and self-training as baselines to verify the
excellence of our framework.

Adversarial Training Algorithms
The adversarial training is a technique of improving model
performance by augmenting adversarial examples in the
training process. Miyato et al. (2017) proposed a virtual ad-
versarial training approach to smooth the output distribu-
tions of the neural networks on straight-forward classifica-
tion tasks. They extended adversarial and virtual adversar-
ial training to the text domain by applying perturbations to
the word embeddings. Gururangan et al. (2019) introduced
a lightweight pretraining framework for effective text clas-
sification when data and computing resources are limited.
They pretrained a uni-gram document model as a variational
autoencoder (VAE) on unlabeled data and used it for the
downstream classifier. They demonstrated the effectiveness
of the model for limited resource settings, without the need
for computationally demanding. The adversarial training is
not related to our framework. However, the adversarial train-
ing has the same goal of solving the data-sparsity problem
for text classification. Therefore, we use VAMPIRE, a state-
of-the-art model of the adversarial training for the experi-
mental comparison.

Pretraining Algorithms
The pretraining algorithms transfer knowledge from rich-
resource pretraining task to the low downstream tasks. Lan-

guage Models (LMs) such as OpenAI Transformer (Vaswani
et al. 2017) and BERT (Devlin et al. 2019) have achieved
state-of-the-art performance on many classification tasks.
The methods show excellent performance even with small
number of labeled data. However, LMs require significant
computational resources to train at a high scale. Unlike the
two previous algorithms, pretraining algorithms are more re-
lated to unsupervised learning than semi-supervised learn-
ing. The pretraining model applies to other semi-supervised
methods to improve performance. One of the latest adversar-
ial learning, VAMPIRE, utilizes the pretraining model and
has improved performance. Since the pretraining model can
also be applied to the bootstrapping algorithms, we use the
representative LMs, BERT, as a baseline, and show the im-
provement of performance when BERT is integrated into our
framework, SALNet.

Conclusions and Future Work
We propose a simple, yet effective semi-supervised boot-
strap learning framework for few-shot text classification,
which takes full advantage of both only a small number
of labeled data and a large number of unlabeled data. Our
framework generates a lexicon using the attention mech-
anism, and we use the constructed lexicons for pseudo-
labeling. The lexicon can select the correct label among the
predictions of the classifier and correctly predict the unla-
beled data that a model incorrectly predicts. Extensive ex-
perimental results demonstrate that our method achieves su-
perior performance to the previous state-of-the-art methods.

We plan to develop methods that generate lexicons using
the pretrained language model such as XLNet (Yang et al.
2019) and ALBERT (Lan et al. 2020). We also plan to study
assigning weights to crucial words to enhance lexicon per-
formance.
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