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Abstract
While generative adversarial networks (GANs) based neu-
ral text-to-speech (TTS) systems have shown significant im-
provement in neural speech synthesis, there is no TTS system
to learn to synthesize speech from text sequences with only
adversarial feedback. Because adversarial feedback alone is
not sufficient to train the generator, current models still re-
quire the reconstruction loss compared with the ground-truth
and the generated mel-spectrogram directly. In this paper,
we present Multi-SpectroGAN (MSG), which can train the
multi-speaker model with only the adversarial feedback by
conditioning a self-supervised hidden representation of the
generator to a conditional discriminator. This leads to bet-
ter guidance for generator training. Moreover, we also pro-
pose adversarial style combination (ASC) for better gener-
alization in the unseen speaking style and transcript, which
can learn latent representations of the combined style embed-
ding from multiple mel-spectrograms. Trained with ASC and
feature matching, the MSG synthesizes a high-diversity mel-
spectrogram by controlling and mixing the individual speak-
ing styles (e.g., duration, pitch, and energy). The result shows
that the MSG synthesizes a high-fidelity mel-spectrogram,
which has almost the same naturalness MOS score as the
ground-truth mel-spectrogram.

Introduction
Recently, there has been a significant progress in the end-to-
end text-to-speech (TTS) model, which can convert a nor-
mal text into speech. When synthesizing speech, the re-
cently proposed methods use additional speech audio as
an input to reflect the style features from the input audio
to the synthesized audio (Wang et al. 2018; Skerry-Ryan
et al. 2018). However, there are limitations to transferring
and controlling the style without a large amount of high-
quality text-audio data (e.g., audiobook dataset). Moreover,
because it is difficult to acquire high-quality data, some stud-
ies use the knowledge distillation method to improve the
performance (Ren et al. 2019). However, knowledge distilla-
tion makes the training complicated, and the generated mel-
spectrogram is not complete unlike the ground-truth mel-
spectrogram (Ren et al. 2020).

For better generalization, the current models are trained
with adversarial feedback. These generative adversarial net-
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works (GANs) (Goodfellow et al. 2014) based TTS models
demonstrate that adversarial feedback is important for learn-
ing to synthesize high-quality audio. MelGAN (Kumar et al.
2019) successfully converts mel-spectrograms to waveforms
using a window-based discriminator. The Parallel Wave-
GAN (PWG) (Yamamoto, Song, and Kim 2020) also con-
verts mel-spectrograms to raw waveforms using the adver-
sarial feedback of audio with multi-resolution spectrogram
losses. The GAN-TTS (Bińkowski et al. 2019) also gener-
ates raw speech audio with GANs conditioning features that
are predicted by separate models. The EATS (Donahue et al.
2020) generates the raw waveform from raw phoneme in-
puts, which is learned end-to-end with various adversarial
feedbacks and prediction losses. However, these methods
have not yet learned the model without the prediction loss.

In this paper, we present the Multi-SpectroGAN (MSG),
which can generate high-diversity and high-fidelity mel-
spectrograms with adversarial feedback. We introduce an
end-to-end learned frame-level condition and conditional
discriminator to train the model without prediction loss
between ground-truth and generated mel-spectrogram. By
making the discriminator learn to distinguish which features
are converted to mel-spectrogram with a frame-level con-
dition, the generator is trained with frame-level adversarial
feedback to synthesize high-fidelity mel-spectrograms. We
also propose the adversarial style combination, which can
learn the latent representations of mel-spectrograms synthe-
sized with the mixed speaker embeddings. By training with
adversarial feedback from the mixed-style mel-spectrogram,
we demonstrate that the MSG synthesizes a more diverse
mel-spectrogram by interpolation of multiple styles and syn-
thesizes more natural audio of the unseen speaker. The main
contributions of this study are as follows:

• Through an end-to-end learned frame-level condition and
conditional discriminator, our model can learn to synthe-
size mel-spectrogram without prediction loss.

• We propose adversarial style combination, which learns
the mixed style of mel-spectrogram with adversarial feed-
back.

• The MSG achieves a mean opinion score (MOS) of 3.90
with a small amount of multi-speaker data and almost the
same MOS with ground-truth mel-spectrogram in single
speaker model.
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Figure 1: Generator and the variance adaptor architecture for style combination

Related Works
Text-To-Speech Autoregressive models such as Tacotron
(Wang et al. 2017; Shen et al. 2018) were proposed to gen-
erate mel-spectrograms through an attention-based recurrent
neural network (RNN) (Bulthoff et al. 2003). In this model,
each frame is autoregressively generated through a sequen-
tial generative model conditioned on previously generated
frames. However, this method is slow in inference, and it is
difficult to model long-term dependencies, leading to word
skipping or repetition problems.

To solve these problems, several non-autoregressive mod-
els have been proposed for faster generation. FastSpeech
(Ren et al. 2019) adapted a feed-forward block from
Transformer (Vaswani et al. 2017) with a self-attention
mechanism to perform parallel generation. In addition, the
model implemented a length regulator to properly match
the character-level sequence with the frame-level sequence.
FastSpeech2 (Ren et al. 2020) strengthens their model with
additional variance information to predict acoustic features
more accurately. In FastPitch (Łańcucki 2020), the author
cascades fundamental frequency on the phoneme hidden
representation (Lee and Kim 1999; Yang and Lee 2007).

With the improved performance of the speech synthesis
model, several models have been proposed to control the
speaking style of generated speech. One well-known method
is the global style token (GST) (Wang et al. 2018), which
makes the model learn a prosodic aspect of the variable-
length audio signal through several style tokens without
any style label. A variational autoencoder (VAE)-based style
control model (Zhang et al. 2019) was also proposed while
maintaining unsupervised learning in style features.

In the Transformer-based TTS model (Li et al. 2019),
training a model with various speakers is challenging be-
cause of the difficulty in learning the text-to-speech align-
ment. (Li et al. 2020; Chen et al. 2020) identified that the
limitation of using location-sensitive attention in the parallel
computational model pose a difficulty for the Transformer-
based model to learn the alignment between the linguistic
and acoustic features. To solve this issue, (Chen et al. 2020)
used diagonal constraints in encoder-decoder attention to
make the model forcefully learn the diagonal area.

Waveform Generation Most speech synthesis models
generate intermediate features such as mel-spectrograms to
reduce computational time. Therefore, an additional mod-
ule, named ‘vocoder’, is needed to generate a fully audible
signal. In an autoregressive model such as Wavenet (Oord
et al. 2016), each audio sample is generated sequentially,
usually conditioned on previous samples. In general, an
RNN-based vocoder, such as bidirectional-RNN or gated re-
current unit (GRU) is used; therefore, the model can predict
each sample precisely without long-range constraint depen-
dency. However, owing to the sequential generation process,
the overall inference time is slow. Therefore, generating au-
dio samples simultaneously is necessary.

For parallel generation models, non-autoregressive gen-
eration methods such as knowledge distillation (Oord et al.
2018) and flow-based generative models (Prenger, Valle, and
Catanzaro 2019; Kim et al. 2018) have been proposed. These
models can generate audio samples in parallel, but they suf-
fer from relatively degraded generation quality. Therefore,
the issue of improving audio quality has arisen in the paral-
lel generation model. (Yoon et al. 2020). Recently, the use of
GANs (Yamamoto, Song, and Kim 2020) to generate high-
quality audio in real-time has shown remarkable perfor-
mance in the field. However, the problem remains when the
model is extended to the multi-speaker domain. Therefore,
reducing inference time while maintaining audio quality is
still a challenging task. Several attempts have been made to
fully generate audio waveforms from text input. (Bińkowski
et al. 2019) used various linguistic features including dura-
tion and pitch information, to produce high-fidelity audio.
(Donahue et al. 2020) proposed a novel aligner, which can
align between text and mel-frames in parallel.

Mixup Mixup was proposed to regularize the neural net-
works by training the model on convex combination of
example-label pairs (Zhang et al. 2017). (Verma et al. 2019)
proposed training the model on interpolations of hidden rep-
resentation. The method for learning combined latent rep-
resentation of autoencoder was proposed (Beckham et al.
2019). These methods improve the model to generalize for
new latent representation which are not seen during training.
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Multi-SpectroGAN
Our goal is to learn a generator which can synthesize high-
diversity and high-fidelity mel-spectrograms by control-
ling and mixing the speaking style. For high-diversity mel-
spectrograms, we introduce an adversarial style combina-
tion which can learn latent representations of the combined
speaker embedding from multiple mel-spectrograms. To
learn the generated mel-spectrogram with randomly mixed
styles which doesn’t have a ground truth mel-spectrogram,
we propose an end-to-end learned frame-level conditional
discriminator. It is also important for better guidance to
make the model learn to synthesize speech with only ad-
versarial feedback. We describe the details of the Multi-
SpectroGAN architecture and adversarial style combination
in the following subsections.

Generator
We use FastSpeech2 (Ren et al. 2020) as a generator consist-
ing of a phoneme encoder with the variance adaptor denoted
as f(·, ·), and decoder g(·). We use the phoneme encoder
and decoder which consists of 4 feed-forward Transformer
(FFT) blocks. Extending to the multi-speaker model, we in-
troduce a style encoder that can produce a fixed-dimensional
style vector from a mel-spectrogram like Figure 1.

Style Encoder The style encoder has a similar architec-
ture to the prosody encoder of (Skerry-Ryan et al. 2018). In-
stead of 2D convolutional network with 3×3 filters and 2×2
stride, our style encoder uses a 6-layer 1D convolutional net-
work with 3×1 filters and 2×2 stride, dropout, ReLU activa-
tion, and Layer normalization (Ba, Kiros, and Hinton 2016).
We also use a gated recurrent unit (Cho et al. 2014) layer and
take the final output to compress the length down to a sin-
gle style vector. Before conditioning the length regulator and
variance adaptor, the output is projected as the same dimen-
sion of the phoneme encoder output to add style information,
followed by a tanh activation function. We denote the style
encoder as Es(·), which produces the style embedding

s = Es(y), (1)

where s refers to the style embedding extracted from the
mel-spectrogram y through the style encoder Es.

Style-conditional Variance Adaptor With the exception
of using style conditional information for learning the multi-
speaker model, we use the same variance adaptor of Fast-
Speech2 (Ren et al. 2020) to add variance information.
By adding the style embedding predicted from the mel-
spectrogram to the phoneme hidden sequence Hpho, the
variance adaptor predicts each variance information with
the unique style of each speaker. For details, we denote
the phoneme-side FFT networks as phoneme encoder Ep(·),
which produces the phoneme hidden representation

Hpho = Ep(x+ PE(·)), (2)

where x is the phoneme embedding sequence, and PE(·) is
a triangle positional embedding (Li et al. 2019) for giving

positional information to the Transformer networks. We ex-
tract the target duration sequences D from Tacotron2 to map
the length of the phoneme hidden sequence to the length of
the mel-spectrogram

Hmel = LR(Hpho,D). (3)
The duration predictor predicts the log-scale of the length
with the mean-square error (MSE)

LDuration = E[‖log(D + 1)− D̂‖2], (4)
where

D̂ = DurationPredictor(Hpho, s). (5)
We also use the target pitch sequences P and target en-
ergy sequences E for each mel-spectrogram frame. We re-
move the outliers of each information and use the normal-
ized value. Then we add the embedding of quantized F0
and energy sequences, p and e, which are divided by 256
values.
p = PitchEmbedding(P), e = EnergyEmbedding(E).

(6)
The pitch/energy predictor predicts the normalized
F0/energy value with the MSE between the ground-truth
P , E and the predicted P̂ , Ê

LPitch = E[‖P − P̂‖2],
LEnergy = E[‖E − Ê‖2],

(7)

where
P̂ = PitchPredictor(Hmel, s),

Ê = EnergyPredictor(Hmel, s).
(8)

The encoder f(·, ·) consisting of a phoneme encoder and
style-conditional variance adaptor is trained with the vari-
ance prediction loss

min
f
Lvar = LDuration + LPitch + LEnergy. (9)

During training, we use not only the ground-truth value of
each information, such as (Ren et al. 2020), but also the pre-
dicted value of each information with adversarial style com-
bination to learn the variety of generated mel-spectrograms
without the ground-truth. The sum of each informational
hidden sequence Htotal is passed to the decoder as a gen-
erator g(·) to generate a mel-spectrogram as

Htotal = Hmel + s+ p+ e+ PE(·), (10)
ŷ = g(Htotal), (11)

where ŷ is the predicted mel-spectrogram. Our baseline
models use the reconstruction loss with mean-absolute er-
ror (MAE) as

Lrec = E[‖y − ŷ‖1], (12)
where y is the ground-truth mel-spectrogram.

Discriminator
Unlike the previous GAN-based TTS model, our model can
be learned to synthesize the mel-spectrogram from a text
sequence without calculating the loss compared with the
ground-truth spectrogram directly. To train the model with-
out Lrec, we design a frame-level conditional discriminator
using the end-to-end learned frame-level condition.
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End-To-End Learned Frame Level Condition To learn
to distinguish between the frame-level real and generated
mel-spectrogram, the discriminator uses the encoder outputs
as a frame-level condition that is learned in a generator dur-
ing training. Note that c is the sum of linguistic, style, pitch,
and energy information, which is end-to-end learned in a
generator during training and is expressed as:

c = Hmel︸ ︷︷ ︸
linguistic

+ s︸︷︷︸
style

+ p︸︷︷︸
pitch

+ e︸︷︷︸
energy

. (13)

Frame-level Conditional Discriminator As shown in
Figure 2, we adopt a multi-scale discriminator that has iden-
tical network structure like MelGAN (Kumar et al. 2019).
While MelGAN motivates the multiple discriminators at dif-
ferent scales to learn features for the different frequency
ranges of the audio, we choose multiple discriminators to
learn features for different ranges of linguistic, pitch, and en-
ergy information. Each discriminator consists of 4 Dblocks
that have a mel-spectrogram side block and a condition side
block. Each block uses a 2-layer non-strided 1D convo-
lutional network with the Leaky-ReLU activation function
to extract the adjacent frame information. We add the hid-
den representation of the condition side block to the mel-
spectrogram side hidden representation. Similar to (Vaswani
et al. 2017), residual connections and layer normalization is
used at each block output for optimization.

We use the least-squares GAN (LSGAN) (Mao et al.
2017) formulation to train the Multi-SpectroGAN. The dis-
criminators Dk learn to distinguish between real spectro-
gram y and reconstructed one from x, y. We minimize the
GAN loss from the mel-spectrogram. The encoder f(·, ·)
and decoder g(·) as a generator, and discriminator D are
trained by the following losses:
min
Dk

E[‖Dk(y, c)− 1‖2+‖Dk(ŷ, c)‖2], ∀k = 1, 2, 3 (14)

Ladv = E

[
3∑

k=1

‖Dk(ŷ, c)− 1‖2

]
. (15)

Feature Matching To improve the representations learned
by the discriminator, we use a feature matching objective
like (Kumar et al. 2019). Unlike the MelGAN, which min-
imizes the MAE between the discriminator feature maps of
real and generated audio, we minimize the MAE between
the feature maps of each spectrogram-side block:

Lfm = E

[
4∑

i=1

1

Ni
‖D(i)

k (y, c)−D(i)
k (ŷ, c)‖1

]
, (16)

where D(i)
k refers to the ith spectrogram-side block output

of the kth discriminator, and Ni is the number of units in
each block output. The generator trains with the following
objective:

min
f,g
Lmsg = Ladv + λLfm + µLvar. (17)

Adversarial Style Combination
By introducing the adversarial loss, we would like to syn-
thesize a more realistic audio signal with high-fidelity gen-
erated mel-spectrogram. In addition, our goal is to generate
a more diverse audio signal with an even unseen style. To do
this, we propose the adversarial style combination (ASC),
which can make the mel-spectrogram more realistic with the
mixed style of multiple source speakers. Similar to (Beck-
ham et al. 2019) interpolating the hidden state of the autoen-
coder for adversarial mixup resynthesis, we use two types
of mixing, binary selection between style embeddings, and
manifold mixup (Verma et al. 2019) by the linear combina-
tion of style embeddings from the different speakers:

smix = αsi + (1− α)sj , (18)

where α ∈ {0, 1} is sampled from a Bernoulli distribu-
tion in binary selection and α ∈ [0, 1] is sampled from the
Uniform(0,1) distribution in manifold mixup. The variance
adaptor predicts each information with a mixed style em-
bedding. Unlike pitch and energy, we use the ground-truth
D randomly selected from multiple source speakers because
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Model MOS 95% CI
GT 4.20 ± 0.03
GT (Mel + PWG) 3.94 ± 0.03
Transformer TTS (Mel + PWG) 3.83 ± 0.03
FastSpeech (Mel + PWG) 3.52 ± 0.04
FastSpeech2 (Mel + PWG) 3.85 ± 0.03
MSG (Mel + PWG) 3.91 ± 0.03

Table 1: MOS with 95% CI for a single speaker model

the duration predictor may predict the wrong duration at the
early training step. Each variance information is predicted
by different ratios of mixed style embedding. We call it
“style combination”, in which the final mixed hidden rep-
resentation is the combination of each variance information
from different mixed styles:

Hmix = Hmel + smix + pmix + emix︸ ︷︷ ︸
cmix

+PE(·), (19)

ŷmix = g(Hmix), (20)
where pmix and emix are the pitch and energy embedding
of the predicted value from mixed styles, respectively, and
cmix is fed to discriminator as the frame-level condition for
mel-spectrogram ŷmix generated by style combination. The
discriminator is trained using the following objective:

min
Dk

E[‖Dk(y, c)− 1‖2+‖Dk(ŷ, c)‖2

+‖Dk(ŷmix, cmix)‖2], ∀k = 1, 2, 3.
(21)

The generator is trained by the following loss:

min
f,g
Lasc = Ladv + λLfm + µLvar + νLmix, (22)

where

Lmix = E

[
3∑

k=1

‖Dk(ŷmix, cmix)− 1‖2

]
. (23)

Experiments and Results
We evaluated in the single-speaker and multi-speaker
dataset. Ablation studies are performed for downsampling
size, loss function, and conditional information. We also
evaluated the style-combined speech by control and interpo-
lation of multiple styles. We used a Nvidia Titan V to train
the single-speaker model with the LJ-speech dataset and the
multi-speaker model with the VCTK dataset. Each dataset
is split into train, validation, and test. Mel-spectrogram is
transformed following the work of (Shen et al. 2018) with a
window size of 1024, hop size of 256, 1024 points of Fourier
transform, and 22,050 Hz sampling rate. We use the ADAM
(Kingma and Ba 2015) optimizer with β1 = 0.9, β2 = 0.98,
and ε = 10−9, and apply the same learning rate schedule
as that of (Vaswani et al. 2017) with an initial learning rate
of 10−4 for f , g, and D. The λ, µ, and ν are set to 10,
1 and 1. To convert the mel-spectrogram to audio, we use
the pretrained PWG vocoder (Yamamoto, Song, and Kim
2020) consisting of 30-layers of dilated residual convolution
blocks.

Model τ CMOS Convergence
MSG 2 0 350k
MSG 3 +0.07 650k
MSG 4 +0.06 1,000k

Table 2: CMOS comparison for the down-sampling size

Model Loss function MOS
FastSpeech2 Lvar+Lrec 3.85 ± 0.03
MSG (w/o c) Lvar+Ladv -
MSG (w/ c) Lvar+Ladv 3.14 ± 0.06
MSG (w/ c) Lvar+Ladv+Lrec 3.85 ± 0.03
MSG (w/ c) Lvar+Ladv+Lrec+Lfm 3.89 ± 0.03
MSG (w/ c) Lvar+Ladv+Lfm 3.91 ± 0.03

Table 3: Ablation study for the loss function

Single-speaker Speech Synthesis
Naturalness MOS To evaluate the quality of the synthe-
sized mel-spectrogram, we conducted a subjective MOS
test. We randomly selected 100 sentences from the test
dataset. The audio generated from each model was sent to
Amazon’s Mechanical Turk (MTurk). Samples were evalu-
ated by 20 raters on a scale from 1 to 5 with 0.5 point incre-
ments. We compared the MSG model with the ground-truth
audio (GT), the converted audio from the mel-spectrogram
of the GT, and other TTS models using PWG. As shown
in Figure 1, the MOS results show that the MSG has an
almost similar score to the ground-truth mel-spectrogram,
which demonstrates our discriminator and the frame-level
conditional information improves voice quality even though
the same generator architecture (Ren et al. 2020) is used.

Down-sampling Size We use average pooling with dif-
ferent kernel sizes to compare downsampling size τ . The
model with a downsampling size of 3 has the highest score.
The smaller size of downsampling makes the model con-
verge early step with a -0.07 CMOS score. The larger size
of the downsampling causes the model to converge slowly
but shows a similar MOS. Therefore, we adopted a down-
sampling size of 3 for our MSG model.

Loss Function We conducted the ablation study for the
loss functions and the conditional discriminator. When the
conditional information of the discriminator is replaced with
z noise and trained with the loss function of Lvar and Ladv ,
this model does not train at all. On the other hand, the
model using conditional information in the discriminator
can learn to synthesize the mel-spectrogram without Lrec

or Lfm which must be calculated between the ground-truth
and generated mel-spectrogram. This demonstrates that the
frame-level conditional discriminators using the end-to-end
learned frame-level condition make it possible to train the
model even if the generated mel-spectrogram does not have
ground-truth audio. However, we also use the additional loss
functionLrec orLfm to improve the audio quality. Although
most TTS models train withLrec, it is too strong supervision
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Model Mix ratio MOS MCD13 F0 RMSE Top-1 acc.
GT - - 4.11±0.03 - - 93%
GT (Mel + PWG) - - 4.00±0.03 4.46 43.59 84%
Tacotron2 (Mel + PWG) - - 3.81±0.04 5.88 44.51 75%
GST (Mel + PWG) - - 3.89±0.04 5.59 45.10 80%
FastSpeech2 (Mel + PWG) - - 3.81±0.04 5.78 46.90 67%
MSG (Mel + PWG) - - 3.89±0.04 5.59 45.71 72%
MSG+ASC (Mel + PWG) Bern {r, r, r, ...} 3.85±0.04 5.54 45.36 70%
MSG+ASC (Mel + PWG) Mixup {r, r, r, ...} 3.89±0.04 5.60 45.31 69%
MSG+ASC (Mel + PWG) Bern {rs, rp, re, ...} 3.87±0.04 5.57 47.06 79%
MSG+ASC (Mel + PWG) Mixup {rs, rp, re, ...} 3.90±0.04 5.57 43.97 73%

Table 4: Results of subjective and objective tests for seen speaker. Bern refers that the ratio is sampled from a Bernoulli
distribution. Mixup refers that the ratio is sampled from the uniform (0,1) distribution. We compare the models with same ratios
{r, r, r,...} and different ratios for mixing the style and each variance {rs, rp, re,...} where rs, rp, and re are the ratios for
mixing the style, pitch, and energy embeddings respectively.

Model Mix ratio MOS MCD13 F0 RMSE Top-1 acc.
GT - - 4.00±0.03 - - 95%
GT (Mel + PWG) - - 3.96±0.03 4.26 49.56 88%
Tacotron2 (Mel + PWG) - - 3.76±0.04 6.33 46.26 17%
GST (Mel + PWG) - - 3.83±0.04 6.15 41.71 5%
FastSpeech2 (Mel + PWG) - - 3.67±0.04 6.18 48.31 20%
MSG (Mel + PWG) - - 3.80±0.04 6.10 48.02 23%
MSG+ASC (Mel + PWG) Bern {r, r, r, ...} 3.80±0.04 6.11 47.04 30%
MSG+ASC (Mel + PWG) Mixup {r, r, r, ...} 3.82±0.04 6.07 47.69 27%
MSG+ASC (Mel + PWG) Bern {rs, rp, re, ...} 3.75±0.04 6.14 48.10 28%
MSG+ASC (Mel + PWG) Mixup {rs, rp, re, ...} 3.81±0.04 6.08 47.22 30%

Table 5: Results of subjective and objective tests for unseen speaker.

to train with adversarial loss; therefore, adversarial loss has
a slight influence on the model. Unlike Lrec, the Lfm is af-
fected by the discriminator, and it shows the highest MOS
score when the model was trained with Lfm.

Multi-speaker Speech Synthesis
We trained each model using 30 speakers in the VCTK
dataset. We evaluated each model with “seen speaker” and
“unseen speaker” of reference audio for style. The “seen
speaker” of reference audio indicates the audio of the
speaker seen during training. The “unseen speaker” of refer-
ence audio indicates the audio of the speaker unseen during
training, which is evaluated for the zero-shot style transfer.
Audio samples of the generated speech are provided.1

Naturalness MOS For the subjective MOS test of each
multi-speaker model, we randomly selected 40 speakers (20
seen and 20 unseen speakers) and 5 sentences from a test
dataset of each speaker. The samples were evaluated by 20
raters on a scale of 1-5 with 0.5 point increments through
Amazon MTurk. We compared our models with GT, the con-
verted audio from the mel-spectrogram of the GT, and other
TTS models (Tacotron2, GST, Tansformer-based TTS, and
FastSpeech2). For multi-speaker Tacotron2, we add the style

1https://anonymsg.github.io/MSG/Demo/index.html

encoder and concatenate with the transcript embedding. In a
Transformer-based TTS model, it is not possible to synthe-
size any audio because of the wrong alignment. For multi-
speaker FastSpeech2, we train the model with the same style
encoder and add the style embedding to transcript embed-
ding. Even though using the same generator structure with
FastSpeech2, the results show our method improves the au-
dio quality of 0.08 for seen speaker and 0.13 for unseen
speaker. When trained with ASC, the models have better per-
formance on both the seen and unseen speakers.

Objective Evaluation We conducted an objective evalua-
tion using mel-cepstral distortion (MCD) (Kubichek 1993),
F0 root mean squared error (RMSE), and speaker classi-
fication (Wan et al. 2018). To evaluate each metric, each
model synthesized 100 utterances for both the seen and un-
seen speaker. For comparison of F0 RMSE, we used tar-
get duration for FastSpeech2 and our models, and teacher-
forcing synthesis with target mel-spectrogram for Tacotron2
and GST. Even though the GST shows the highest MOS
score in the unseen speaker, the top-1 speaker classification
accuracy is 5%, where the GST only synthesizes the learned
voice during training. When the model is trained with ASC,
the results verify that learning the combined latent repre-
sentation in training makes the model synthesize a more di-
versed mel-spectrogram even for unseen speakers.
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GST (p305: female) MSG (p305: female)

GST (mixed: p305+p237) MSG (mixed: p305+p237)

GST (p237: male) MSG (p237: male)

Figure 3: Mel-spectrogram and F0 contour of the GST (Left) and MSG (Right).

Condition Loss function MOS
MSG (c) Lvar + Ladv 3.57± 0.07
−Hmel Lvar + Ladv [does not train]
−s− p Lvar + Ladv [does not train]
−p Lvar + Ladv 3.52± 0.07
−e Lvar + Ladv 3.54± 0.07

Table 6: Ablation study for condition of discriminator

Ablation Study We conducted an ablation study for the
conditions in the discriminator. To evaluate the effective-
ness of each conditional information, we trained the model
without Lfm. The model withoutHmel does not train at all,
which demonstrates that linguistic information is essential to
learn to synthesize the frame-level mel-spectrogram. Unlike
a single-speaker model that can learn to synthesize without
style s or pitch p information, the multi-speaker model with-
out s and p does not train at all. The model without p and e
shows that each information has an effect on naturalness.

Style Combination
For the robustness of style transfer and control, we synthe-
size the mel-spectrogram with mixed style embedding which
are interpolated style embedding of two speakers (1 male
and 1 female). Figure 3 shows the mel-spectrograms and F0
contour (women, mixed and men style embedding) of GST
(Left) and MSG (Right) model for the same sentence. The
attention-based autoregressive models have some problems.
Even when using an unseen and mixed style, the models syn-

thesize a mel-spectrogram with a seen style during training.
In addition, the change in the voice occurs at the same utter-
ance as in Figure 3. Even in most cases, word skipping and
repetition occur because the models fail to align.

Unlike attention-based autoregressive models, the MSG
model trained with adversarial style combination synthe-
sizes the mel-spectrogram robustly even with mixed-style
embedding. The results demonstrate that the synthesis with
the interpolated style embedding can generate a new style
of mel-spectrogram by a combination of two styles. We also
synthesized a particular style of a mel-spectrogram in com-
bination with the desired proportions of each variance infor-
mation (e.g., duration, pitch, and energy).

Conclusion and Future Work
We presented a Multi-SpectroGAN, which can generate
high-diversity and high-fidelity mel-spectrograms with ad-
versarial style combination. We demonstrated that it is possi-
ble to train the model with only adversarial feedback by con-
ditioning a self-supervised latent representation of the gen-
erator to the discriminator. Our results also showed the effec-
tiveness of mixing hidden states in the audio domain, which
can learn the mel-spectrogram generated from a combina-
tion of mixed latent representations. By exploring various
style combination for mixup, we show that learning the mel-
spectrogram of mixed style made the model generalize bet-
ter even in the case of unseen transcript and unseen speaker.
For future work, we will train the Multi-SpectroGAN with
few-shot learning and cross-lingual style transfer frame-
works.
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