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Abstract

BERT has set a new state-of-the-art performance on en-
tity resolution (ER) task, largely owed to fine-tuning pre-
trained language models and the deep pair-wise interaction.
Albeit being remarkably effective, it comes with a steep in-
crease in computational cost, as the deep-interaction requires
to exhaustively compute every tuple pair to search for co-
references. For ER task, it is often prohibitively expensive
due to the large cardinality to be matched. To tackle this,
we introduce a siamese network structure that independently
encodes tuples using BERT but delays the pair-wise interac-
tion via an enhanced alignment network. This siamese struc-
ture enables a dedicated blocking module to quickly filter out
obviously dissimilar tuple pairs, and thus drastically reduces
the cardinality of fine-grained matching. Further, the blocking
and entity matching are integrated into a multi-task learning
framework for facilitating both tasks. Extensive experiments
on multiple datasets demonstrate that our model significant-
ly outperforms state-of-the-art models (including BERT) in
both efficiency and effectiveness.

Introduction
The task of entity resolution aims at identifying co-referent
tuples that refer to the same real-world entity from different
data sources. Consider the two tables in Fig. 1, each table is a
set of tuples about products gathered from Google and Ama-
zon, respectively. Entity resolution identifies pairs of tuples
that refer to the same product, e.g., tuples 587 from Google
and 2816 from Amazon are identified as a co-reference, and
the same goes for tuples 1213 and 2837.

As a fundamental essence for data cleaning and data in-
tegration (Dong and Srivastava 2013), entity resolution has
been widely applied in knowledge graph construction (Chen
et al. 2015), e-commerce (Gokhale et al. 2014), etc. It has
been extensively studied by means of various methodolo-
gies such as declarative rules (Hernández and Stolfo 1995),
crowd-sourcing (Wang et al. 2012), and machine learn-
ing (Faruqui et al. 2015). Over the past few years, deep
learning (DL) based ER models (Mudgal et al. 2018; Fu
et al. 2019) have become the de-facto standard. They typi-
cally present a representation-then-interaction scheme: first-
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Google Products
ID TITLE MANUFACTURER PRICE

587 microsoft word 2007 version upgrade microsoft 109.95
1213 money home&business 2007 win32 microsoft 139.43

Amazon Products
ID T MANUFACTURER PRICE

2816 microsoft word 2007 upgrade (pc) 109.95
2837 money 2007 home and business (pc) 89.99microsoft

√×√
ITLE

Figure 1: An example of entity resolution: identifying co-
referent tuples from two tables.

ly, encode each individual tuple (or attribute) into a seman-
tic representation using deep neural networks (e.g., RNN,
LSTM, and GCN); then, make an interaction by compar-
ing the representations of two tuples via similarity functions
(e.g., cosine, dot-product) or learnable classifiers (e.g., MLP,
SVM) to make final ER decision.

Recently, deep pre-trained language models, e.g., EL-
Mo (Peters et al. 2018) and BERT (Devlin et al. 2019),
are promoting fast-paced advances for many NLP tasks,
of course, no exception for entity resolution: BERT gain-
s significant improvements and has set new state-of-the-art
performances on many ER benchmarks. In contrast to the
shallow and asynchronous interaction of the prior DL-based
models, BERT makes a deep and synchronous interaction:
the representation and interaction are performed simultane-
ously on a packed tuple pair (instead of on an individual
tuple) to yield deeply-contextualized cross-encodings of the
two input tuples. The deep-interaction is more effective in
bridging the pervasive vocabulary mismatch (Khattab and
Zaharia 2020), and accounts for its superior performances.

Despite being remarkably effective, such a deep-
interaction comes with a poor scalability that become a
formidable impediment for applying BERT in real ER s-
cenario. This is mainly caused by the quadratic searching
space as the deep-interaction requires to be fed with ev-
ery tuple pairs. Even worse, it cannot integrate blocking
techniques (e.g., product quantization (Ge et al. 2013), lo-
cal sensitive hash (LSH) (Ebraheem et al. 2018)) to effec-
tively reduce the search space, since there is no representa-
tion for individual tuple on which the blocking relies. Thus,
BERT has to exhaustively search all quadratic pairs for co-
references, which is prohibitively expensive due to the large
cardinality. To tackle this problem, some attempts (Reimer-
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s and Gurevych 2019; Khattab and Zaharia 2020) regress
to traditional representation-then-interaction scheme, while
differently, use BERT as the encoder. Albeit being able to
reduce time cost, these methods suffer from substantial per-
formance declines comparing to BERT, as the most powerful
deep-interaction is discarded.

To improve BERT-based entity resolution in both effi-
ciency and effectiveness, we propose a novel ER model
BERT-ER. We make three major contributions: (1) we show
a formal analysis that BERT’s representation and interac-
tion processes can approximately be decomposed. The in-
teraction part can be judiciously delayed yet enhanced to
achieve an even better results. Also, with the delayed in-
teraction, the model actually presents a siamese network
structure that makes it able to integrate blocking modules.
(2) For blocking, to better leverage the expressiveness of
BERT, we propose an adaptive blocking model. Different
from other learning-to-hashing methods, we propose a SVD-
based hyperplanes orthogonalization to make BERT domi-
nate the similarity measurement. (3) Existing ER models re-
gard blocking and matching as two isolated tasks. We made
the first effort to integrate the two tasks into a multi-task
learning (MTL) framework. As such, the error can be back
propagated to generalize better on both tasks. Further, the
proposed framework is independent of a specific LM, and
could be applied not only on BERT, but also on other LMs
such as RoBERTA and ALBERT.

The extensive experiments on various datasets demon-
strate that, comparing to BERT, BERT-ER has a significantly
better effectiveness (1.5 pts in F1), while at the same time,
improves the empirical efficiency by two orders of magni-
tude (219× ∼ 304×).

Method
Model Overview
The general architecture of our model is summarized in
Fig. 2. The model has a MTL framework that consists of
three major components (denoted as boxes with grey-, blue-
, and red-dotted border): BERT encoder, blocking decoder,
and entity matching decoder. The base is the BERT en-
coder, which is shared by two task-specific decoders, name-
ly, blocking and entity matching.

BERT Encoder. Given a pair of tuple 〈u1, u2〉, the BERT
encoder uses BERT (Devlin et al. 2019), a powerful pre-
tained language model, to independently encode the tuples
into vector representations. Specially, to leverage the schema
information of tuples (e.g., table-attribute-token hierarchy),
we add learned table embeddings (reuse the segmentation
embeddings of BERT), and a set of attribute embeddings to
enable the model to differentiate the attributes and tables.

Blocking Decoder. Blocking aims to speed-up entity reso-
lution by grouping potentially co-referent tuples into block-
s such that the fine-grained matching are exclusively per-
formed within blocks. To this end, the blocking decoder em-
ploys learned hash functions to map each tuple into k-bits
binary hash codes. Tuples with similar hash codes are as-
signed into the same hash bucket (i.e., block). The blocking
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Figure 2: The general architecture of our model.

decoder is supposed to drastically reduce the number of pairs
to be matched , with least amount of sacrifice on the recall.

Entity Matching Decoder. The entity matching task aims
to compare each of the tuple pairs to decide whether they are
co-referent. The decoder receives the BERT-based encod-
ings of the two tuples, and compare them via an enhanced
deep alignment module, which consists of three cascaded
layers: a cross-encoding layer, a set of comparison and con-
catenation operations, and a convolutional layer. The align-
ment module outputs matching features, which are then fed
into a simple linear layer to get the final ER decision. The
goal of entity matching task is to achieve an F1 score (i.e.,
in terms of both precision and recall) as high as possible.

We will elaborate on the two task-specific decoders and
the joint learning framework in the following subsections.

Entity Matching via Delayed and Enhanced
Alignment
BERT is a multi-layer transformer (Vaswani et al. 2017).
Each layer consists of a multi-head self-attention mechanis-
m and a position-wise feed-forward network.

Assume a tuple pair 〈u1, u2〉 is packed and tokenized to
feed into BERT. The self-attention mechanism first projects
each token into queries, keys, and values (Vaswani et al.
2017). Let K and V be keys and values matrices for the
packed sequence, and Ku1 and Vu1, Ku2 and Vu2 be the
keys and values regarding tuple u1 and u2, respectively. For
the i-token ti (assume ti ∈ u1), its encoding si after self-
attention mechanism can be rewritten as:

si = softmax(qi ·K)V

= η1softmax(qi ·Ku1)Vu1︸ ︷︷ ︸
inner-encoding sIi

+ η2softmax(qi ·Ku2)Vu2︸ ︷︷ ︸
cross-encoding sCi

,

(1)
where qi is the query vector of token ti, η1 and η2 are
scaling-factors.

13227



����� ���� ���� ���� ���� ������� ������� ����� ���� ���� ��� � ���� �

����� ���� ���� ����� ���� ���� �������� � � ��� � �� � ���� �

Figure 3: The attention distribution between the decision vector (encoding of the final layer [CLS] token) and the tokens of the
two input tuples (tuples 587 and 2837 of Fig. 1). Using a well-trained BERT model on Amazon-Google dataset.

In Eq. 1, si can be decomposed into two parts: an inner-
encoding sIi that only focuses on the tuple that ti belongs to;
and a cross-encoding sCi that incorporates information from
the other tuple. After applying position-wise feed-forward
network (PFFN), the final encoding ei can be approximated
as the sum of applying PFFN on sI and sC , separately:

ei = PFFN(sIi + sCi ) ≈ PFFN(sIi )︸ ︷︷ ︸
(a) representation

+PFFN(sCi )︸ ︷︷ ︸
(b) interaction

(2)
According to Eqs. 1 and 2, each layer of BERT can func-

tionally be decomposed into two parts: (a) one for gener-
ating representation using the contextual information with-
in respective tuple; and (b) the other one performs a deep-
interaction between tuples. For ER task, we believe part (a)
mainly works for capturing the contextualized features of
token itself and part (b) works for implicitly (and effective-
ly) aligning the two tuples. This can be illustrated using the
example in Fig. 3, where the final attentions focus on infor-
mative yet unmatching tokens (e.g., “word” and “upgrade”).

We wish to retain its representation part but delay and en-
hance its alignment. As such, we can leverage the expres-
siveness of BERT, while at the same time, being able to in-
tegrate blocking to speed-up the processing.

Delayed and Enhanced Alignment. The original align-
ment PFFN(sCi ) can be enhanced in three aspects: (1) cross-
encoding may not be the most appropriate features since it is
less-effective and implicit for aligning tuples; (2) instead of
sharing parameters, token representation and alignment fea-
tures should have separated parameters, since their semantic
for ER is different; (3) multi-gram features have been proved
to be effective for ER (Li et al. 2020), while the PFFN is only
able to extract uni-gram features.

For aspect (1), we use bilateral comparison features,
rather than solely relying on cross-encodings. Firstly, we de-
fine the cross-encodings EC

u1 and EC
u2 as:

EC
u1 = softmax(Qu1K

T
u2)E

I
u2

EC
u2 = softmax(Qu2K

T
u1)E

I
u1,

(3)

where EI
u1 ∈ Rm×dB and EI

u2 ∈ Rn×dB are BERT-based
representations for u1 and u2 (dimensionality m and n are
token sequence lengths, dB are the output dimension of
BERT). Q and K are queries and keys matrices, which are
defined as

Q = EIWQ, K = EIWK , (4)

whereWQ ∈ RdB×dB andWK ∈ RdB×dB are parameters
for query and key projection, respectively.

We define two comparison functions, the first is the sub-
traction function (Wang and Jiang 2017; Li et al. 2020)

fsub(E
I , EC) = (EI − EC)� (EI − EC), (5)

where � denotes the Hadamard product. The other one is
the multiplication function (Wang and Jiang 2017), which is
defined as:

fmul(E
I , EC) = EI � EC . (6)

The above two functions would be collapsed to L2 dis-
tance and dot-product if we sum up the vector. By not sum-
ming up, they can keep more information to be trained by
the following layers.

To make the comparison robust, we make a bilateral
matching (Wang, Hamza, and Florian 2017) that compares
u1 and u2 in both u1 → u2 and u2 → u1 directions, i.e.,
compare u1 against u2, and compare u2 against u1. Take
u1 → u2 direction as an example, we concatenate the sub-
traction and multiplication comparison features:

Eu1→u2 = [fsub(E
I
u1, E

C
u1); fmul(E

I
u1, E

C
u1)] (7)

Compared with cross-encoding, the enhanced comparison
features Eu1→u2 ∈ Rm×2dB are more explicit and could
provide more information to reason to what extent a token
in u1 is matched with its counterpart in u2.

To incorporate representation features, u1’s encoding
Eu1 ∈ Rm×3dB is represented as the concatenation (rather
than sum) of u1’s representation EI

u1 and comparison fea-
ture Eu1→u2:

Eu1 = [EI
u1;E

u1→u2]. (8)

The concatenation make the two terms use different weight
parameters to enhance aspect (2).

To enhance aspect (3), we employ a convolutional lay-
er (Conv) with multiple kernel sizes to effectively extrac-
t multi-gram features and aggregate Eu1 into a fixed-size
matching vector Mu1 ∈ R1×gc:

Mu1 = Conv(Eu1), (9)

where Conv(·) is a composite function consisting of four
cascaded operations: a set of convolutions co1, co2, ..., cog ,
a batch normalization (BN) (Ioffe and Szegedy 2015), a
rectified linear unit (ReLU), and a 1-max-over-time pool-
ing (Kim 2014). The i-th convolution has learnable param-
eters Wi ∈ Rc×h×3dB indicating that there are c kernels.
Each kernel has size h× 3dB convolving h adjacent vectors
to capture h-gram matching features. The 1-max-pooling
operation selects the largest value over the feature map of
a particular kernel. The outputs are with fixed size 1× gc.

The output matching vector M ∈ R1×2gc is the concate-
nation of the matching vectors of both u1 and u2 (M =
[Mu1;Mu2]), which is then fed into a simple linear layer for
ER decision.
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Loss Function for Entity Matching. For entity matching
task, we adopt the standard cross-entropy loss:

LM = C(y, h(W ,M)), (10)

where h(W ,M) is the predicted distribution based on the fi-
nal matching vector M , C(l, p) denotes cross-entropy func-
tion between l and p, and y is the annotated label.

Adaptive Blocking with Orthogonalized
Hyperplanes
Majority of prior ER models regard blocking as an isolated
process with the entity matching, and the blocking meth-
ods (e.g., key-based (Papadakis et al. 2020) or LSH-based
blocking (Ebraheem et al. 2018)) are designed to be data-
independent and matching-unaware. As such, they cannot
learn to flexibly fit the data, and utilise the results of match-
ing to rectify blocking-incurred error.

To tackle this, we use a learnable hash-based blocking
method, which could be aware of the matching features from
the shared BERT encoder.

Learnable Hash Model. The goal is to learn a mappingH
from BERT encoding space Rd to k-bit binary hash space,
namely,H : Rd → {+1,−1}k. Typically, the hash codes of
co-referent tuples should be close in Hamming space, and
the hash codes of dissimilar tuples should be far away.

The mapping H consists of k hash functions
h1, h2, ..., hk, each of which is a learnable hyperplane
through the origin and used for generating a binary value.
Formally,H can be defined as:

H(t) = sign(tX ), (11)

where X ∈ Rd×k is k learnable hyperplanes, and sign is the
signum function to binarize real values.

L2 Relaxation for Training. Directly optimizing Eq. 11
is infeasible since the signum function is not differentiable.
Thus, we adopt the L2 relaxation (Liu et al. 2016; Chen et al.
2018) as it is more training-efficient and has stellar results.

The main idea of L2 relaxation is to move the binary con-
straint from hash functions to a regularizer in the loss func-
tion, and use L2 distance in Euclidean space to approximate
the Hamming distance. With L2 relaxation, the mapping H
is relaxed toHr:

Hr(t) = tX . (12)
Given the encodings of two tuples ti and tj , and the label

y (y = 1 if they are co-referent; otherwise, y = 0), the loss
function is naturally designed to pull co-referent tuples clos-
er, while pushing unmatching tuples away from each other:

Lr
B =

1

2
y ||Hr(ti),Hr(tj)||2

+
1

2
(1− y)max(m− ||Hr(ti),Hr(tj)||2, 0)

+ γ(|||H(ti)| − 1||1 + |||H(tj)| − 1||1),

(13)

where ||·||1 and ||·||2 are the L1- and L2-norm, respectively.
|·| is the absolute operation, γ is the weight of the regularizer.
Notably, the last term is the regularizer (Liu et al. 2016) of
L2 relaxation, which aims to push the values to either +1 or
-1 to facilitate the binary constraint.

Hyperplanes Orthogonalization. The mappingH is sup-
posed to faithfully preserve two tuples’ similarity in the
BERT encoding space (i.e., isometry). To this end, the map-
ping should satisfy the following constraint:

||ti, tj ||2 = ||Hr(ti),Hr(tj)||2

=
√
(ti − tj)XXT(ti − tj)T

(14)

A sufficient condition makes Eq. 14 hold is XXT = I (I
is the identity matrix), indicating X is a unitary matrix. The
orthogonality of unitary matrix also ensures independency
of hash functions.

To orthogonalize hyperplanes, a straightforward solution
is adding a regularizer term Ro (Muja and Lowe 2014):

Ro = ||XXT − I||F , (15)
where || · ||F denotes the Frobenius-norm.

As the regularization is not strict, it may lead to subopti-
mal results. To keep X strictly unitary, we propose another
SVD-based approach. This approach decomposes X using
singular vector decomposition (SVD) (i.e., X = USV T) to
get three decomposed matrices, U , S, and V , where U and
V is d× d and k× k unitary matrix, respectively, and S is a
d × k diagonal singular value matrix. Then, we the replace
X with orthogonal matrix US. As we have

||Hr(ti),Hr(tj)||2 =
√
(ti − tj)XXT(ti − tj)T

=
√
(ti − tj)USV TV STUT(ti − tj)T

=
√
(ti − tj)US(US)T(ti − tj)T,

the discriminative ability of learned hyperplanes will be
kept, while at the same time, the L2 distance remains un-
changed. It is worth noting that, since X is not full rank,
back propagation through SVD is intractable. To make it
trainable, we assume X is a latent matrix, from which US
are decomposed. Initially, S is assigned with an identity ma-
trix1, and U and V are randomly initialized. During training,
gradients can be back-propagated on US. Then, we restore
the latent matrix X by multiplying the V with US. At this
step, the gradients are indirectly applied on X . Finally, the
new US and V can be fetched by decomposing X .

Hash Code for Prediction. In the predication phase, we
use the original definition of H in Eq. 11 to generate a k-bit
hash code for a tuple. To balance the trade-off between recall
and the number of matchings, we merge q-nearest buckets
(0 ≤ q ≤ 2 in common practice) into a block for searching
co-references.

Joint Learning of Blocking and Entity Matching
The final training objective of the MTL framework is to min-
imize the following loss function:

L = αLr
B + (1− α)LM , (16)

where Lr
B (Eq. 13) and LM (Eq. 10) is the loss for blocking

and entity matching, respectively. α is the weight to balance
the two tasks.

1We can keep S fixed to the identity matrix during training, but
leave it as free parameters could slightly improve performance.
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Datasets Domain Size # Pos.

Amazon-Google2 software 11460 962
BeerAdvo-RateBeer2 beer 450 68
iTunes-Amazon2 music 539 132
DBLP-ACM 2 scholar 12363 2220
Walmart-Amazon(B) 3 electronic 56.4 million 1154
Amazon-Google(B) 4 software 4.4 million 1300

Table 1: Evaluation datasets for our experiments.

Experimental Evaluation
We evaluated the effectiveness and efficiency of our model
on both entity resolution and blocking tasks.

Evaluation Datasets
Entity Matching. We used four widely used benchmark
datasets covering diverse domains such as products, mu-
sic, and scholar. Table 1 lists some statistics (the first four
datasets). Each dataset contains a list of after-blocking tuple
pair followed with gold labels. All datasets have been split
into train/dev/test subsets by Mudgal et al. (2018).

Blocking. We adopted two widely used datasets Walmart-
Amazon (B) and Amazon-Google (B). Their detailed statis-
tics are listed in Table 1 (the last two datasets). Following
Ebraheem (2018), the negative examples are randomly sam-
pled with a positive to negative ratio 1:100. All positive and
negative examples are shuffled and split into train/test with
the ratio 4:1.

Training Settings
Our model was implemented using Pytorch 1.4 with Python
3.7, and ran on an Nvidia Titan V GPU. We used the popular
transformers5 library for the pre-trained BERT model.

BERT Encoder. The BERT was initialized using a stan-
dard BERTBASE model6. Each tuple was tokenized with
pre-trained BERT tokenizer and packed with the form
[CLS]tuple tokens[SEP], and padded the tokenized se-
quences to a max length of 120.

Blocking Decoder. The blocking decoder was on the last-
layer [CLS] token. The hash bits k and tolerance threshold q
were set to 8 and 1. Following Liu et al. (2016),mwas set to
2k = 16, and the regularizer weight γ was 0.01. We under-
sampled negative instances to yield a 1:10 pos/neg rate.

Entity Matching Decoder. The entity matching decoder
was performed on the output of the 2-nd layer of BERT7.

2http://pages.cs.wisc.edu/∼anhai/data1/deepmatcher data/
3https://sites.google.com/site/anhaidgroup/useful-stuff/data
4https://dbs.uni-leipzig.de/research/projects/object matching/

benchmark datasets for entity resolution
5https://github.com/huggingface/transformers
6Compared with BERTLARGE, BERTBASE has similar results

while being more cost-efficient.
7Empirically, placing on 2nd layer has better results. The per-

formance discrepancies are less than 3 pts for all 12 layers.

The weights of query and key projections, and the final lin-
ear layer were initialized using Xavier with gain 1. Kernel
sizes of the convolutional layer was set to [1, 2, 3], each has
c = 128 kernels. The balance weight α = 0.2.

For optimization, we used AdamW (Loshchilov and Hut-
ter 2019) with an initial learning rate 10−5, eps 10−8, and
the gradient clipping 5; the batch size is set to 32; all other
hyper-parameters were their default values.

In each round, the model was run 10 times with a maxi-
mum of 50 epochs and reported the best performing models
as the result.

Evaluating Entity Matching
Baselines and Metrics. We compared our model with
seven state-of-the-art entity matching models, including a
feature-based model Magellan, and four DL-based models
RNN, Hybrid, MPM, and GraphER. Besides, we also com-
pared with two BERT-based models: the standard interactive
BERT, and a siamese BERT model SBERT (Reimers and
Gurevych 2019).

Following common practices, we use the F1 score on test
datasets as the metric.

Main Results. Table 2 presents the performance compari-
son of our BERT-ER model compared with baselines on the
four benchmark datasets. We can see that:

1) Our model significantly outperforms all baselines,
achieving new state-of-the-art results. On average, our mod-
el achieved a 1.45 pts improvement over the best baselines,
and 1.5 pts improvement over BERT. This demonstrates our
delayed and enhanced alignment paradigm is highly effec-
tive on alignment-focused tasks such as entity resolution:
one can get a even better results by judiciously delaying and
enhancing BERT’s deep-interaction part.

2) Compared with the four non-BERT DL model (i.e.,
RNN, MPM, Hybrid, and GraphER), the two BERT-based
models (i.e., BERT and BERT-ER) have an average 2.34 pts
improvement. This demonstrates the deep pretrained LM-
s are more expressive than traditional DL-based models.
Comparing deep-interactive model BERT-ER with shallow-
interactive model SBERT, although they are both BERT-
based, the performance gap is huge (over 25 pts). This in-
dicates the deep-interaction is vitally important for perfor-
mance improvements of ER tasks. Our enhanced alignment
is more effective than the shallow-alignment of SBERT.

3) Our model has more advantages on Amazon-Google
and iTunes-Amazon. While on DBLP-ACM, the perfor-
mances for all models are similar. The main reason is
that Amazon-Google and iTunes-Amazon are semantically
deep, as they have more textual attributes, whereas DBLP-
ACM is much cleaner and well-formatted. Finding co-
references on semantically deep datasets hinges on align-
ing informative “key” tokens (e.g., “upgrade” in Fig. 3) by
bridging vocabulary mismatch. Thus, the models with deep-
interaction (e.g., BERT and BERT-ER) are desired.

Ablation Study. We conducted an ablation study to eval-
uate the contribution of each component. Table 3 shows the
results. The biggest performance gaps happened in remov-
ing comparison functions. This indicates comparison fea-
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Model Amazon-Google BeerAdvo-RateBeer iTunes-Amazon DBLP-ACM

Magellan (Konda et al. 2016) 49.1 78.8 91.2 98.4
RNN (Mudgal et al. 2018) 59.9 72.2 88.5 98.3
Hybrid (Mudgal et al. 2018) 69.3 72.7 88 98.4
MPM (Fu et al. 2019) 70.7 - - -
GraphER (Li et al. 2020) 68.1 79.7 - -
SBERT (Reimers and Gurevych 2019) 44.8 42.1 74.1 94.3
BERT 73.1 87.5 93.1 98.2
BERT-ER 75.3 87.5 96.4 98.7

Table 2: F1 (%) of our model and baselines on entity matching task. Since the benchmark datasets only contains after-blocking
instances, to be consistent, our model is trained only with entity matching decoder.

Model Amazon-Google BeerAdvo-RateBeer iTunes-Amazon DBLP-ACM
F1 (%) ∆F1 F1 (%) ∆F1 F1 (%) ∆F1 F1 (%) ∆F1

BERT-ER 75.3 87.5 96.4 98.7
- Comparison functions 62.4 -12.9 61.1 -26.4 92.6 -3.8 98.3 -0.4
- Multi-gram kernel 73.9 -1.4 84.2 -3.3 94.3 -2.1 98.7 0.0
- Attribute embeddings 74.4 -0.9 83.3 -4.2 95.5 -0.9 97.3 -1.4
- Pre-training 65.8 -9.5 62.2 -25.3 87.1 -9.3 96.8 -1.9

Table 3: Ablation test for entity matching task. In each test, we remove a component from the full BERT-ER model.

tures are necessary for fine-grained comparison. Removing
pre-training incurs a roughly 11.5 pts performance decline.
This demonstrates that pre-training is vitally importance for
improving representation ability, especially for datasets with
small training instances, e.g., BeerAdvo-RateBeer. The ab-
sence of multi-gram kernels leads to roughly 1.7 pts decline,
which again demonstrates the usefulness of multi-gram fea-
tures for ER tasks. Removing attribute embeddings leads to
1.85 pts decline, which indicates involving structural infor-
mation could help identify co-references. From above we
can conclude that these components are essential and con-
tribute significantly to our model.

Evaluating Blocking
Baselines and Metrics. We tested two settings of our
model: ABOH-regularizer (with the regularizer of Eq. 15)
and ABOH-SVD (with SVD-based orthogonalization). We
adopted LSH as the baseline, as it represents the de-facto
blocking technique for DL-based ER systems (Ebraheem
et al. 2018; Papadakis et al. 2020).

The evaluation is based on two metrics that are widely
used by prior research (Michelson and Knoblock 2006; Pa-
padakis et al. 2020): Pair Completeness (PC) and Reduction
Ratio (RR). PC corresponds to recall, evaluating the ratio of
co-references assigned with the same blocks against the to-
tal number of co-references. RR measures the reduction in
the number of pairwise comparisons against the brute-force
approach. Higher values for PC indicate higher effectiveness
of the blocking method, while higher values for RR indicates
higher efficiency.

Main Results. Figs. 4(a) and 4(b) show RRs and PC-
s under different bits size k on Walmart-Amazon (B) and
Amazon-Google (B), respectively. We can see that the gen-
eral trends for both datasets are similar: with the increasing
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Figure 4: RRs and PCs of ABOH-SVD, ABOH-regularizer,
and LSH against various bits size k.

of k, RRs quickly raise to a flat peak region and PCs grad-
ually decreases. This is due to the fact that the increasing
bit size exponentially increases the number of hash buckets,
which makes more options of assignment. While at mean-
time, it reduces the likelihood of two true co-referent tuples
being placed in the same block.

All the three models have similar RRs in both Figs. 4(a)
and 4(b). With more than 8 bits, all models have a high RR
(more than 0.85), indicating they avoid most of comparisons
and only need to compare the remaining few. For PCs, the
two variants of ABOH are better than LSH nearly in all cas-
es. Take k = 8 as an example, ABOH-SVD is roughly 9 pts
and 3 pts better on the two datasets, respectively. ABOH-
regularizer is roughly 2 pts better than LSH. Further, the ad-
vantage of ABOH is more obvious on Walmart-Amazon (B).
We believe the main reason is that, the adaptive and orthog-
onalized hyperplane could better use the expressiveness of
BERT. Compared with ABOH-regularizer, ABOH-SVD has
a better PC (on average 3.75 pts) but slightly lower RR (2.1
pts). Since our entity matching decoder is efficient enough,
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a model with better PCs (ABOH-SVD) is preferred. The ex-
perimental results demonstrate our blocking method could
drastically reduce the number to be matched, in the mean-
while, keeps a high recall.

Version Walmart-Amazon (B) Amazon-Google (B)
RR PC F1 RR PC F1

MTL 86.2 96.1 94.9 88.7 91.2 96.0
Matching - - 94.2 - - 95.6
Blocking 86.5 94.1 - 85.4 90.0 -

Table 4: Performance (%) comparison of the multi-task and
single-task BERT-ER.

Effectiveness of the MTL Scheme
To evaluate the effectiveness of the MTL scheme, we com-
pared BERT-ER’s MTL version with its single-task learning
versions. Table 4 presents the results. From Table 4, we can
see that by joint-learning blocking and entity matching, both
tasks have considerable improvements comparing with sole-
ly learning one. On average, the F1 scores of entity matching
improve 0.55 pt. For blocking, owing to being aware of fine-
grained matching features, the improvements are more ob-
vious: RR and PC improves 1.5 pts and 1.6 pts, respectively.
This demonstrates that our MTL framework can effectively
improve model’s generalization ability to facilitate the per-
formance improvements of both tasks.

Model Phase WA (B) AG (B) Speed

BERT-ER

Encoding 43.69 s 22.38 s 247.80 t/s
Blocking 19.42 s 6.56 s 601.06 t/s
Matching 18.48 m 98.16 s 9003.06 p/s

Total 19.54 m 127.1 s -
BERT Total 99.18 h 7.73 h 157.90 p/s

Table 5: The empirical decoding time and speed of BERT-
ER and BERT on full-size WA(B) and AG(B) datasets. t/s:
# of tuples per second; p/s: # of pairs per second.

Empirical Efficiency
Table 5 presents the empirical time cost and decoding speed.
We can see that:

1) Due to being able to integrate the blocking techniques,
BERT-ER is far more efficient than BERT: decoding WA
(B) and AG (B) requires 304× less time (20 minutes v.s. 99
hours) and 219× less time (3 minutes v.s. 7.7 hours), respec-
tively. Moreover, the encoding phase of BERT-ER could be
pre-computed offline to further accelerate the processing.

2) The decoding speed of BERT-ER’s matching phase is
57× faster than BERT’s. This indicates our model will still
have a better efficiency, even if BERT could be equipped
with the same blocking module.

3) The matching phase is the most time-consuming one
among the three phases of BERT-ER. This is due to the fact
that, although the blocking could effectively reduce nearly

90% of comparisons, considering its enormous cardinality
(WA (B) and AG (B) has 4.4 million and 56.4 million pairs,
respectively), the remaining 10% could still be large. For-
tunately, the matching phase is efficient enough, it will not
incur too much overhead.

This evaluation demonstrates that our model is of high
efficiency, and able to work in real ER scenarios.

Related Works
Entity Matching. Prior works can be classified as declara-
tive rules based, crowd-sourcing-based, and machine learn-
ing (ML) based. The rule-based methods adopted declarative
matching rules that are either pre-defined (Hernández and
Stolfo 1995)or synthesized (Singh et al. 2017) for match-
ing tuple pairs. The crowd-sourcing-based methods (Wang
et al. 2012; Gokhale et al. 2014; Firmani, Saha, and Srivas-
tava 2016) employ crowd-sourcing workers to manually an-
notate tuples. However, both methods highly rely on human
efforts. ML-based methods train different classifiers, such as
SVM (Bilenko and Mooney 2003), active learning (Sarawa-
gi and Bhamidipaty 2002), MLP (Ebraheem et al. 2018), on
manually collected (Konda et al. 2016) or deep neural fea-
tures (Mudgal et al. 2018; Ebraheem et al. 2018; Fu et al.
2019; Li et al. 2020). Recently, BERT (Devlin et al. 2019)
and DITTO (Li et al. 2021) deliver remarkable effectiveness
on many ER datasets. However, they are computationally ex-
pensive as they need pair-wise deep interactions.
Blocking. Prior blocking methods could be classified
as rule-based, sorting-based, and hash-based. Rule-based
methods group tuples by static keys or decision rules that
are derived by experts or from mere heuristics. Sorting-
based methods (Papadakis et al. 2015; Kenig and Gal 2013)
group tuples by efficiently sorting their textual similarities
measured by various similarity functions. Hash-based ap-
proaches adopt hashing techniques (e.g., Min-Hashing (S-
teorts et al. 2014; Wang, Cui, and Liang 2015) and LSH (E-
braheem et al. 2018)) to map tuples into hash buckets. E-
braheem et al. (Ebraheem et al. 2018) introduced LSH into
deep-learning based ER system. Zhang et al. (Zhang et al.
2020) proposed tuple signatures and use LSH to perform fast
NN search. Hashing-based methods can be applied on deep-
neural representations. However, the current blocking tech-
niques are matching-unaware, which cannot utilize match-
ing features to further improve performances.

In contrast, our model integrates a learnable blocking
module to improve the efficiency of BERT. And use a MTL
framework to make the blocking matching-aware.

Conclusion
In this paper, we propose a novel BERT-based ER model. By
delaying and enhancing BERT’s interaction part, our mod-
el is able to integrate an adaptive blocking module. Further,
the blocking and matching are integrated into a MTL frame-
work to facilitate both tasks. Compared to a standard BERT,
our model improves the effectiveness by 1.5 pts, while being
219× ∼ 304× faster.
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