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Abstract

Depth-adaptive neural networks can dynamically adjust
depths according to the hardness of input words, and thus
improve efficiency. The main challenge is how to measure
such hardness and decide the required depths (i.e., layers)
to conduct. Previous works generally build a halting unit to
decide whether the computation should continue or stop at
each layer. As there is no specific supervision of depth se-
lection, the halting unit may be under-optimized and inaccu-
rate, which results in suboptimal and unstable performance
when modeling sentences. In this paper, we get rid of the
halting unit and estimate the required depths in advance,
which yields a faster depth-adaptive model. Specifically, two
approaches are proposed to explicitly measure the hardness
of input words and estimate corresponding adaptive depth,
namely 1) mutual information (MI) based estimation and
2) reconstruction loss based estimation. We conduct experi-
ments on the text classification task with 24 datasets in var-
ious sizes and domains. Results confirm that our approaches
can speed up the vanilla Transformer (up to 7x) while pre-
serving high accuracy. Moreover, efficiency and robustness
are significantly improved when compared with other depth-
adaptive approaches.

Introduction
In the NLP literature, neural networks generally conduct a
fixed number of computations over all words in a sentence,
regardless of whether they are easy or difficult. In terms of
both efficiency and ease of learning, it is preferable to dy-
namically vary the numbers of computations according to
the hardness of input words (Dehghani et al. 2019).

Graves (2016) firstly proposes adaptive computation time
(ACT) to improve efficiency of neural networks. Specifi-
cally, ACT employs a halting unit upon each word when
processing a sentence, then this halting unit determines a
probability that computation should continue or stop layer-
by-layer. Its application to sequence processing is attractive
and promising. For instance, ACT has been extended to re-
duce computations either by exiting early or by skipping lay-
ers for the ResNet (Figurnov et al. 2017), the vanilla Trans-
former (Elbayad et al. 2020), and the Universal Transformer
(Dehghani et al. 2019).
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However, there is no explicit supervision to directly train
the halting unit of ACT, and thus how to measure the hard-
ness of input words and decide required depths is the key
point. Given a task, previous works generally treat the loss
from different layers as a measure to implicitly estimate
the required depths, e.g., gradient estimation in ACT, or re-
inforcement rewards in SkipNet (Wang et al. 2018). Un-
fortunately, these approaches may lead to inaccurate depth
selections with high variances, and thus unstable perfor-
mance. More recently, the depth-adaptive Transformer (El-
bayad et al. 2020) directly trains the halting unit with the
supervision of ‘pseudo-labels’, which is generated by com-
paring task-specific losses over all layers. Despite its suc-
cess, the depth-adaptive Transformer still relays on a halting
unit, which brings additional computing costs for depth pre-
dictions, hindering its potential performance.

In this paper, we get rid of a halting unit when building our
model, and thus no additional computing costs need to esti-
mate depth. Instead, we propose two approaches to explicitly
estimate the required depths in advance, which yield a faster
depth-adaptive Transformer. Specifically, the MI-based ap-
proach calculates the mutual dependence between a word
and all categorical labels. The larger the MI value of the
word is, the more information of labels is obtained through
observing this word, thus fewer depths are needed to learn an
adequate representation for this word, and vice versa. Due
to the MI-based approach is purely conducted in the data
preprocessing stage, the computing cost is ignorable when
compared with training a neural model in the depth-adaptive
Transformer. The reconstruction loss based approach mea-
sures the hardness of learning a word by reconstructing it
with its contexts in a sentence. The less reconstruction loss
of the word is, the more easily its representation is learned.
Therefore the index of the layer with minimum reconstruc-
tion loss can be regarded as an approximation for required
depths. As a by-product, the reconstruction loss based ap-
proach is easy to apply to unsupervised scenarios, as it needs
no task-specific labels. Both of the above approaches aim to
find a suitable depth estimation. Afterward, the estimated
depths are directly used to guide our model to conduct cor-
responding depth for both training and testing.

Without loss of generality, we base our model on the
Transformer encoder. Extensive experiments are conducted
on the text classification task (24 datasets in various sizes
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and domains). Results show that our proposed approaches
can accelerate the vanilla Transformer up to 7x, while pre-
serving high accuracy. Furthermore, we improve the effi-
ciency and robustness of previous depth-adaptive models.

Our main contributions are as follows1:

• We are the first to estimate the adaptive depths in advance
and do not rely on a halting unit to predict depths.

• We propose two effective approaches to explicitly esti-
mate the required computational depths for input words.
Specifically, the MI-based approach is computing effi-
cient and the reconstruction loss based one is also appli-
cable in unsupervised scenarios.

• Both of our approaches can accelerate the vanilla Trans-
former up to 7x, while preserving high accuracy. Fur-
thermore, we improve previous depth-adaptive models in
terms of accuracy, efficiency, and robustness.

• We provide thorough analyses to offer more insights and
elucidate properties of our approaches.

Model
Depth Estimation
In this section, we introduce how to quantify the hardness
of learning representations for input words and obtain corre-
sponding estimated depths.

Mutual Information Based Estimation. Mutual Infor-
mation (MI) is a general concept in information theory. It
measures the mutual dependence between two random vari-
ables X and Y . Formally, the MI value is calculated as:

MI(X;Y ) =
∑
y∈Y

∑
x∈X

p(X,Y ) · log(
p(X,Y )(x, y)

pX(x) · pY (y)
) (1)

where p(X,Y ) is the joint probability of X and Y , and pX
and pY are the probability functions of X and Y respec-
tively.

MI has been widely used for feature selection in the statis-
tic machine learning literature (Peng, Long, and Ding 2005).
In our case of text classification, X is the set of all words,
and Y is the set of predefined labels. Given a word x ∈ X
and a label y ∈ Y , the value of MI(x, y) measures the degree
of dependence between them. The larger MI(x, y) is, the
greater certainty between this word x and label y is, and thus
fewer computations are needed to learn an adequate repre-
sentation for x to predict y. For example, the word ‘terrible’
can decide a ‘negative’ label with high confidence in senti-
ment analysis tasks, and thus it is unnecessary to conduct a
very deep transformation when processing words with high
MI values, and vice versa. Namely, we force our models not
to merely focus on a few ‘important’ words and pay more
attention to overview contexts when learning the representa-
tion of a sentence. In this way, our models avoid overfilling

1Codes will appear at https://github.com/Adaxry/Adaptive-
Transformer

limited ‘important’ words, which also takes an effect of reg-
ularization, and thus improve generalization and robustness.
Based on the above assumptions, it is intuitive and suitable
to choose MI to quantify the difficulty of learning a word.

Formally, given a dataset with vocab X and label set Y ,
the MI value MI(x) for word x is calculated as:

MI(x) =
∑

y∈{Y }

∑
ix∈{0,1}

∑
iy∈{0,1}

P (ix, iy)

· log
(

P (ix, iy)

P (ix) · P (iy)

) (2)

where ix is a boolean indicator whether word x exists in a
sentence. Similarly, iy indicates the existence of label y. In
practice, the probability formulas P (·) in Equation (2) are
calculated by frequencies of words, labels, or their combi-
nations. A smooth factor (0.1 in our experiments) is intro-
duced to avoid zero division. To avoid injecting information
of golden labels when testing, we only use the training set to
calculate MI values,

Once the MI value MI(x) for each word is obtained, we
proceed to generate the pesudo-label of depth distribution
d(x) accordingly. As the histogram of MI values shown
in Figure 1 (upper part), there is an obvious long tail phe-
nomenon, which manifests that the distribution is extremely
imbalanced. To alleviate this issue, we perform a logarithmic
scaling for the original MI(x) as:

MIlog(x) = − log (MI(x)) (3)

Next, according to the scaled MIlog(x), we uniformly divide
all words into N bins 2 with fixed-width margin, where N
denotes a predefined number of bins (i.e., maximum depth).
Consequently, the estimated depth value d(x) for word x is
the index of corresponding bins.

The MI-based approach is purely calculated at the data
preprocessing stage, thus it is highly efficient in computation
and does not rely on additional trainable parameters.

Reconstruction Loss Based Estimation. Generally in a
sentence, several words may bring redundant information
that has been included by their contexts. Thus if we mask
out these trivial words, it would be easier to reconstruct
them than others. Namely, The less reconstruction loss of a
word is, the more easily its representation is learned. Based
on the above principle, we utilize this property of recon-
struction loss to quantify the hardness of learning the rep-
resentation for input words and then estimate their required
depths. Firstly, we finetune BERT (Devlin et al. 2019) with
a masked language model task (MLM) on datasets of down-
stream tasks. Note that we modify BERT to make predic-
tions at any layers with a shared classifier, which is also
known as anytime prediction (Huang et al. 2017; Elbayad
et al. 2020). The losses from all layers are summed up 3 to

2We set N to 12 for the compatibility of BERT.
3We experimented with different weights (e.g., random sample,

or linearly decaying with the number of layers) for different layers,
and finally choose the simple equal weights.
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Figure 1: The histogram of MI values of partial words from
IMDB ( upper part), and corresponding depths of these
words by using the reconstruction loss based estimation (the
bottom part).

the final loss. After finetuning the MLM, given an input sen-
tence x with |x| words, we sequentially replace each word
xt (t ∈ [1, |x|]) with a special symbol <MASK>, and then
feed the sentence with a <MASK> into the MLM. Finally,
the index of a layer with the minimum loss is selected as the
estimated depth value d(xt):

d(xt) = argmin
n

(lossn − λn) (4)

where n ∈ N is the index of layer, lossn is the loss of
<MASK> in the n-th layer, and λn is the penalty factor to en-
courage a lower selection 4. Specifically, we train MLMs fol-
lowing the experimental setup of BERT (Devlin et al. 2019)
with two major differences: 1) We make predictions at ev-
ery layer with a shared classifier instead of only at the final
layer in BERT; 2) We remove the next sentence prediction
task following RoBERTa (Liu et al. 2019).

Comparisons Between the Two Approaches. Although
the above approaches perform differently, they both serve as
a measure to estimate required depths for input words from
the perspective of learning their representations. We proceed
to make a detailed comparison between the two approaches.

In the term of computational cost, the MI-based ap-
proach calculates MI values, and then stores the word-depth
pairs that resemble word embeddings. The above procedures

4We elaborate the effect and choice of λ in the following ana-
lytical Section.

x1 x2 ··· xt

Calculated block Copied block

···

Figure 2: The overview of our depth-adaptive Transformer.
Once a word xt achieve its own depth d(xt), it will simply
copy states to upper layers.

merely happen at the stage of data preprocessing, which re-
quires trivial computational cost and does not rely on addi-
tional trainable parameters, and thus the MI-based approach
is highly efficient in computation. In contrast, the recon-
struction loss based approach needs to train several MLMs
with anytime prediction, which yields extra computational
costs. Considering the MLMs are dependent on the main
model, the calculation of depths can be conducted in ad-
vance in a piplined manner.

As the histogram shown in Figure 1, we observe differ-
ent preferences between the two estimations. Firstly, the MI-
based approach (upper part) tends to assign higher MI val-
ues to label-relevant words (e.g., opinion words ‘perfect’ and
‘horrible’ in IMDB). After the scaling function described
by Equation (3), these opinion words are assigned a lower
number of depths, namely fewer computational steps. Such
operations make our models not only focus on a few ‘im-
portant’ words, but also pay more attention to the overview
contexts, which takes an effect of regularization, and thus
improve generalization and robustness.

Unlike the bias for label-related words in the MI-based
approach, the reconstruction based approach (bottom part in
Figure 1) purely relies on the unsupervised context to mea-
sures the hardness of learning, which is good at recognizing
common words (e.g., ‘today’, ‘one’ and ‘me’), and assigns
a smaller number of computations, and vice versa. As a by-
product, the reconstruction loss based approach is applicable
to unsupervised scenarios, as it needs no task-specific labels.

Depth-Adaptive Mechanism
As the overview shown in Figure 2, we stackN layers of the
Transformer encoder to model a sentence. The Transformer
encoder consists of two sub-layers in each layer. The first
sub-layer is a multi-head dot-product self-attention and the
second one is a position-wise fully connected feed-forward
network. We refer readers to the original paper (Vaswani
et al. 2017) for more details.

To make sure all hidden states of the same layer are avail-
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Dataset Classes Type Average
Lenghts

Max
Lengths

Train
Sample

Test
Sample

TREC (Li and Roth 2002) 6 Question 12 39 5,952 500
AG’s News (Zhang, Zhao, and LeCun 2015) 4 Topic 44 221 120,000 7,600
DBPedia (Zhang, Zhao, and LeCun 2015) 14 Topic 67 3,841 560,000 70,000
Subj (Pang and Lee 2004) 2 Sentiment 26 122 10,000 CV
MR (Pang and Lee 2005) 2 Sentiment 23 61 10,622 CV
Amazon-16 (Liu, Qiu, and Huang 2017) 2 Sentiment 133 5,942 31,880 6,400
IMDB (Maas et al. 2011) 2 Sentiment 230 2,472 25,000 25,000
Yelp Polarity (Zhang, Zhao, and LeCun 2015) 2 Sentiment 177 2,066 560,000 38,000
Yelp Full (Zhang, Zhao, and LeCun 2015) 5 Sentiment 179 2,342 650,000 50,000

Table 1: Dataset statistics. ‘CV’ refers to 5-fold cross-validation. There are 16 subsets in Amazon-16.

able to compute self-attention, once a word xt reaches its
own maximal layer d(xt), it will stop computation, and sim-
ply copy its states to the next layer until all words stop or the
maximal layer N is reached. Formally, at the n-th layer, for
the word xt, its hidden state hn

i are updated as follows:

hn
t =

{
hn−1
t if n > d(xt)

Transformer(hn−1
t ) else

(5)

where n ∈ [1, N ] refers to the index of the layer. Especially,
h0
t is initialized by the BERT embedding.

Task-specific Settings
After dynamic steps of computation for each word position,
we make task-specific predictions upon the maximal stop
layer nmax ∈ [1, N ] among all word positions. The feature
vector v consists of mean and max pooling of output hidden
states hnmax , and is activated by ReLU. Finally, a softmax
classifier are built on v. Formally, the above-mentioned pro-
cedures are computed as follows:

v = ReLU([max(hnmax);mean(hnmax)])

P (ỹ|v) = softmax(Wv + b)
(6)

where W ∈ Rdmodel×|S| and b ∈ R|S| are parameters of
the classifier, |S| is the size of the label set, and P (ỹ|v) is
the probability distribution. At the training stage, we use the
cross-entropy loss computed as:

Loss = −
|S|∑
i=1

yilog(Pi(ỹ|v)) (7)

where yi is the golden label. For testing, the most proba-
ble label ŷ is chosen from above probability distribution de-
scribed by Equation (6):

ŷ = argmaxP (ỹ|v) (8)

Experiments
Task and Datasets
Text classification aims to assign a predefined label to text
(Zhang, Zhao, and LeCun 2015), which is a classic task for

natural language processing and is generally evaluated by
accuracy score. Generally, The number of labels may range
from two to more, which corresponds to binary and fine-
grained classification. We conduct extensive experiments on
the 24 popular benchmarks collected from diverse domains
(e.g., topic, sentiment) ranging from modestly sized to large-
scaled. The statistics of these datasets are listed in Table 1.

Implementation Details

For the MI-based estimation approach, we calculate word-
depth pairs on the training set in advance and then calcu-
late depths for words in the test set. For the reconstruction
based approach, we calculate word-depth pairs for both train
and test set without using label information. The penalty
factor λ in the reconstruction loss based approach is set to
0.1. Dropout (Srivastava et al. 2014) is applied to word em-
beddings, residual connection , and attention scores with a
rate of 0.1. Models are optimized by the Adam optimizer
(Kingma and Ba 2014) with gradient clipping of 5 (Pascanu,
Mikolov, and Bengio 2013). BERTbase is used to initialize
the Transformer encoder. Long sentences exceed 512 words
are clipped.

Main Results

Results on Amazon-16. Amazon-16 consists of consumer
comments from 16 different domains (e.g., Apparel). We
compare our approaches with different baseline models in
Table 2. The Multi-Scale Transformer (Guo et al. 2019b) is
designed to capture features from different scales, and the
Star-Transformer (Guo et al. 2019a) is a lightweight Trans-
former with a star-shaped topology. Due to the absence of
a powerful contextual model (e.g., BERT), their results un-
derperform others by a margin. The Transformer model is
finetuned on BERT and conducts fixed 12 layers for every
instance, which yields a strong baseline model. Following
the setup of depth-adaptive Transformer, we add a halting
unit on the bottom layer of the Transformer encoder, and
generate a ‘pesudo-label’ for the halting unit by classifica-
tion accuracy. Our approaches (the last two columns in Ta-
ble 2) achieve better or comparable performance over these
strong baseline models. The MI-based approach also takes a
regularization effect, and thus it achieves better performance
than the reconstruction counterpart.
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Data / Model Multi-Scale
Transformer

Star-
Transformer Transformer Transformer

w/ halting unit
Transformer

w/ MI estimation
Transformer

w/ reconstruction
Apparel 86.5 88.7 91.9 91.6 91.4 91.8
Baby 86.3 88.0 88.8 88.1 90.6 88.4
Books 87.8 86.9 89.5 88.3 89.6 89.5
Camera 89.5 91.8 91.8 92.7 93.8 92.9
Dvd 86.5 87.4 88.3 91.7 91.4 91.5
Electronics 84.3 87.2 90.8 89.3 90.6 90.2
Health 86.8 89.1 91.7 91.3 91.6 88.4
Imdb 85.0 85.0 88.3 89.8 89.5 90.6
Kitchen 85.8 86.0 87.6 88.1 89.2 86.8
Magazines 91.8 91.8 94.2 94.8 94.6 94.7
Mr 78.3 79.0 83.7 81.6 82.3 82.5
Music 81.5 84.7 89.9 89.3 89.5 87.2
Software 87.3 90.9 91.2 92.9 92.3 93.8
Sports 85.5 86.8 87.1 89.2 88.4 89.8
Toys 87.8 85.5 89.7 90.3 90.9 89.7
Video 88.4 89.3 93.4 94.3 93.1 93.5
Avg 86.2 87.4 89.9 90.2 90.5 90.1

Table 2: Accuracy scores (%) on the Amazon-16 datasets. Best results on each dataset are bold. The results of Multi-Scale
Transformer (Guo et al. 2019b) is cited from the original paper, and other results are our implementations with several recent
advanced techniques (e.g., BERT initialization) under the unified setting.

Models / Dataset TREC MR Subj IMDB AG. DBP. Yelp P. Yelp F. Avg.
RCRN (Tay, Tuan, and Hui 2018) 96.20 – – 92.80 – – – – –
Cove (McCann et al. 2017) 95.80 – – 91.80 – – – – –
Text-CNN (Kim 2014) 93.60 81.50 93.40 – – – – – –
Multi-QT (Logeswaran and Lee 2018) 92.80 82.40 94.80 – – – – – –
AdaSent (Zhao, Lu, and Poupart 2015) 92.40 83.10 95.50 – – – – – –
CNN-MCFA (Amplayo et al. 2018) 94.20 81.80 94.40 – – – – – –
Capsule-B (Yang et al. 2018) 92.80 82.30 93.80 – 92.60 – – – –
DNC+CUW (Le, Tran, and Venkatesh 2019) – – – – 93.90 – 96.40 65.60 –
Region-Emb (Qiao et al. 2018) – – – – 92.80 98.90 96.40 64.90 –
Char-CNN (Zhang, Zhao, and LeCun 2015) – – – – 90.49 98.45 95.12 62.05 –
DPCNN (Johnson and Zhang 2017) – – – – 93.13 99.12 97.36 69.42 –
DRNN (Wang 2018) – – – – 94.47 99.19 97.27 69.15 –
SWEM-concat (Shen et al. 2018) 92.20 78.20 93.00 – 92.66 98.57 95.81 63.79 –
Star-Transformer (Guo et al. 2019a) † 93.00 79.76 93.40 94.52 92.50 98.62 94.20 63.21 88.65
BERT (Devlin et al. 2019) – – – 95.49 – 99.36 98.11 70.68 –
XLNet (Yang et al. 2019) – – – 96.80 95.55 99.40 98.63 72.95 –
Transformer (Vaswani et al. 2017) † 96.00 83.75 96.00 95.58 95.13 99.22 98.09 69.80 91.69

w/ Halting unit (Elbayad et al. 2020) † 95.80 83.23 96.00 95.80 95.50 99.30 98.25 69.75 91.70
w/ MI estimation (ours) † 96.50 84.20 96.00 96.72 95.90 99.32 98.10 72.98 92.46
w/ Reconstruction estimation (ours) † 96.20 83.90 96.30 96.60 95.65 99.25 98.00 69.58 91.93

Table 3: Accuracy scores (%) on modestly sized and large-scaled datasets. ‘AG.’, ‘DBP.’, ‘Yelp P.’ and ‘Yelp F.’ are the abbre-
viations of ‘AG’s News‘, ‘DBPedia’, ‘Yelp Polarity’ and ‘Yelp Full’, respectively. † is our implementations with several recent
advanced techniques and analogous parameter sizes. ‘Transformer’ is initialized by BERTbase with 12 fixed layers.

Results on Larger Benchmarks. Although the Amazon-
16 benchmark is challenging, its small data size makes the
results prone to be unstable, therefore we conduct experi-
ments on larger benchmarks for a more convincing conclu-
sion. In this paragraph, we only focus on the classification
accuracy listed in Table 3, and more detailed results about
computing speed and model robustness will be discussed in
the next section.

The upper part of Table 3 lists several high-performance

baseline models. Their detailed descriptions are omitted
here. In terms of accuracy, our approaches achieve compa-
rable performance with these state-of-the-art models. At the
bottom part of Table 3, we finetune BERT as our strong base-
line model. Results show that this baseline model performs
on par with the state-of-the-art XLNet (Yang et al. 2019).
Then we build a halting unit at the bottom of the baseline
model under the same setup with the depth-adaptive Trans-
former. Results show that applying a halting unit has no
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Figure 3: Accuracy scores (a) and speed (b) for each model on IMDB when N ∈ [1, 12]. The solid line indicates the mean
performance, and the size of the colored area indicates variance (used to measure robustness). ‘speed’ is the number of samples
calculated in ten-second on one Tesla P40 GPU with the batch size of 1.

obvious impact on accuracy. The last two rows list results
of our estimation approaches, where the MI-based approach
brings in consistent improvements over the baseline and the
Transformer w/ a halting unit, by +0.77% and +0.76% on av-
erage, respectively. We speculate the improvements mainly
come from the additional deep supervision and regulariza-
tion effect of the MI-based approach. In contrast, the recon-
struction based approach only show improvements over the
baseline model (+0.24%) and the Transformer w/ a halting
unit (+0.23%) by a small margin.

Analysis
We conduct analytical experiments on the modestly sized
IMDB to offer more insights and elucidate the properties of
our approaches.

Effect of the Maximum Number of Layers
Firstly, we train several fixed-layer Transformers with N
ranging from one to twelve, and then build a halting unit
on the above Transformers to dynamically adjust the actual
number of layers to conduct. Meanwhile, we respectively
utilize our two approaches on the fixed-layer Transformer
to activate dynamic layers. Note that each model is trained
with different random initialization three times and we re-
port the mean and variance. Here, we take the variance value
to measure the robustness against the random initialization
and different depth selections. As drawn in Figure 3, solid
lines are the mean performance, and the size of the colored
areas indicate variances.

Accuracy and Robustness. Results of accuracy and ro-
bustness are drawn in Figure 3 (a). In the lower layers
(N ∈ [1, 6]), as the searching space for depth selection is
small, the depth-adaptive models perform worse than the
Transformer baseline. In contrast, when N ∈ [6, 12], the

Figure 4: Speed for each model on IMDB when batchsize ∈
[1, 15]. The solid line indicates the mean performance, and
the size of the colored area indicates variance (used to mea-
sure robustness). ‘speed’ is the number of samples calcu-
lated in ten seconds on one Tesla P40 GPU.

depth-adaptive models come up with the baseline. Due to the
additional depth supervision and the regularization effect,
the application of our approaches can further significantly
improve accuracy and robustness over both the Transformer
and w/ a halting unit. (green and blue lines vs. purple line in
Figure 3 (a))

Speed and Robustness. Figure 3 (b) shows the speed and
robustness of each model. The speed of vanilla Transformer
almost linearly decays with the growth of the number of
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Figure 5: The histogram of the depth distribution of a case
from IMDB, which is estimated by our approaches.

layers. As N ∈ [1, 3], due to the additional prediction for
depths, models w/ halting unit runs a bit slower than the
baseline. However, the superiority of adaptive depths be-
comes apparent with the growth of the number of layers. In
particular, as N = 12, the model w/ halting run 3.4x faster
than the fixed-layer baseline (pure lines vs. red line in Fig-
ure 3 (b)). As our approaches free the dependency for depth
prediction and can further speed up the model, both of our
approaches run about 7x faster than the fixed-layer baseline
(green and blue lines vs. red line in Figure 3 (b)). In ad-
dition, our approaches perform more robust in the term of
speed gains than the Transformer w/ a halting unit.

Speed on Different Batch Sizes
The depth-adaptive models conduct dynamic computations
at each word position, and thus the actually activated depths
are decided by the maximal depth value. As a result, when
the batch size gets larger, the final activated depth may po-
tentially become larger as well, which may hurt the effec-
tiveness of depth-adaptive models. In this section, we fix the
maximal number of layer N to 12, and then compare the
speed of each model. As shown in Figure 4, the speed gain
of the depth-adaptive models (green, blue and purple lines in
Figure 4) grows slower than the vanilla Transformer (red line
in Figure 4). However, the absolute speed of depth-adaptive
models is still much faster than the vanilla Transformer. We
leave the further improvement of depth-adaptive models on
larger batch sizes to future works.

Effect of Penalty Factor λ
If no constraints are applied on the depth selection, the re-
construction loss based approach tends to choose a layer
as deep as possible, and thus an extra penalty factor λ is
necessary to encourage a lower choice. We simply search
λ ∈ [0, 0.2], and finally set it to 0.1 for a good accuracy-
speed trade-off. The detailed results are list in Table 4.

Case Study
We choose a random sentence from the IMDB dataset, and
show the estimated depths outputted by both approaches in
Figure 5 (upper part). We observe that the MI-based estima-
tion tends to assign a smaller number of depths for opin-

λ 0 0.05 0.10 0.15 0.20
accuracy 96.54 96.31 96.55 96.27 96.29
speed 23 33 48 54 58
average depth 9.5 6.3 4.5 3.9 3.6

Table 4: Effect of penalty factor λ. The definition of ‘speed’
is same as that in Figure 3. ‘average depth’ is the average
predicted depth of words in test set.

ion words, e.g., ‘anticipated’ and ‘thriller’. While the re-
construction loss based estimation is prone to omit common
words, e.g., ‘and’.

Related Work
Our work is mainly inspired by ACT (Graves 2016), and
we further explicitly train the halting union with the super-
vision of estimated depths. Unlike Universal Transformer
(Dehghani et al. 2019) iteratively applies ACT on the same
layer, we dynamically adjust the amount of both computa-
tion and model capacity.

A closely related work named ‘Depth-Adaptive Trans-
former’ (Elbayad et al. 2020) uses task-specific loss as an
estimation of depth selection. Our approaches are different
from it in three major aspects: 1) We get rid of the halting
unit and remove the additional computing cost for depths,
thus yield a faster depth-adaptive Transformer; 2) our MI-
based estimation does not need to train an extra module, and
is highly efficient in computation; 3) our reconstruction loss
based estimation is unsupervised, and can be easily applied
on general unlabeled texts. Another group of works also
aims to improve efficiency of neural network through re-
ducing the entire layers, e.g., DynaBERT (Hou et al. 2020),
LayerDrop (Fan, Grave, and Joulin 2019) and MobileBERT
(Sun et al. 2020). In contrast, our approaches perform adap-
tive depths in the fine-grained word level.

Conclusion
We get rid of the halting unit and remove the additional
computing cost for depths, thus yield a faster depth-adaptive
Transformer. Specifically, we propose two effective ap-
proaches 1) mutual information based estimation and 2)
reconstruction loss based estimation. Experimental results
confirm that our approaches can speed up the vanilla Trans-
former (up to 7x) while preserving high accuracy. Moreover,
we significantly improve previous depth-adaptive models in
terms of accuracy, efficiency, and robustness. We will fur-
ther explore the potential improvement of the depth-adaptive
Transformer when facing larger batch size in future work.
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