
Towards Faithfulness in Open Domain Table-to-text Generation
from an Entity-centric View

Tianyu Liu 1 ∗, Xin Zheng 2 3 ∗, Baobao Chang 1 4, Zhifang Sui 1 4

1 Ministry of Education (MOE) Key Laboratory of Computational Linguistics, School of EECS, Peking University
2 Chinese Information Processing Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China
4 Pengcheng Laboratory, Shenzhen, China

tianyu0421@pku.edu.cn, zheng xin@bupt.edu.cn, chbb@pku.edu.cn, szf@pku.edu.cn

Abstract

In open domain table-to-text generation, we notice that the
unfaithful generation usually contains hallucinated content
which can not be aligned to any input table record. We thus try
to evaluate the generation faithfulness with two entity-centric
metrics: table record coverage and the ratio of hallucinated
entities in text, both of which are shown to have strong agree-
ment with human judgements. Then based on these metrics,
we quantitatively analyze the correlation between training
data quality and generation fidelity which indicates the po-
tential usage of entity information in faithful generation. Mo-
tivated by these findings, we propose two methods for faithful
generation: 1) augmented training by incorporating the aux-
iliary entity information, including both an augmented plan-
based model and an unsupervised model and 2) training in-
stance selection based on faithfulness ranking. We show these
approaches improve generation fidelity in both full dataset
setting and few shot learning settings by both automatic and
human evaluations.

1 Introduction
The difficulty of faithful table-to-text generation originates
from the divergence of source tables and reference text
(Perez-Beltrachini and Lapata 2018) in the training stage, es-
pecially for open domain datasets without human curation,
e.g. WIKIPERSON (Wang et al. 2018). In WIKIPERSON, we
observe that the unfaithful generation, as well as some ref-
erence text in the training data, often contains hallucinated
entities which can not be aligned with any input table record.
This motivates us to evaluate the faithfulness of a text to a
given table by two entity-centric metrics: the statistics of ta-
ble record coverage and hallucinated entities in both train-
ing and evaluation stages. The metrics are computed based
on the name entities recognition (NER) in text with off-
the-shelf tools, and their alignment with table records. We
find the proposed metrics have high correlation with human
judgements (Sec 2.1).

Then we quantitatively study how training data quality
affects the generation fidelity (Sec 2.2) based on the pro-
posed metrics. Specifically we show that filtering uncovered

∗The first two authors contribute equally to this work.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

records in source table would increase generation coverage1,
and truncating the sentences prone to hallucination in ref-
erence text would accordingly reduce generation hallucina-
tion. However, we also observe a trade-off between genera-
tion faithfulness and coverage, e.g. truncating reference text
would possibly lower the generation coverage to source ta-
ble. We thus seek for an alternative method to reduce the
hallucinations in the training stage while maintaining high
coverage.

To this end, we firstly propose plan-based generation
with pseudo parallel training corpus, which we call the
augmented plan-based method (Sec 3.1). Some prior work
(Moryossef, Goldberg, and Dagan 2019; Ferreira et al. 2019)
have shown that the two-stage plan-based generation could
lead to a more accuracy and controllable generation in data-
to-text generation. However, most previous work focus on
high quality datasets without much content mismatch be-
tween the input table and the reference text (e.g. WEBNLG
and E2E (Dušek, Novikova, and Rieser 2019)). However,
in the open domain setting, we have to face noisy training
data 2, i.e. hallucinations in reference text. Thus we exploit
serialized plans which are formulated as text sequences, in
this way, we can easily use any established sequence-to-
sequence model as neural planner rather than a dedicated
planning module (Moryossef, Goldberg, and Dagan 2019;
Moryossef, Dagan, and Goldberg 2019). Our plans model
the number of sentences to be generated and the order of
given table records in each sentence. In the plan-to-text
phase, we create a pseudo parallel training corpus which in-
corporates the auxiliary uncovered entities in the reference
text into an augmented plan, and then the model generates
text according to the augmented plan. The augmented plans
effectively reduce the hallucinations in the pseudo training
corpus and correspondingly encourage the generator to stick
to the designated plans. The experiments show that the pro-
posed augmented plan based methods not only reduce about

1Measuring generation coverage can be useful in some specific
scenarios. The generator would be expected to cover all records
(e.g. WEBNLG (Colin et al. 2016)) or only summarize salient
records (e.g. WIKIBIO (Lebret, Grangier, and Auli 2016)).

2The main reason for data noise is the lack of human interven-
tion in data collection. It could be of high cost to monitor the faith-
fulness of multi-sentence reference in the open domain.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

13415



60% hallucinations compared with the counterparts trained
in the end-to-end fashion in full dataset setting but also
greatly enhance the model performance in few shot learn-
ing. We also achieve the state-of-the-art performance on
WIKIPERSON dataset and show that the proposed methods
work well on both pre-trained models and (non pre-trained)
Transformer models.

We also propose a training instance selection method
based on proposed hallucination evaluation metrics and re-
lated faithfulness ranking (Sec 3.2). We show that with only
5% top ranking training instances, pretrained model BART
(Lewis et al. 2019) outperforms its variant trained on full
dataset by about 7 PARENT (Dhingra et al. 2019) points.
This also implies the effectiveness of the proposed entity-
based metrics for faithfulness evaluation.

2 Faithfulness in Table-to-text
In this section, we introduce two evaluation metrics called
table record coverage Pcover and the ratio of hallucination
Rhallu based on the alignment between source table records
and recognized entities in the text. Through human annota-
tions, we verified that the proposed metrics have high cor-
relation with human judgement. Finally, we practice quanti-
tative analyses to show how the proposed two metrics cor-
relate with generation fidelity and gain insights on how to
increase table coverage or reduce hallucinations in open do-
main table-to-text generation.

2.1 Entity-centric Evaluation
A structured table T can be expressed by a set of records
{rk}Kk=1, where each record is an (attribute, value) pair.
There is also a reference description R available for each
table. The task aims at generate a textG which describes the
records in T fluently and faithfully. Due to the lack of human
intervention, the referenceRmay contain hallucinations and
have low table records coverage in the open domain datasets.

Entity recognition and alignment With off-the-shelf
NER tools3, we could recognize entities like person, loca-
tion, date, event in text, which characterize the expressed
facts. Suppose we have recognized a group of entities
{ei}Mi=1 from a specific text G (G can be training ref-
erence R, which aims at evaluating training data quality
or predicted table description D, which aims at assessing
model performance on test sets.). We then heuristically de-
cide whether a table record rk is covered by G.

Our heuristic matching rules include: 1) Exact Match: a
text span in G can exactly match rk’s value. 2) Filtered
Sub-sequence Match: For non-numeric entity ei with PER-
SON, NORP, FAC, ORG, GPE, LOC, PRODUCT, EVENT
or WORK OF ART labels, after filtering the stop words in
ei and rk’s value, rk matches ei if and only if efilteri is a
sub-sequence of rfilterk .

In our benchmark dataset WIKIPERSON, 99.3% of table
records in the training set could be aligned with correspond-
ing reference text with the above mentioned heuristic match-

3We use Stanza (Qi et al. 2020) toolkit throughout our experi-
ments. https://stanfordnlp.github.io/stanza/

Model BLEU PARENT Pcover(↑) Rhallu(↓) LEN
PG-Net 23.56 50.14 88.63% 0.091 59.1
Transformer 24.63 51.86 89.74% 0.093 63.4
BART 31.16 52.54 98.31% 0.099 81.6

Table 1: Model performances on the WIKIPERSON dataset
in terms of BLEU-4 (Papineni et al. 2002), PARENT and
the entity-centric statistics (Sec 2.1).

ing strategies. As suggested by training set, the test-time
generation could cover most table records without too much
pain when using a powerful generator, however reducing the
hallucinations in the generated text is non-trivial.

Entity-centric metrics After recognizing {ei}Mi=1 in text
G, we use the above mentioned heuristic strategies to es-
tablish an alignment between {ei}Mi=1 and table records
{rk}Kk=1. We consider the unaligned entities in {ei}Mi=1
as hallucinated entities in G. For a pair of table and text
(T j , Gj), we define njhallu, p

j
cover, l

j as the number of hal-
lucinated entities in Gj , the ratio of covered records in T j

and the length of Gj respectively. For a set of N (table, text)
pairs {(T j , Gj)}Nj=1, the corpus level table coverage Pcover

and the hallucinated ratio Rhallu are shown as follows:
Pcover =

∑
j p

j
cover/N ; Rhallu =

∑
j n

j
hallu/(N ∗ L)

in which L=
∑

j l
j/N is the average length of text {Gj}Nj=1.

Correlation with human judgement To assess the cor-
relation of Pcover and Rhallu with human judgement, we
sample 400 (table,text) pairs, of which 100 pairs from train-
ing set, 300 pairs from the 3 model outputs (in Table 1)
while testing (100 pairs each). We hire three well-educated
annotators to decide 1) for each table record whether it is
covered by corresponding text and 2) for each recognized
hallucinated entity in text whether it is really a hallucina-
tion or not. The Fleiss’ kappa between annotators is 0.71,
which indicates a ‘substantial agreement’ (Landis and Koch
1977). We then use majority vote to decide the final anno-
tations. Our coverage and hallucination decisions achieve
95.2% and 93.7% accuracy respectively according to human
annotations.

Limitations Note that we have shown that proposed met-
rics have high precision in identifying hallucinations. How-
ever it is not enough to merely consider recognized entities
in text, in other words, the proposed Rhallu may not have
a high recall on recognizing other forms of hallucinations
(e.g. verbal hallucination). We thus ask the human judges
to mark any hallucinated word in the generated text while
comparing different systems.

2.2 Quantitative Analysis
Firstly we benchmark Pointer-Generator (PG-Net) (See,
Liu, and Manning 2017), Transformer (Vaswani et al. 2017)
and BART models on WIKIPERSON dataset in Table 1. We
then analyze how Pcover and Rhallu (Sec 2.1) in train-
ing data affect the generation fidelity. Note that we do not
change the test and dev sets in all following experiments.
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λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1.0
Table Record Coverage (%) Pcover(↑)

Train 67.7 72.5 78.7 87.3 100.0
PG-Net 69.6 71.4 73.6 77.4 85.7
Transformer 71.2 72.8 75.2 79.0 86.3
BART 75.4 77.2 78.1 82.6 91.9

Ratio of hallucinated entities Rhallu(↓)
Train 0.060 0.060 0.060 0.060 0.060
PG-Net 0.049 0.051 0.052 0.054 0.057
Transformer 0.045 0.046 0.047 0.049 0.054
BART 0.043 0.045 0.048 0.053 0.063

Avg. length of (tokenized) text
Train 27.7 27.7 27.7 27.7 27.7
PG-Net 25.3 25.8 26.0 27.2 28.6
Transformer 25.7 26.1 26.3 27.5 29.2
BART 25.5 26.0 26.6 28.2 34.7

(a) Filtering uncovered table records
No Trunc Nkeep=3 Nkeep=2 Nkeep=1

Table Record Coverage (%) Pcover(↑)
Train 99.3 91.4 82.8 67.7
PG-Net 88.6 85.7 78.4 69.6
Transformer 89.7 86.9 81.4 71.2
BART 98.3 96.9 89.6 75.4

Ratio of hallucinated entities Rhallu(↓)
Train 0.096 0.086 0.077 0.060
PG-Net 0.091 0.078 0.061 0.049
Transformer 0.093 0.080 0.064 0.045
BART 0.099 0.083 0.067 0.043

Avg. length of (tokenized) text
Train 88.3 62.7 46.1 27.7
PG-Net 59.1 44.7 32.3 25.3
Transformer 63.4 48.2 36.2 25.7
BART 81.6 58.6 40.9 25.5

(b) Truncating reference text

Table 2: The statistics of training data and model outputs on
test set in two different settings (Sec 2.2).

Filtering uncovered table records To better investigate
how Pcover in training set affects generation coverage, we
only keep the first sentence4 in reference text and drop other
sentences while training. Then we filter the uncovered ta-
ble records by setting a threshold λ, e.g. when λ=0.75, we
randomly filter 75% of uncovered records in training set.

Truncating reference text On average, each reference
text in WIKIPERSON training set contains 4.33 sentences.
We observe that the sentences near the end are prone to hal-
lucination, so we try to reduce Rhallu in the training set by
truncating the reference text. We letNkeep to denote the max
number of sentences we keep in each reference text and then
drop all the following sentences.

Insights from quantitative analysis In Table 2a, as
Pcover of training set increases (λ increases), all three mod-
els show higher coverage for the input table records and gen-
erate longer sentences. Notably, although Rhallu of training
set remains the same for all λ, we see a small growth on

4As the original training dataset has 99.3% table record cover-
age (Table 2a), ‘one sentence’ setting allows a wider range (67.7%-
100% in Table 2a) in controlling Pcover by λ.

Rhallu of model outputs while increasing λ5.
In Table 2b, when decreasingNkeep (truncating more sen-

tences), the hallucination ratio Rhallu in model outputs are
reduced as the same metric drops in the training set. How-
ever, while reducing hallucination, Pcover in training set and
model outputs declines at the same time, which reminds us
the potential trade-off in truncation.

We have applied dataset modification, i.e. filtering and
truncation, on the training set and seen there might be
a trade-off between reducing hallucination (decreasing
Rhallu) and increasing table coverage (increasing Pcover).
For faithful description generation, we aim to find a way to
reduce Rhallu in the training phase while keeping table cov-
erage (almost) unchanged. We come up with pseudo training
data augmentation in plan-based generation and instance se-
lection based on faithfulness ranking according to the quan-
titative analysis in this section.

3 Entity-centric Faithful Generation
In this section, based on the alignment between source ta-
bles and reference text, we propose two methods for faithful
generation: augmented plan based generation and training
instance selection according to faithfulness ranking.

3.1 Augmented Plan-based Generation
Two-step Plan-based Generation Moryossef, Goldberg,
and Dagan (2019) have shown a two-step generator with
a separate text planner could improve generation faithful-
ness on WebNLG, a human curated dataset where the ref-
erence text barely contains any hallucination. The number
of input table records in WebNLG is always smaller than 8.
They view the input records as directed connected graph and
treat depth first search (DFS) trajectory as the intermediate
plan. However, in real world open domain setting, the in-
put tables might contain diverse distinct table records which
makes DFS trajectory plans very time-consuming to train.
Moreover, the reference text in the training data might con-
tain hallucinations which can not be aligned with any record
in the table, which greatly hinder the generation fidelity.

To this end, we firstly extend the usage of plan-based
method to the open domain setting using serialized plans.
We decompose the generation into two stages: table-to-plan
and plan-to-text by introducing a trainable text planer. As
exemplified in Fig 1, for the text planner, we propose a neu-
ral plan generator (‘R’→‘R+P’) which transforms the in-
put table records to the serialized plans. The plans contain
sentence planning (‘SEP’ token) and order planning of ta-
ble records in each sentence. Specifically we constrain the
plan generator to output only the attribute names that ap-
pear in the input table besides the ‘SEP’ token and then add
the paired attribute value for each generated attribute name
by post editing 6. For the neural planner, we can easily use

5We assume this is due to the information loss when filtering the
records, as a poorly-informed decoder may behave like an open-
ended language model (Maynez et al. 2020).

6In testing, we also post-process the learned plans to avoid
empty sentence plans (i.e. two consecutive ‘SEP’ tokens) and repet-
itive table records (i.e. limiting each table record to appear only
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Reference Text : A‘dia Mathies ( born May 18
1991 ) is an American professional Basketball
player who was drafted in 2013 by the Los
Angeles Sparks of the WNBA . Mathies attended
Iroquois High School in Louisville , Kentucky .

Records + Entities + Plan (R+E+P) : < Name_ID > , A'dia Mathies , < Date of birth > , May 18 1991 ,
[ NORP ] , American , < Sport > , Basketball , [ DATE ] , 2013 , < Drafted by > , Los Angeles Sparks ,
[ ORG ] , WNBA = SEP = [ ORG ] , Iroquois High School , < Place of birth > , Louisville, Kentucky

Attribute Value

Name ID A‘dia Mathies

Date of birth May 18 1991

Sport Basketball

Place of birth Louisville, Kentucky

Drafted by Los Angeles Sparks

Table Records (R) : < Name_ID > , A‘dia Mathies , < Date of birth > , May 18 1991 , < Sport
> , Basketball , < Place of birth > , Louisville, Kentucky , < Drafted by > , Los Angeles Sparks

Recognized Entities (E) : [ PERSON ] , A‘dia Mathies , [ DATE ] , May 18 1991 , [ NORP ] ,
American , [ ORG ] , Basketball , [ DATE ] , 2013 , [ ORG ] , the Los Angeles Sparks , [ ORG ] ,
WNBA , [ ORG ] , Iroquois High School , [ GPE ] , Louisville , [ GPE ] , Kentucky

Records + Plan (R+P) : < Name_ID > , A'dia Mathies , < Date of birth > , May 18 1991 , < Sport > ,
Basketball , < Drafted by > , Los Angeles Sparks = SEP = < Place of birth > , Louisville, Kentucky

R

R+Pgold
R+E+
Pgold

Planner

Text
Generator

(a) Training

R

R+Plearn

Text

(b) Inference

Planner

Generator

Figure 1: For the left figure, we show different forms of model inputs (Table 4) for the text generator in the two-phase generation.
We mark the covered table records, the recognized hallucinated entities and the sentence delimiter in red, blue and green
respectively. For the right figure, we show the training and inference procedures in the augmented plan-based generation (ID=8
in Table 4).

state-of-the-art sequence-to-sequence models thanks to tex-
tual serialized plans.

Pseudo Parallel Training Corpus For text realization, we
acquire descriptions by feeding the plans to a plan-to-text
generator. In this process, we introduce augmented plans and
pseudo parallel training corpus to reduce hallucinations in
the generation. We incorporate the auxiliary entity informa-
tion extracted from reference text into the augmented plans
(‘Aug-plan’, ‘R+E+P’ in Fig 1) and feed them to the plan-
to-text generator in the training phase. In this way, the aug-
mented plans and related text form a pseudo parallel train-
ing corpus which does not contain any hallucinated entity
(Rhallu = 0 in this scenario). According to the experimental
results, the pseudo parallel corpus greatly reduces the hallu-
cinations in the generated descriptions, which is consistent
with our findings in Sec 2.2.

Please refer to Table 4 for the different input forms of the
plan-to-text generator in training and evaluation phases.

Unsupervised generation As a byproduct of entity recog-
nition, we also propose an unsupervised model which does
not need parallel table-to-text corpus, instead it uses text-
only resources and the corresponding recognized entities in
text. Concretely in training we only feed a sequence of en-
tity mentions (‘E’ without NER tags in Fig 1) extracted from
text to the generator. While testing we use the values of table
records (‘R’ without attribute names in Fig 1) as input.

3.2 Instance Selection for Efficient Training
We have shown in the last sections that the divergence be-
tween source tables and reference text is one of the ma-

once except ‘Name ID’).

Setting BLEU PARENT Pcover Rhallu(↓) LEN
R-1% 11.15 51.87 88.67% 0.087 50.1
S-1% 7.40 49.66 90.27% 0.015 32.1
R-5% 26.76 52.46 98.44% 0.094 61.7
S-5% 11.80 59.25 98.86% 0.018 46.7
R-10% 26.84 52.73 98.55% 0.096 62.2
S-10% 12.52 59.63 99.17% 0.020 56.7

Table 3: Model performances of different downsampling
methods (Sec 3.2). ‘R’, ‘S’ means randomly or ranking-
based instance selection methods respectively.

jor reasons that hallucination exist in the generated text.
We thus wonder if given high quality training sets, how
much performance gain we could expect from the end-to-
end trained models. We focus on reducing hallucination,
which is shown to be the bottleneck for faithful generation.
We rank the training instances with instance-level halluci-
nation ratio rhallu = nhallu/l (lower is better) 7. Then we
view the top-1%/5%/10% ranking data as ‘selected’ training
sets (‘S’), and compare them to randomly sampled training
sets (‘R’) in Table 3. ‘S-n%’ can be viewed as a training
set which has higher quality than the corresponding ‘R-n%’.
When n grows in S-n%, we see the increase of table cover-
age Pcover, generation length and also a slight increase on
Rhallu, which consistently outperform their counterparts R-
n%. S-5% even outperforms full-dataset baseline (ID=1 in
Table 4) by 7 PARENT points.

7nhallu and l are the number of hallucinated entities and refer-
ence length as introduced in Sec 2.1.
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ID Setting Comp. Train Input Test&Dev Input BLEU PARENT Pcover(%,↑) Rhallu(↓) LEN
1 Baseline (E2E) – R R 31.16 52.54 98.31 0.099 81.6
2 Unsupervised Yes E R 17.28 43.04 97.91 0.029 50.0
3 Unsupervised No E E 48.27 63.94 – – 82.4
4 Plan Yes R+Pgold R 18.23 51.53 99.48 0.069 46.1
5 Plan Yes R+Pgold R+Plearn 7.67 54.81 99.66 0.053 53.2
6 Plan No R+Pgold R+Pgold 34.86 54.25 97.76 0.097 81.6
7 Aug-plan Yes R+E+Pgold R 12.10 50.70 98.68 0.015 35.8
8 Aug-plan Yes R+E+Pgold R+Plearn 17.12 56.75 99.73 0.006 39.7
9 Aug-plan No R+E+Pgold R+Pgold 29.12 57.84 97.98 0.029 60.6
10 Aug-plan No R+E+Pgold R+E+Pgold 53.33 66.12 – – 81.6

Human Evaluation (Sec 4.2)- Ratio of hallucinated words:
End-to-end [ID=1]: 20.9%; Unsupervised [ID=2]: 12.0%; Plan-based [ID=5]: 15.3%; Augplan-based [ID=8]: 8.1%

Table 4: The performances of BART-based unsupervised and plan-based models on WIKIPERSON. The baseline is an end-to-
end (E2E) trained BART model in Table 1. ‘R’, ‘E’, ‘Pgold’ and ‘Plearn’ represent table records, recognized entities, gold plans
extracted from reference text and learned plans respectively as shown in Fig 1. ‘Comp.’ indicates the comparability to baseline
as gold plan Pgold or entities E are actually not accessible while testing. In each setting, we underline the best scores, and show
the best scores comparable to baseline in bold.

Model BLEU PARENT
RNN Structure

RNN (Bahdanau, Cho, and Bengio 2014) 22.24 43.41
Structure-aware (Liu et al. 2018) 22.76 46.47
PG-Net (See, Liu, and Manning 2017) 23.56 50.14
KB Description (Wang et al. 2018) 16.20 51.03

Transformer Structure
Transformer (Wang et al. 2020b) 24.57 51.87
+Content Matching (Wang et al. 2020b) 24.56 53.06
Transformer (Our Implementation) 24.63 51.86
w/ Plan 7.15 52.92
w/ Augmented Plan 14.56 54.78
BART (Our Implementation) 31.16 52.54
w/ Plan 7.67 54.81
w/ Augmented Plan 17.12 56.75

Table 5: The automatic evaluation of augmented plan-based
method and other baselines on WIKIPERSON dataset. Note
that in this dataset, the reference text may be noisy due to
the hallucinated content, so BLEU scores can not measure
the generation fidelity. The proposed augmented plan-based
generation enhances faithfulness in both Transformer and
BART structures and achieve the best PARENT scores.

4 Experiments
4.1 Datasets
The WIKIPERSON dataset8 (Wang et al. 2018) contains
250186, 30487, and 29982 (table, text) pairs in training, dev
and test sets respectively, which is exactly the same setting
as Wang et al. (2018) and Wang et al. (2020b). The average
sentence number in this dataset is 4.33 (88.3 tokens).

4.2 Automatic and Human Evaluation
Apart from the proposed metrics Pcover and Rhallu, we
also report the model performances on BLEU and PARENT.
PARENT is hybrid measurement which not only encourages

8https://github.com/EagleW/Describing a Knowledge Base

Model 100 250 500 2500 All
PARENT (↑)

BART 25.48 41.62 47.34 51.72 52.54
w/ Plan 37.23 47.57 50.92 52.67 54.81
w/ Aug-Plan 40.46 50.32 52.38 54.13 56.75

Pcover(%)(↑)
BART 77.46 80.32 82.48 89.02 98.31
w/ Plan 79.21 83.53 88.59 92.19 99.66
w/ Aug-Plan 78.93 84.05 88.39 92.74 99.73

Rhallu(↓)
BART 0.077 0.080 0.085 0.089 0.099
w/ Plan 0.043 0.045 0.048 0.048 0.053
w/ Aug-Plan 0.008 0.007 0.005 0.005 0.006

Table 6: Model performance of plan-based models in the few
shot learning setting. 100/250/500/2500 represent the size of
training instances.

n-gram overlap with reference text but also rewards the gen-
eration with high coverage on the source table, thus it can be
used to measure the generation fidelity.

For human evaluation, as we have mentioned in Sec 2.2,
the proposed two metrics have high precision in identifying
hallucinations, however it may not find all hallucinations in
the generation. For four models in Table 4: baseline (ID=1),
unsupervised (ID=2), plan-based (ID=5) and augplan-based
(ID=8) models, we conduct human evaluation9 by randomly
sampling 100 generations from each model and hiring three
annotators to independently annotate any hallucinated word
in generation. The Fleiss’ kappa of human judgement is
0.52. Through the human judgement, we can obtain the ratio
of hallucinated words. We then calculate the overall halluci-
nated word ratio by averaging the annotators’ decisions.

9Here we omit human evaluations on the fluency and table
record coverage as we have seen all the outputs have high coverage
(Table 4) and good fluency (thanks to BART).
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Attribute Value Attribute Value
Name_ID �Tom J. Murray End time �1914 

Country of citizenship �United States Member of political party 	Democratic Party (United States)

Occupation �District attorney Date of birth 
August 1 1894 

Position held �Delegate Date of death ⑪November 28 1971

Instance of �Democratic National 
Convention

Conflict ⑫World War I

Place of birth �Jackson, Tennessee Military branch ⑬United States Army 

Educated at �Union University

Model Miss Generated Text
BART � �Tom J. Murray ( 
August 1 1894 – ⑪November 28 1971 ) was an �United States politician and a 	Democratic Party (United 

States) member of the U.S. House of Representatives from Tennessee . during ⑫World War I he served in the ⑬United States 
Army in France . he graduated from �Union University �in 1914 . murray was born in �Jackson, Tennessee . he served as a �
Delegate to the �Democratic National Convention in 1968 and 1969. he died in Jackson on November 28 1971 and was interred 
in Jackson ‘s Oakwood Cemetery .

w/ Plan �Tom J. Murray ( 
August 1 1894 – ⑪November 28 1971 ) was an �United States 	Democratic Party (United States) 
politician �District attorney and �Delegate from the U.S. state of Tennessee . during ⑫World War I he served in the ⑬United 
States Army . murray was born in� Jackson, Tennessee . murray was a delegate to the �Democratic National Convention in 
1968 . he attended the public schools and graduated from �Union University in Union, Tennessee�in 1914 .

w/ Aug-plan �Tom J. Murray ( 
August 1 1894 – ⑪November 28 1971 ) was an �United States 	Democratic Party (United States) 
politician who served as a �District attorney and �Delegate . during ⑫World War I he served in the ⑬United States Army . 
murray was born in �Jackson, Tennessee . murray was a delegate to the �Democratic National Convention . he graduated from 
the law department of �Union University �in 1914 .

Figure 2: An example from the test set of WIKIPERSON. We mark the hallucinated content in red. Note that the marked content
is factually wrong, e.g. in end of ‘BART’ generated text, Murray was actually interred in ‘the city’s Hollywood Cemetery’
rather than ‘Jackson’s Oakwood Cemetery’, which shows that those hallucinated content actually comes from the misguidance
of hallucinations in the training stage, rather than the implicit knowledge acquisition of large-scale pre-trained models.

4.3 Experimental Settings

In this paper we implement Pointer-Generator (PG-Net)
(See, Liu, and Manning 2017), Transformer (Vaswani et al.
2017) and BART (Lewis et al. 2019) models on WIKIPER-
SON dataset. Our implementation for Transformer and
BART is based on fairseq (Ott et al. 2019) 10. For PG-
Net, our implementation is based on a pytorch version re-
implementation on github11. For Transformer model, we use
the same parameter setting as Wang et al. (2020b) (with copy
mechanism). The hidden units of the multi-head attention
and the feed-forward layer are set to 2048. The embedding
size is set to 512. The number of heads is set to 8, and the
number of Transformer blocks is 3. Beam size is set to be
5. For other parameters except learning rate, we use the de-
fault setting in fairseq according to Vaswani et al. (2017).
For BART, we use the pretrained BART (large) architecture
in fairseq which has 12 layers. For PG-Net, we set the em-
bedding size, hidden size and beam size as 256, 512 and 5
respectively. For all three models, we use adam optimizer
(Kingma and Ba 2014) (β1 = 0.9, β2 = 0.999). The learn-
ing rates are set as 1e-5, 1e-5, 3e-5 for PG-Net, Transformer
and BART models respectively. The vocabulary size is lim-
ited to 50k for every model.

10https://github.com/pytorch/fairseq
11https://github.com/atulkum/pointer summarizer

5 Analyses and Discussions
5.1 Augmented Plan-based Method
Comparsion with other baselines We compare the pro-
posed augmented plan-based model with the other base-
lines in Table 5. The plan-based method outperform the
state-of-the-art baseline (Wang et al. 2020b). Note that our
implemented transformer has similar model capacity with
Wang et al. (2020b), i.e. the same hidden dimension setting.
The experiments with BART model show that the proposed
method also works well with large-scale pre-trained models.

A closer look at plan-based models We list the model
input in the plan-to-text stage (Sec 3.1) of plan-based gen-
eration while training or testing the model in Table 4. We
summarize our findings from the automatic and human eval-
uations in Table 4 as follows:
1) Both augmented plan-based and unsupervised models
greatly reduce generation hallucination as we create pseudo
parallel corpus by explicitly adding hallucinated entities in
reference text while training. The new model inputs per-
fectly match the references as all the entities in reference text
appear in the new inputs (Rhallu = 0 in training set). This
phenomenon comports with our findings in Table 2 (b): de-
creasing Rhallu in training set correspondingly reduce hal-
lucination in the evaluation phase.
2) For testing with gold plans (ID=6,9,10), we use the gold
plans extracted from test reference text without the post-
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Name ID ①Thorsten 
Teichert

member of 
political party

⑤Nasjonal Samling

Date of birth ②1 February 1917 Sibling �John Thronsen

date of death ③15 June 2003 Member of �Hirden

country of 
citizenship

④Norway 

Plans Generated Text
�����SEP�SEP� �Thorvald Thronsen ( �1 February 1917 –�15 

June 2003 ) was a �Norway politician for �
Nasjonal Samling . he was the brother of �John 
Thronsen . he was also a member of �Hirden .

�����SEP�SEP� �Thorvald Thronsen ( �1 February 1917 –�15 
June 2003 ) was a �Norway politician for �
Nasjonal Samling . he was a member of �Hirden . 
he was the brother of �John Thronsen .

������SEP� �Thorvald Thronsen ( �1 February 1917 –�15 
June 2003 ) was a �Norway politician for the �
Nasjonal Samling and �Hirden parties . he was the 
brother of �John Thronsen .

Figure 3: A demonstration of different model outputs given
different plans. Here we show the generated text from aug-
mented plan-based models on the test set. The generated text
perfectly follows the given plans.

processing mentioned in Footnoot 612, in order to get bet-
ter BLEU scores, however at the same time sacrificing fi-
delity (Rhallu in ID=5,6 and ID=8,9). This suggests BLEU
may not be a good metric for faithfulness evaluation in the
loosely aligned table-to-text datasets13.
3) In ID = 4 or 7, plan-based models would generate one-
sentence output given the original table records ‘R’, which
means that the generation sticks to its plan14. We find the
same tendency in case studies, showing model’s potentials to
allow user control. Furthermore, we find the explicit planing
would also reduce the repetitions of table records.

Plan-based Generation helps few shot learning In Table
3, we show that plan-based generation can make the gener-
ated text more faithful as well as have higher coverage com-
pared with end-to-end training. Augmented plans further re-
duce the hallucinations in the generated text (much smaller
Rhallu) compared with its variant without auxiliary entities.

5.2 Case Studies
Firstly, we show an example taken from the test set of
WIKIPERSON dataset in Fig 2. The baseline model, BART
trained in the end-to-end fashion misses the ‘occupation’ at-
tribute in the source table, while the other two models cover
all the attributes in the table. The augmented plan-based

12This means these gold plans may contain two consecutive
‘SEP’ tokens and repetitive table records.

13PARENT is a better option which encourages the overlap with
source table. However it also rewards the ngram overlap with ref-
erence text, which may contain hallucination. We would suggest
human evaluation for faithfulness analysis.

14No ‘SEP’ token in the input plan means we want to describe
each record in the input sequentially in one sentence.

generation does not contain any hallucinated content while
some factually wrong information exist in the baseline and
plan-based methods.

Then we show in Fig 3 that the generated text from
augmented plan-based method strictly sticks to the corre-
sponding plans. It also shows that the augmented plan-based
method has the potential to generate more diverse content by
exploiting different plans.

6 Related Work
Faithfulness Evaluation: Prior work evaluates the faith-
fulness in generation by human (Chen and Bansal 2018)
or automatic metrics using natural language inference
(Kryściński et al. 2019; Falke et al. 2019), information ex-
traction (Zhang et al. 2019; Goodrich et al. 2019) or question
answering (Scialom et al. 2019; Eyal, Baumel, and Elhadad
2019; Wang, Cho, and Lewis 2020). For faithfulness evalua-
tion, prior work introduces soft constraints (Tian et al. 2019;
Wang et al. 2020b), template-like (Liu et al. 2017; Wiseman,
Shieber, and Rush 2018; Shen et al. 2020; Li and Rush 2020;
Ye et al. 2020) or controllable generation (Peng et al. 2018;
Fan, Lewis, and Dauphin 2019; Shen et al. 2019; Parikh et al.
2020), which encourage the overlap between given struc-
tured data and generated text. Some work also incorporate
source input (table or text) in evaluation(Liu et al. 2019b;
Dhingra et al. 2019; Wang et al. 2020a).
Plan-base Generation: Most work before deep learning
era treats data-to-text as two sub-tasks: content selection
and surface realization (Reiter and Dale 1997; Duboue and
McKeown 2002; Barzilay and Lapata 2005, 2006; Belz
2008), which carefully learns the alignment between data
and text(Liang, Jordan, and Klein 2009; Angeli, Liang, and
Klein 2010; Kim and Mooney 2010; Konstas and Lapata
2013). Recently, end-to-end learning becomes a trend (Mei,
Bansal, and Walter 2016; Chisholm, Radford, and Hachey
2017; Kaffee et al. 2018; Jhamtani et al. 2018; Bao et al.
2018; Liu et al. 2019a; Dušek, Novikova, and Rieser 2020)
in this field. Among them, some work introduces differen-
tiable planning modules (Sha et al. 2018; Laha et al. 2018;
Puduppully, Dong, and Lapata 2018). Our paper focuses on
a two-stage generation which incorporate separate text plan-
ner (Ferreira et al. 2019; Moryossef, Dagan, and Goldberg
2019; Ma et al. 2019). The separate planning methods could
be easier to deploy and debug in the real world scenarios, it
also shares the burden of end-to-end learning with two sep-
arate modules.

7 Conclusion
We try to evaluate faithfulness in table-to-text generation
by entity-centric statistics on table coverage and hallucina-
tion in text, which help us analyze the correlation between
training data quality and generation fidelity. Then we ac-
cordingly propose two methods based on the analysis: aug-
mented training by incorporating auxiliary entity informa-
tion and instance selection based on faithfulness ranking. We
show these methods improve generation faithfulness on both
automatic and human evaluations.
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