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Abstract

Natural language inference (NLI) is a fundamental NLP task,
investigating the entailment relationship between two texts.
Popular NLI datasets present the task at sentence-level. While
adequate for testing semantic representations, they fall short
for testing contextual reasoning over long texts, which is a
natural part of the human inference process. We introduce
ConTRoL, a new dataset for ConTextual Reasoning over
Long Texts. Consisting of 8,325 expert-designed “context-
hypothesis” pairs with gold labels, ConTRoL is a passage-
level NLI dataset with a focus on complex contextual reason-
ing types such as logical reasoning. It is derived from com-
petitive selection and recruitment test (verbal reasoning test)
for police recruitment, with expert level quality. Compared
with previous NLI benchmarks, the materials in ConTRoL
are much more challenging, involving a range of reasoning
types. Empirical results show that state-of-the-art language
models perform by far worse than educated humans. Our
dataset can also serve as a testing-set for downstream tasks
like checking the factual correctness of summaries.

Introduction
Natural languages are powerful tools for reasoning. In NLP,
natural language inference (NLI) has attracted surging re-
search interests (Bowman et al. 2015; Williams, Nangia, and
Bowman 2018; Bhagavatula et al. 2020). The task is to de-
termine whether a hypothesis h can reasonably be inferred
from a premise p. Thanks to the generalizability of the NLI
framework (i.e., nearly all questions about meaningfulness
in language can be reduced to questions of entailment and
contradiction in context), NLI can serve as a proxy to gen-
eral tasks such as natural language understanding (NLU).
As a result, the NLI task is constantly employed as a testing
ground for learning sentence representation as well as eval-
uating language models, with the expectation of benefiting
downstream applications.

Large-scale NLI datasets have been collected via crowd-
sourcing. Existing benchmarks (Bowman et al. 2015;
Williams, Nangia, and Bowman 2018; Dagan, Glickman,
and Magnini 2005; Khot, Sabharwal, and Clark 2018a) han-
dle the task at the sentence-level, generating labelled sen-
tence pairs by probing into the essence of lexical and com-
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Figure 1: An example of the ConTRoL dataset. ( 3 indicates
the correct answer.)

positional semantics. These benchmarks explore rich fea-
tures of sentence meaning, testing various aspects of se-
mantic representation. With the advance of contextualized
embeddings such as BERT (Devlin et al. 2019), pre-trained
language models achieve competitive results. The state-of-
the-art models can even reach human-level performance.

Contextual reasoning is essential to the process of human
cognition, where inference is made based on contextual in-
formation and a collection of facts (Giunchiglia 1992). Infer-
ring hidden facts from context is an indispensable element of
human language understanding. Contextual reasoning is typ-
ically performed on the passage level, where multiple steps
may be necessary for inferring facts from given evidences.
It has been investigated by NLP tasks such as machine read-
ing (Lai et al. 2017; Sun et al. 2019a), retrieval-based dia-
logue (Wu et al. 2017). However, dominant NLI benchmarks
(Bowman et al. 2015; Williams, Nangia, and Bowman 2018)
investigate the relationship of two sentences, with relatively
less attention being payed to the exploration of grounded
logical inference (Bhagavatula et al. 2020; Clark, Tafjord,
and Richardson 2020).

We investigate contextual reasoning for NLI by making
a dataset that consists of 8,325 instances. One example is
shown in Figure 1. In this example, the premise consists of
several facts concerning a set of shows, which can serve
as a context for evidence integration and reasoning. The
truthfulness of the hypotheses are determined by reasoning
over multiple sentences. Various types of contextual reason-
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Dataset Task Reasoning Context Source
SQuAD (Rajpurkar et al. 2016) Reading Comprehension 3 Passage Wikipedia

WIKIHOP (Welbl, Stenetorp, and Riedel 2018) Reading Comprehension 3 Document Wikipedia
HOTPOTQA (Yang et al. 2018) Reading Comprehension 3 Document Wikipedia
Cosmos QA (Huang et al. 2019) Reading Comprehension 3 Passage Webblog

Social IQA (Sap et al. 2019) Reading Comprehension 7 Sentence Social
WINOGRANDE (Sakaguchi et al. 2020) Coreference Resolution 7 Sentence Diverse
CommonsenseQA (Talmor et al. 2019) Reading Comprehension 7 Sentence Diverse

MuTual (Cui et al. 2020) Next Utterance Prediction 3 Dialogue Exam
ReClor (Yu et al. 2020) Reading Comprehension 3 Passage Exam

LogiQA (Liu et al. 2020a) Reading Comprehension 3 Passage Exam
RTE (Dagan, Glickman, and Magnini 2005) Natural Language Inference 7 Sentence Diverse

SNLI (Bowman et al. 2015) Natural Language Inference 7 Sentence Captioning
WNLI (Wang et al. 2018) Natural Language Inference 7 Sentence Fiction
QNLI (Wang et al. 2018) Natural Language Inference 7 Sentence Wikipedia

MultiNLI (Williams, Nangia, and Bowman 2018) Natural Language Inference 7 Sentence Diverse
Dialogue NLI (Welleck et al. 2019) Natural Language Inference 7 Sentence Persona

SciTaiL (Khot, Sabharwal, and Clark 2018a) Natural Language Inference 7 Sentence Science
Adversarial NLI (Nie et al. 2020) Natural Language Inference 7 Paragraph Diverse

AlphaNLI (Bhagavatula et al. 2020) Natural Language Inference 7 Sentence Diverse
ConTRoL Natural Language Inference 3 Passage Exam

Table 1: Comparison between our dataset and existing benchmarks. “Reasoning” refers to contextual reasoning.

ing are considered in the dataset, with more examples be-
ing shown in Figure 2 We name our open-domain dataset
ConTextual Reasoning over Long Texts (ConTRoL), which
is a passage-level natural language inference dataset with
gold label data. It differs from the existing NLI datasets
in the following three main aspects: (1) the materials are
sourced from verbal reasoning exams which are expert-
designed rather than crowdsouced; (2) they inspect the abil-
ities of various reasoning types; (3) the contexts are more
complex than previous datasets with longer spans.

We evaluate the state-of-the-art NLI models to establish
baseline performances for ConTRoL. Experimental results
demonstrate a significant gap between machine and human
ceiling performance. Detailed analysis is given to shed light
on future research. Our dataset and results are released at
https://github.com/csitfun/ConTRoL-dataset.

Related Work
Natural Language Inference
The task of text entailment was introduced in the PASCAL
Recognizing Textual Entailment (RTE) challenges (Dagan,
Glickman, and Magnini 2005), which deals with relationship
of sentence pairs. On the third RTE challenge (Giampiccolo
et al. 2007), a very limited number of longer texts with mul-
tiple sentences were incorporated for more comprehensive
scenarios. This shares a similar idea to our work, yet the
challenge does not give multi-sentence materials at scale for
detailed study.

Recently, the most widely used NLI benchmarks include
the Stanford Natural Language Inference (SNLI) dataset
(Bowman et al. 2015), and the subsequently expanded
MultiNLI (Williams, Nangia, and Bowman 2018), bring-
ing sentences of various genres into the original SNLI.

MultiNLI is included in the GLUE benchmark (Wang et al.
2018) and is widely used in evaluating language mod-
els’ performance. Other NLI datasets include the Question-
answering NLI (QNLI) (Wang et al. 2018), the Winograd
NLI (WNLI) (Wang et al. 2018), the SciTail (Khot, Sabhar-
wal, and Clark 2018b) etc., which focuses on different as-
pects of knowledge. While all the above datasets are on the
sentence-level, we investigate NLI for long texts.

Dialogue NLI (Welleck et al. 2019) features a persona-
based dialogue structure for making inference on the cur-
rent utterance based on previous dialogue history. Similar
to our dataset, discourses involve multi-sentence context as
premises. However, they do not consider relationships that
require more than two sentences to express, nor is logical
reasoning explored.

The multiple premise entailment (MPE) task (Lai, Bisk,
and Hockenmaier 2017) is a variant of the entailment task
where each hypothesis is paired with a set of independently
written premise sentences. It is similar to our dataset in the
spirit of using longer contexts, while the premise sentences
in the MPE task are derived from image captioning. The
describing sentences are fragmented and not in order. The
dataset exams different types of semantic phenomena that
are useful for inference, which is different from our dataset
fundamentally. Similarly, Adversarial NLI (Nie et al. 2020)
holds the simple intuition that longer contexts lead to harder
examples, which coincide with our idea to some extent. The
Adversarial NLI dataset is similar to ours in that longer con-
texts are considered in the premises. However, we differ
in context length and reasoning types. The context of our
dataset is much longer and with multiple paragraphs being
involved. In contrast, Adversarial NLI has single-paragraph
contexts only. In addition, it does not test logical reasoning,
which is the main focus of ConTRoL. To our knowledge, we
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are the first to introduce a passage-level NLI dataset requir-
ing comprehensive grounded logical reasoning.

AlphaNLI (Bhagavatula et al. 2020) explores the prob-
lem of abductive reasoning. It asks for the most plausible
explanation given observations from two narrative contexts.
Similar to our dataset, investigating the nature of human rea-
soning is the target of AlphaNLI. However, the AlphaNLI
challenge resembles the classical formulation of abductive
reasoning, which is different from the reasoning types we
are focused on. In addition, both premises (i.e., observation
contexts) in AlphaNLI are written in single sentences. In
contrast, our dataset consists of multi-paragraph premises.

Clark, Tafjord, and Richardson (2020) investigated de-
ductive reasoning by synthesizing a dataset related to NLI.
The input is a set of facts and a set of rules that explain
the facts, which can be viewed as a premise, together with
a fact that can be viewed as a hypothesis, and the output
is a binary class true or false. Compared with their dataset,
our work differs in two aspects. First, we consider more rea-
soning types. Second, ConTRoL is a multi-paragraph NLI
dataset with human-written inputs.

Contextual Reasoning
Long texts with multiple paragraphs have been explored in
reading comprehension. In particular, there have been chal-
lenges that examine evidence integration over multiple text
passages (Welbl, Stenetorp, and Riedel 2018; Yang et al.
2018; Rajpurkar, Jia, and Liang 2018), and challenges that
focus on commonsense reasoning (Talmor et al. 2019; Cui
et al. 2020), including social commonsense (Sap et al. 2019)
and external knowledge (Huang et al. 2019; Sakaguchi et al.
2020). Different from these datasets, ConTRoL examines
more complex contextual reasoning types such as logical
reasoning.

There have been reading comprehension datasets that
examine logical reasoning. LogiQA (Liu et al. 2020a) is
sourced from public service exams. It focuses on linguistic
reasoning questions typically featured with a question and
four possible answers. ReClor (Yu et al. 2020) is a read-
ing comprehension dataset that is sourced from the GMAT
and LSAT test. Similar to our dataset, these datasets exam-
ine a range of different logical reasoning types. Different
from these benchmarks, ConTRoL takes the form of NLI,
which is a more fundamental linguistic task and relevant to
different downstream tasks. The correlation and differences
between exisiting datasets are shown in Table 1.

Dataset
Crowdsourcing has been a widely-adopted practice for de-
veloping large-scale NLI datasets (Bowman et al. 2015;
Williams, Nangia, and Bowman 2018; Nie et al. 2020).
However, producing a high-quality dataset addressing com-
plex logical reasoning can be difficult for crowdsource work-
ers. Annotation artefacts exist in crowdsourced datasets, for
the annotation protocols encourage workers to adopt heuris-
tics to generate hypotheses quickly and efficiently (Guru-
rangan et al. 2018). To avoid such issues, we source our
dataset from examinations, and in particular senior aptitude
tests (verbal reasoning test), which are designed by experts.

ConTRoL
Construction Method Exams

Context Type Passage
# of passages 1,970

# of premise-hypothesis pairs 8,325
# of multi-paragraph 4,171

Avg. length of multi-paragraph 757
# of single-paragraph 4,154

Avg. length of single-paragraph 148
Vocab size (premise) 54,265

Vocab size (hypothesis) 14,323
Avg. premise length 452

Avg. hypothesis length 12
Lexical overlap (Entailment) 4.87%

Lexical overlap (Neutral) 4.19%
Lexical overlap (Contradiction) 5.49%

Table 2: Data statistics of ConTRoL.

Data Collection and Statistics
We collect our data from publicly available online practice
tests, which include verbal logical reasoning tests in the Po-
lice Initial Recruitment Test (PIRT), verbal reasoning tests
used by the Medical College Admission Test (MCAT) and
University Clinical Aptitude Test (UCAT), as well as ver-
bal aptitude tests adopted by corporations’ employee recruit-
ment & selection online test. Unlike reading comprehension
tests, which can be diverse both in question types and op-
tions, questions in the original verbal reasoning tests are
similar in struct to NLI tests, where a premise and a hypothe-
sis are given, and the answer is a choice from three options:
true, false and cannot say. This corresponds to the three-
label setting of the NLI task and we can easily convert the
three answer choices into ENTAILMENT, CONTRADICTION
and NEUTRAL respectively.

The verbal reasoning tests require exam-takers to com-
prehend meaning and significance, assess logical strength,
make valid inference, and identify a valid summary, inter-
pretation or conclusion. The subjects of the passages are
drawn from a range of fields, such as current affairs, busi-
ness, science, the environment, economics, history, meteo-
rology, health and education. The questions are of high qual-
ity, advanced in difficulty level, used in exams such as police
initial selection and other highly intellectual practices’ can-
didate recruitment.

The detailed statistics of ConTRoL are shown in Table 2.
After removing all duplicated questions, we obtain 8,325
context-hypothesis pairs. We also calculate the lexical over-
lap between context and hypothesis, finding only 4.87%
overlap in the ENTAILMENT relationship, and 5.49% in
the CONTRADICTION relationship. This suggests that Con-
TRoL can be difficult to solve by plain lexical matching.

Data Format
The data format of ConTRoL follows existing NLI bench-
marks (Bowman et al. 2015; Williams, Nangia, and Bowman
2018), where each instance contains a premise, a hypothe-
sis, and a label from ENTAILMENT, NEUTRAL and CON-

13390



Figure 2: Reasoning types in ConTRoL (Reasoning clues are highlighted in the context).

TRADICTION. Different from existing datasets, the premises
are much longer, in one or more paragraphs. In addition, for
each premise, three or more hypotheses are given, which is
another distinction from former NLI datasets.

Reasoning Types
We manually categorize the test instances by the reasoning
type, which can be described as follows:
• Coreferential Reasoning over Long Texts

Coreferential reasoning (Ye et al. 2020) is a form of rea-
soning over multiple mentions. Long text can accommo-
date complex relationships between noun phrases, which
makes coreferential reasoning crucial for the coherent un-
derstanding of texts.

• Verbal Logical Reasoning
Verbal logical reasoning (Liu et al. 2020a) is the ability
to examine, analyze, and critically evaluate arguments as
they occur in ordinary language. In contrast to formal log-
ical reasoning, most of which uses abstract diagrammati-
cal cues, verbal logical reasoning concerns the logical in-
ference of human language. Deep logical reasoning can
be necessary in comprehending long texts.

• Temporal and Mathematical Reasoning
Time and sequential cues of events and requires the abil-
ity to reason about time and do the necessary mathemati-
cal calculation. Temporal reasoning (Nakhimovsky 1987)
is the process of extracting temporal cues and combining
them into a coherent temporal view. Various types of tem-
poral information can be found in ConTRoL.

• Information Integration over Paragraphs

Multi-step reasoning (Liu et al. 2020b; Wang et al. 2019;
Welbl, Stenetorp, and Riedel 2018) is the ability to re-
trieve and combine information from multiple paragraphs
or multiple documents. For each hypothesis, readers find
the most relevant paragraphs in a premise through an it-
erative (multi-step) process between the contexts and the
hypotheses.

• Analytical Reasoning
Analytical reasoning (Williams et al. 2019) is the ability
for problem solving to consider a group of facts and rules,
and determine the validity of new facts. The fact sets are
based on a single or multiple paragraphs, reflecting the
kinds of detailed analyses of relationships and sets of con-
straints. Reasoning is based on what is required given the
scenario, what is permissible given the scenario, and what
is prohibited given the scenario.

Examples of the above reasoning types can be found in
Figure 2. Among all the reasoning types, logical reason-
ing takes 36.2% of all the test instances, followed by in-
formation integration, which takes 32.6%. The proportion
of coreferential reasoning, analytical reasoning and tempo-
ral reasoning are 26.0%, 12.8% and 12.4%, respectively. It
is also worth noticing that one context-hypothesis pair may
contain more than one reasoning type, under which circum-
stance we take the most significant one into the statistics.

Models
We establish several strong baseline methods using the state-
of-the-art pre-trained language models.
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Overall Entailment Neutral Contradiction
Acc Micro F1 P R F1 P R F1 P R F1

Human 87.06 93.15 94.83 95.65 95.24 93.33 91.21 92.26 93.02 90.91 91.95
Ceiling 94.40 97.26 99.16 99.16 99.16 97.72 93.75 95.69 96.09 97.79 96.93

BERT-base 47.39 46.22 43.84 54.40 42.45 39.67 51.07 50.21 41.65 52.68 46.00
BERT-large 50.62 49.49 45.15 59.32 45.96 44.21 53.52 53.19 44.68 56.27 49.31
RoBERTa 45.90 45.67 40.99 51.24 45.38 47.93 44.34 45.96 44.19 47.54 45.67

Longformer 49.88 46.22 43.24 58.88 45.64 46.28 54.74 46.81 44.71 56.74 46.22
BART 56.34 54.18 50.23 67.32 49.12 44.21 62.99 59.57 47.03 65.09 53.85

BART-NLI 45.02 42.33 39.85 53.49 40.87 43.80 46.79 43.83 41.73 49.92 42.30
BART-NLI-FT 60.95 57.41 62.58 61.54 58.67 42.15 78.29 56.17 50.37 68.91 57.39

Table 3: Experiment results on ConTRoL. BART-NLI indicates training on SNLI, MultiNLI and Adversarial NLI and testing
on ConTRoL. BART-NLI-FT indicates BART-NLI followed by a fine-tuning step on ConTRoL.

Figure 3: The model structure of BERT and BART. (“E” rep-
resents ENTAILMENT, “N” represents NEUTRAL, “C” rep-
resents CONTRADICTION

Pre-trained Language Models

BERT (Devlin et al. 2019) is a Transformer-based (Vaswani
et al. 2017) language model. During pre-training, BERT uses
a masked language modeling objective. The basic idea is to
train a model to make use of bidirectional context informa-
tion for predicting a masked token, so that linguistic knowl-
edge can be collected from large texts. It has been shown that
such a language model contains certain degrees of syntac-
tic (Goldberg 2019), semantic (Clark et al. 2019), common-
sense (Cui et al. 2020) and logical reasoning (Clark, Tafjord,
and Richardson 2020) knowledge.

RoBERTa (Liu et al. 2019) extends BERT using a more
dynamic sentence masking method.

Longformer (Beltagy, Peters, and Cohan 2020) Tradi-
tional self-attention operation are unable to process long
sequences, which scales quadratically with the sequence
length. The aforementioned Transformer-based models con-
strain the input to 512 tokens. To address this limitation,
Longformer adopts sliding window attention with global at-
tention to replace the self-attention mechanism in pretrained
Transformers.

BART (Lewis et al. 2020) is a denoising autoencoder
for pre-training sequence-to-sequence models by combining
bidirectional and auto-regressive Transformers.

NLI Model
The NLI model structures of BART and BERT-based are il-
lustrated in Figure 3. For BERT-based models (i.e., BERT,
RoBERTa, XLNet and Longformer), following Devlin et al.
(2019), given a premise P and a hypothesis h, we concate-
nate premise-hypothesis pair as a new sequence [CLS]+p+
[SEP ] + h + [SEP ], where [CLS] and [SEP] are special
symbol for classification token and separator token. After
pre-training model encoding, the last layer’s hidden repre-
sentation from the [CLS] token is fed in an MLP+softmax
for classification. For BART, we feed the same sequence to
both the encoder and the decoder, using the last hidden state
for classification. The class that corresponds to the highest
probability is chosen as model prediction.

Implementation Details
We randomly split the dataset into training, development,
and test set with the ratio of 8:1:1. All models are trained
for 10 epochs. We find hyper-parameters using grid search:
batch size ∈ {8, 16, 32} learning rate ∈ {1e−5, 2e−5, 3e−
5, 4e− 5, 5e− 5} and gradient accumulate step ∈ {1, 2, 4}.
We set the max length to 512 tokens for all models except
Longformer, of which 3,000 tokens are the max length we
take. Models with the best performance on the development
set are used for testing.

Evaluation
Following the NLI benchmark setting (Bowman et al. 2015;
Williams, Nangia, and Bowman 2018; Welleck et al. 2019),
we employ the overall accuracies as the main evaluation
method. Furthermore, to give more detailed analysis, we
also calculate precision (P), recall (R) and F1-score (F1) on
the ENTAILMENT, NEUTRAL and CONTRADICTION labels.

Human Performance
To measure human performance on the ConTRoL dataset,
we randomly select 300 context-hypothesis pairs from the
test set. Four testees are recruited. The testees are well ed-
ucated, two of them are post-graduate students and two of
them have PhD degrees. We report the human performance
by the mean score and standard deviation. The human ceil-
ing performance is obtained by considering the proportion
of questions with at least one correct answer.
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Benchmark # Train # Test BERT SOTA Model SOTA Performance Human
MultiNLI 393k 20k 85.9 ERNIE (Sun et al. 2019b) 91.9 92.0

QNLI 105k 5.4k 92.7 DeBERTa (He et al. 2020) 99.2 91.2
RTE 2.5k 3k 70.1 DeBERTa (He et al. 2020) 93.2 93.6

WNLI 634 146 65.1 ERNIE (Sun et al. 2019b) 95.9 95.9
ConTRoL 8.3k 804 50.6 BART-NLI-FT 61.0 94.4

Table 4: The state-of-the-art performances of popular NLI benchmarks (accuracy%).

Figure 4: Performance across different context lengths.

Reasoning Type BERT BART
Coreferential Reasoning 74.64 74.92

Analytical Reasoning 67.96 69.65
Temporal Reasoning 56.44 57.34

Information Integration 40.07 43.39
Logical Reasoning 40.76 43.20

Table 5: Performance across reasoning types (accuracy%).

Results
Table 3 shows the main results. As shown in the table, BERT
gives an overall accuracy of 50.62% and F1 of 49.49%;
RoBERTa gives a higher accuracy of 45.90% and F1 of
45.67%; Longformer gives an overall accuracy of 49.88%
and F1 of 46.22%; The top reported performance is given
by the BART model, with a 56.34% accuracy score. Com-
pared with human performance, the performance of BART
is lower by approximately 30%. The human performance
on the ConTRoL surpasses SOTA NLI models by a large
margin, which demonstrate limitations for the computational
models for solving contextual reasoning tasks.

As shown in Table 4, we see a huge performance drop
when the SOTA model results on ConTRoL are compared
to their reported score on previous NLI dataset (Liu et al.
2019). In contrast, similar to the existing benchmarks, hu-
man testees are able to achieve high scores with proper train-
ing. Different from datasets that emphasise fact extraction
and verification, the inference of ConTRoL relies not only
on the long-term dependency of texts, but the contextual rea-
soning abilities regarding long contexts.

To further understand the phenomena, we conduct various
qualitative and quantitative detailed analysis on ConTRoL.

Performance Across Different Relationships
We first compare human performance and model perfor-
mance across different relationships. Interestingly, as shown
in Table 3, humans are good at deciding the entailment and
contradiction relationship, while struggling when examining
the relationship of neutral. This can be because humans tend
to associate external irrelevant knowledge to the reasoning
process, which is not expressed in the context. The compu-
tational models seem not to bear this burden, which gives
similar results across the three labels.

Performance Across Different Context Lengths
As mentioned earlier, aside from single-paragraph context-
hypothesis pairs, there are multi-paragraph context-
hypothesis pairs in our dataset. We conduct experiments
on the single-paragraph and multi-paragraph instances
separately, which gives us the insight into how context
length affects the performance of the transformer-based
NLI models. The accuracy of the BERT model is 40.30%
on multiple-paragraph instances while 51.17% on single-
paragraph instances. We also conduct fine-grained analysis
concerning the context length. The result are shown in
Figure 4. When the context length increases, the model per-
formance drops accordingly. The best model BART drops
from 65% (shorter than 500 words) to 40% (longer than
3,000 words), demonstrating that ConTRoL heavily rely on
passage-level reasoning ability, rather than sentence-level
reasoning ability.

Performance Across Different Reasoning Types
Table 5 gives the performance over the 5 reasoning types.
BERT and BART have similar trends across different rea-
soning types. In particular, on the coreferential reasoning
type, BERT and BART give accuracies of 74.64% and
74.92%, respectively. On the other hand, both models are
more confused on reasoning types including multi-step rea-
soning and logical reasoning. This can be because multi-
step reasoning can be correlated with longer context length,
and information integration is processed over multiple para-
graphs. Finally performing inductive and deductive reason-
ing is difficult for current models, making logical reasoning
a difficult endeavour (Liu et al. 2020a).

Transfer Learning
Recent studies have shown the benefit of fine-tuning on sim-
ilar datasets for knowledge transfer (Huang et al. 2019). We
explore three related NLI datasets for knowledge transfer,
SNLI (Bowman et al. 2015), MultiNLI (Williams, Nangia,
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Figure 5: Ablation study on different models.

and Bowman 2018) and Adversarial NLI (Nie et al. 2020).
As shown in the last two rows of Table 3, BART-NLI only
achieves 45.0%, which shows that ConTRoL is different
from existing NLI benchmarks. After fine-tuning on Con-
TRoL, BART-NLI-FT achieves the state-of-the-art results,
which demonstrates that general knowledge from traditional
NLI benchmarks are beneficial to the performance of Con-
TRoL.

Discussion
Corpus Bias
Recent studies show that pre-trained language models can
make the right prediction by merely looking at the context
(McCoy, Pavlick, and Linzen 2019). The hypothesis-only
bias is common in large-scale datasets for NLI, particularly
for benchmarks constructed by crowdsourcing methods. We
conduct an ablation experiment on ConTRoL. Figure 5
shows the comparison of BERT, Longfomer and BART.
BERT gives a 36.07% accuracy with hypothesis-only, which
is slightly higher than theoretical random guess; Longformer
gives a 44.15% accuracy, surpass BART by a small margin,
which gives a 43.41% accuracy.

Context-only results are also calculated to further ex-
amine annotation artefacts in the ConTRoL dataset. BERT
gives 33.09% accuracy; BART gives 35.94% accuracy;
Longformer also gives a better performance than BERT and
BART, which gives 38.56% accuracy. Longformer gives a
better score on context-only and hypothesis-only ablation,
which can be because Longformer sees more context than
the other two models. The ablation results are lower than the
results without ablation, which indicates that models need
to look at both the contexts and the hypotheses to make
the correct prediction. Thus we conclude that the ConTRoL
dataset is exempt from significant annotation biases thanks
to expert-designed questions.

Case Study
Figure 6 shows two cases that demonstrate the challenge in
ConTRoL. P1 of Figure 6 is a representative example of the
challenges brought by logical reasoning. The context con-
cerns three athletes and three sports. We need to decide their
places in a competition. The lexical overlap between the

Figure 6: Example mistakes of BART ( 3 indicates the cor-
rect label and 7 indicates the BART prediction. Reasoning
clues are highlighted in the context.)

premise and the hypothesis is very low. BART incorrectly
chooses the Neutral label, while we can infer from the con-
text that Josie is actually not the best with the javelin, which
can only be done by deductive reasoning. Information inte-
gration is difficult for BART.

P2 of Figure 6 shows a typical example of challenge
brought by information integration, where the hypothesis
is made considering the whole passage. We know from the
first sentence that Tuisdale holds the only bank in the region.
The hypothesis talks about the possible aftermath of the rob-
bery, BART incorrectly chooses the Neutral label for it over-
looks the information that Tuisdale only has one bank.In
both cases, the correct answer is not explicitly mentioned
in the premise, but need contextual reasoning to infer.

Conclusion

We presented the ConTRoL dataset, a passage-level NLI
benchmark that consists of different contextual reasoning
types. Compared with existing NLI benchmarks, the con-
text length of the premise is bigger by a large margin, and
reasoning skills such as logical reasoning, analytical rea-
soning and multi-step reasoning are required. Experiments
show that state-of-the-art NLI models perform poorly on the
ConTRoL dataset, far below human performance. Ablation
study indicates that the data does not suffer from heavy an-
notation artefacts and can be served as a reliable NLI bench-
mark for future study. To our knowledge, we are the first to
introduce a passage-level NLI dataset that highlights contex-
tual reasoning.
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