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Abstract

We investigate response selection for multi-turn conversa-
tion in retrieval-based chatbots. Existing studies pay more
attention to the matching between utterances and responses
by calculating the matching score based on learned features,
leading to insufficient model reasoning ability. In this paper,
we propose a graph reasoning network (GRN) to address the
problem. GRN first conducts pre-training based on ALBERT
using next utterance prediction and utterance order predic-
tion tasks specifically devised for response selection. These
two customized pre-training tasks can endow our model with
the ability of capturing semantical and chronological depen-
dency between utterances. We then fine-tune the model on
an integrated network with sequence reasoning and graph
reasoning structures. The sequence reasoning module con-
ducts inference based on the highly summarized context vec-
tor of utterance-response pairs from the global perspective.
The graph reasoning module conducts the reasoning on the
utterance-level graph neural network from the local perspec-
tive. Experiments on two conversational reasoning datasets
show that our model can dramatically outperform the strong
baseline methods and can achieve performance which is close
to human-level.

Introduction
As an important task in a dialogue system, response selec-
tion aims to find the best matched response from a set of
candidates given the context of a conversation. The retrieved
responses usually have natural, fluent and diverse expres-
sions with rich information owing to the abundant resources.
Therefore, response selection has been widely used in indus-
try and has attracted great attention in academia.

Most existing studies on this task pay more attention to
the matching problem between utterances and responses, but
with insufficient concern for the reasoning issue in multi-
turn response selection. Just recently, MuTual (Cui et al.
2020), the first human-labeled reasoning-based dataset for
multi-turn dialogue, has been released to promote this line
of research. Reasoning is quite different from matching in
the conversations. Specifically, matching focuses on captur-
ing the relevance features between utterances and responses,
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ul: Good morning, two tickets to london, please. 
u2:�or 骂ular one? 
u3: Any difference? 
u4: The re2:ular ticket is 80 dollars while orice of the exoress ticket is 10 % hi2:her. 
uS: I see, but how long does the �take? 
u6: Comparatively, it can save you nearly an hour and �:45 . 
u7: Oh, we only have 15 miputes to go. 
u8: But that's the time to catcb丈�e !@!Q. Besides, as long_�釭俘叮o london earlier,
I don't mind paving a little extra..＼

� .. -
-一

v u9: Yeah, you're right. it's already� you only have 15 minutes to go. 
x u9: Yeah, you're right. it's already 10:45. you only have 15 minutes to go. 
x u9: Yeah, you're right. it's already 10:15. you only have 30 minutes to go. 
x u9: Yeah, you're right. it's already 10:30. you only have 15 minutes to take the 
regular train. 

Figure 1: An example from MuTual. All candidate responses
are semantically relevant to utterances, but only the first one
is the correct response. Clue words are purple and under-
lined.

while reasoning not only needs to identify key features (i.e.,
words and phrases that we refer to clue words in this pa-
per), but also needs to conduct inference based on these clue
words. The challenges of this new task include: (i) how to
identify the clue words in utterances, which is fundamental
for inference; (ii) how to conduct inference according to the
clue words in utterances. Figure 1 illustrates a motivating
example. To infer the current time, we must first identify the
clue words ‘10:45’ in u6 and ‘15 minutes’ in u7. Then we
must conduct a logical inference based on these clue words
in u6 and u7.

To tackle these challenges, first, we need better contextual
representation for identifying the clue words in conversa-
tions. This is because clue word identification inevitably re-
lies on the context of a conversation. Although previous lit-
erature publications have achieved promising results in con-
text modeling (Tao et al. 2019b; Qu et al. 2019; Su et al.
2019), there are still several limitations of these approaches.
More concretely, the existing studies either concatenate the
utterances to form context (Su et al. 2019) or process each
utterance independently (Tao et al. 2019a; Lu et al. 2019),
leading to the loss of dependency relationships among ut-
terances or important contextual information. It has been
validated that the chronological dependency between utter-
ances (Lu et al. 2019; Yeh and Chen 2019), as well as the
semantical dependency between utterances, are crucial for
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multi-turn response selection. Thus, how to model the de-
pendencies in utterances remains a challenging problem for
context representation.

Second, we need to devise a new strategy to collect the
clue words scattered in multiple utterances and need to rea-
son according to these clue words. In recent years, we have
witnessed great success in KBQA (knowledge base ques-
tion answering) and MRC (machine reading comprehen-
sion) tasks. However, new obstacles emerge for transfer-
ring current reasoning approaches in KBQA and MRC to
conversational reasoning. (i) A clear reasoning path based
on entities in a well-structured knowledge base exists in
KBQA (Zhang et al. 2018; Xu et al. 2019), but there is no
similar reasoning path in utterances. (ii) Current approaches
on MRC conduct inference based on graph while taking
shared entities as nodes (Fang et al. 2019; Qiu et al. 2019;
Ye et al. 2019), while it is difficult to construct such graphs
based on entities in short utterances, which usually suffer
from greater coreference resolution, poor content and seri-
ous semantic omission problems in comparison with docu-
ment text.

In this paper, we propose a new model named GRN (graph
reasoning Network) which can tackle both challenges in an
end-to-end way. We first introduce two pre-training tasks
called NUP (next utterance prediction) and UOP (utterance
order prediction) which are specially designed for response
selection. NUP endows GRN with context-aware ability for
semantical dependency, and UOP facilitates GRN with the
ability to capture the chronological dependency. These cus-
tomized pre-training methods are beneficial for modeling
dependencies contained in utterances to achieve better con-
text representation. We perform task-adaptive pre-training
with the combined NUP and UOP tasks based on the AL-
BERT model (Lan et al. 2020). To conduct reasoning based
on clue words, we devise a graph neural network called
UDG (utterance dependency graph), which not only models
the dependencies between utterances with each utterance as
a node but also collects the clue words from different utter-
ances. Reasoning is achieved by propagating the messages
of clue words between nodes along various utterance paths
on UDG, and this graph reasoning structure realizes the in-
ference based on an utterance-level context vector with local
perspective. On the other hand, we also implement a rea-
soning network by the output of the trained model and self-
attention mechanism. This sequence reasoning structure re-
alizes the inference based on the highly summarized context
vector with global perspective. To summarize, we make the
following contributions:

• We introduce two customized pre-training methods NUP
and UOP, which are specially designed for response se-
lection.

• We propose a graph neural network, UDG, which can cap-
ture the clue word dependency between utterances and
realize reasoning by propagating messages along various
utterance paths.

• We integrate a graph reasoning network with a self-
attention based sequence reasoning network in an end-to-
end framework. The empirical results show that our pro-

posed model outperforms the strong baseline methods by
large margins on both MuTual and MuTualplus datasets.

Related Work
Response Selection Response selection aims to select the
best matched response from a set of candidates, which can
be categorized into single-turn and multi-turn dialogues.
Early studies focused on the single-turn dialogues. Recently,
researchers devote more attention to the multi-turn dialogues
technology (Tao et al. 2019b,a; Lu et al. 2019). Existing
methods tend to use deep matching methods to model the
relationships between utterances and candidate responses.
These models generally use representation methods based
on LSTM, attention mechanisms and hierarchical interac-
tion techniques. These models are focused on matching not
reasoning. The key problem of matching type models is
how to extract better matching features. In fact, however,
the key problem of reasoning is how to conduct inference
according to clue words from different utterances, which
is more complicated. Existing multi-turn response selection
methods are not suitable for the reasoning problems.

Graph Neural Network The GNN (graph neural net-
work) has achieved outstanding performance in reasoning
tasks based on question answer (Qiu et al. 2019). In this
paper, we convert the sequence structure of utterances into
a graph structure and realize reasoning by using the GCN
(graph convolutional network). The graph structure network
is adept at information collection, fusion and summarization
by message passing along different node paths. The reason-
ing problem of dialogue is different from those of KBQA
and MRC. There is a clear reasoning path based on entity
in triples knowledge in KBQA. Currently, most applications
of MRC construct the graph according to the shared entities.
All of these approaches are difficult to perform for conver-
sation. Previous works on GCN show the superior ability of
GCN to integrate the features of local nodes, which inspires
us to solve the inference issues in conversation with graph
structure.

Methodology
Problem Formalization
Given a conversation context U = {u1, u2, ..., un} where
ui = {w1, w2, ..., wli} with li tokens represents an ut-
terance, R = {ra, rb, rc, rd} and y ∈ {a, b, c, d} is
a four-category label, indicating which ri∈{a,b,c,d} =
{w1, w2, ..., w|ri|} is a proper response for U . Our goal is to
learn a matching model f(U, ri), which can measure the rel-
evance between the context U and each candidate response
ri∈{a,b,c,d}.

Model Overview
Figure 2 shows an overview of GRN, which follows
the Pretraining-Representation-Reasoning-Aggregation
framework. First of all, we perform unsupervised pre-
training on the target training set with combined NUP and
UOP tasks on ALBERT. We refer to the pre-trained model
as UBERT. We then fine-tune UBERT on downstream tasks.
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[SEP]
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[SEP]
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Figure 2: Overview of our GRN. The UBERT on the left is pre-trained with the combining tasks using NUP and NOP based on
the ALBERT. We fine-tune UBERT (right) on the downstream task.

For each input pair (U, ri), the output of UBERT is denoted
as H ∈ RL∗d, where L =

∑n
i=1 li + |rj | + 3 and d is the

dimension size of the output layer UBERT. We obtain the
summary vector h[cls] for input pair (U, ri) and token-level
representations for all the utterances and the candidate re-
sponses ri from H are denoted as f = {f1, f2, ..., fn+1} ∈
R(n+1)∗d.

The reasoning module then starts to compute the semantic
relevance between context and response at different granu-
larities through sequence and graph network structure. The
sequence reasoning module calculates the semantic rele-
vance based on summary information from the global per-
spective, and the graph reasoning module computes the se-
mantic relevance based on contextual information from lo-
cal perspective. Features from different modules are merged
through the aggregation layer. Next, we will introduce in de-
tail the implementation of every module.

Pre-training
Continued pre-training on the target datasets can improve
the performance of the model (Gururangan et al. 2020). Mo-
tivated by this, we follow the previous works on the target
training set based on ALBERT. Unfortunately, the perfor-
mance of the model has suffered significant degradation, for
thich there are two main reasons.

• As in the previous analysis (Gururangan et al. 2020), the
domain of our target datasets is included in the original
ALBERT pre-training domain.

• The form of original pre-training tasks is different from

that of our target task.

• We demand a customized pre-trained language model for
multi-turn response selection.

To solve these problems, we devise two auxiliary pre-
training tasks, UOP and NUP. They capture dependencies
between utterances from different perspectives. Next we in-
troduce the two tasks in detail.

Utterance order prediction (UOP) Coherence and cohe-
sion in discourse have been widely studied (Grosz, We-
instein, and Joshi 1995). Existing works mainly learn sen-
tence representation from token-level and sentence-level.
The token-level methods (Kiros et al. 2015; Hill, Cho, and
Korhonen 2016) learn sentence embedding by predicting to-
kens in neighboring sentences. Methods based on sentence-
level (Gan et al. 2017; Lan et al. 2020) learn sentence repre-
sentation by prediction of the future sentences. Unlike most
of the above work, we consider all utterances as a whole. We
want our model to identify which utterance sequences are
ordered and which are disordered. Concretely, the ordered
sequences are labeled as pos-seq and the randomly shuffled
utterance sequences are labeled as neg-seq.

Next utterance prediction (NUP) It is a fact that response
selection is heavily dependent on the previous dialogue seg-
ments. Responses differ when giving different dialogue seg-
ments. In other words, there is a semantic dependency be-
tween previous dialogue segments and the next utterance. To
capture the semantic dependency, we demand our model to
distinguish the previous dialogue segments from the future
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dialogue segments for an utterance. Concretely, in choosing
an utterance ui at random from utterances U , where 1 < i <
n, the left part of U is denoted as Uleft = {u1, u2, ..., ui−1}
and right part is denotes as Uright = {ui+1, ui+2, ..., un}.
We require the model to distinguish the (Uleft, ui) pair from
the (Uright, ui) pair.

Representation
This module uses the pre-training UBERT to encode the
utterances U and R generating the contextual representa-
tions H . First, we concatenate the utterances U into a se-
quence denoted as T . For each sequence pair (T, ri), we
generate an input to feed through UBERT by concatenating
[CLS] + T + [SEP ] + ri + [SEP ]. At the same time, we
employ Ei = {s1, e1, s2, e2, ..., sn+1, en+1 ∈ R2n+2} to
store the start and end positions of each utterance including
the response candidate ri. The output h[cls] from UBERT
is considered as a summary vector for each sequence pair
(T, ri).

Reasoning
The goal of the reasoning layer is to calculate semantic rel-
evance between utterances and each candidate response. We
design two different structure networks to compute the rel-
evance from different perspectives. The sequence structure
network reasoning module is responsible for calculating se-
mantic relevance from the global perspective. The graph
structure network reasoning module is responsible for cal-
culating local semantic relevance.

Sequence structure Reasoning The representation h[cls]
of the special token [CLS] is often used for classification,
which is considered as the summary vector for the input se-
quence pair. One common way is to project this summary
vector into a scalar (Devlin et al. 2019; Qiu et al. 2019),
which computes a score independently for each response. In
this paper, we consider selecting the most suitable response
by comparing four candidates responses. Therefore, we add
a multi-head self-attention (Vaswani et al. 2017) layer on
top of the concatenation of all [CLS]. The self-attention is
defined as:

Multihead = Concat(head1, ..., headh)W
O (1)

headi = Attention(QWQ
i ,KW

K
i , V WV

i ) (2)

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (3)

where WQ
i , WK

i and WV
i are linear projection matri-

ces, and h is the number of the heads. The motivation for
adding a multi-head self-attention accross the special token
[CLS] generated from different candidate responses with ut-
terances is to encourage the further interaction between ut-
terances and candidate responses by comparing four candi-
date responses, which can generate a better representation
for selecting a proper response. The output of this layer is
defined as Os.

Graph Structure Reasoning The GCN (Graph Convolu-
tional Network) has been proven to offer better performance
for the reasoning task in QA (Ye et al. 2019; Fang et al.
2019; Qiu et al. 2019). The graph structure allows messages
to pass over the nodes with local contextual information,
which can comprehensively consider clue words in differ-
ent utterances to achieve the purpose of reasoning. Previous
works in QA show that GCNs have achieved promising re-
sults in reasoning tasks. The reason GCN works is that GCN
can summarize the feature information of local nodes. In this
paper, we employ GCN to summarize the local feature in-
formation. We propose to build a graph model over utter-
ance representations gi to explicitly facilitate reasoning over
all utterances. The graph node is initialized by the utterance
representations gi.

To build the connections among graph nodes, we design
two types of edges based on the dependencies between ut-
terances. We named the constructed graph UDG, taking ut-
terances as nodes.

• Add an edge between adjacent utterances.

• Add an edge between two nonadjacent utterances if there
is a dependency between topics to which they belong. The
topic is an abstract concept. Each utterance has a central
idea which is called a topic in this paper. For convenience
of description, we use a highly abstract token or phrases to
represent the topic. However, in our implementation, the
topic is composed of a keyword or a set of highly corre-
lated keywords for the utterance. It is a fact that the topic
of the utterance will change frequently over time. How-
ever, changes in topics are always logically related. That
is, there is logical dependence between topics. In this pa-
per, we extract the named entities and keywords by Tex-
tRank (Mihalcea and Tarau 2004). We then use commu-
nity detection algorithms to determine whether there is
dependency between topics.

The motivation for the first type of edge is that we want
the GNN to grasp the chronological dependency among ut-
terances. Furthermore, we design the second type of edges
according to the logical dependency among topics. Cross-
utterance reasoning is realized by jumping from one utter-
ance to another one with different topics.

It is worth noting that the last utterance is not always the
most important, and previous utterances may contain key in-
formation. Therefore, it is not always reasonable to denote
the two edges as directed. When using a directed edge, we
should pledge that information of all nodes can reach the
last node along the specified direction, which corresponds to
the long distance dependency issue. An undirected edge al-
lows message to pass in both directions between two nodes.
Therefore, we employ undirected UDG as the basic graph
reasoning structure. To deeply study the impact of different
UDGs on performance, we will discuss the rationality of all
possible UDGs in detail and present the corresponding ex-
perimental results. All possible UDGs of the combinations
of edges in different directions are shown in Figure 3.

Given the output H from the UBERT on the downstream
task, we first obtain sequential representation of each utter-
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Figure 3: Different types of UDG. The black line repre-
sents the chronological dependency relationship between ut-
terances. The green line represents the dependency between
topics.

ance from H .

fi = H[si : ei, :] ∈ Rli∗d (4)

where si and ei represent the start and end positions of ut-
terance ui in H , respectively. For each utterance, we adopt
the attention mechanism to dynamically select clue words,
which is defined as:

scorej = vT1 tanh(f
j
iW1 + fki W2) (5)

αj =
exp(scorej)∑
k exp(scorek)

(6)

gi =

li∑
j=1

αjf
j
i (7)

where gi ∈ Rd, W1,W2, v1 are trainable parameters.
Now let us briefly describe the GCN (Kipf and Welling

2017) layers used in Figure 2. In general, the input of the
GCN is a graph G = {V,E} with n vertices vi ∈ V ,
edge eij = (vi, vj) ∈ E with wij = 1 , and wij = 0 if
eij = (vi, vj) 6∈ E. We use the adjacency matrix A ∈ Rn∗n

of the graph to represent the weight of edges. In addition,
the input of the graph contains a vertex feature matrix de-
noted as M0 ∈ Rn∗d. In this paper, suppose D is a diag-
onal matrix such that Dii =

∑
j Aij , M0

i represents initial
graph node embedding from utterance representation gi, and
M l ∈ Rn∗dl denotes the hidden representations of the ver-
tices in the lth layer, where the calculation of node represen-
tations after each layer can be formulated as:

M l = σ(D̃−
1
2 ÃD̃−

1
2M l−1W l) (8)

where Ã = A + IN , IN is the identity matrix, and D̃ is a
diagonal matrix with D̃ii =

∑
j Ãij . These are the adja-

cency matrix and the degree matrix of graph G, respectively.
W l represents the trainable parameters in the lth layer. σ(.)
denotes the ReLU (rectified linear unit) activation function.
After message passing on the UDG, each node has a local
contextual representation. However, indirect weak interac-
tion is determined for nonadjacent nodes by a graph convo-
lutional rule. Therefore, we use the cross attention mecha-
nism to discover a further interact between utterances, which
encourages the model to reason based on global information.
The calculation formula is defined as follows:

Sj
i = vT tanh(M l

iWl +M l
jWr +Mi �Mj) (9)

αj
i =

exp(scoreji )∑
j score

j
i

(10)

M̃ l
i =

∑
j

αj
i ∗M

l
j (11)

where Wl,Wr, v
T are trainable parameters, and S is the

similarity matrix across utterances. Finally, the hidden rep-
resentations of all nodes are merged into a single vector of
a fixed length, denoted as Og , by utilizing the max-pooling
operation of the hidden vectors of all vertices.

Aggregation
An aggregation layer aggregates the sequence matching re-
sult Os and the graph matching result Og by the gate atten-
tion mechanism, which is defined as:

g = sigmoid(Wg[Os;Og]) (12)

O = g ∗Os + (1− g) ∗Og (13)

where Wg is a trainable parameter. We finally compute
matching score based on the mixed matching features O via
a single layer perceptron, which is defined as:

scoreri =Wo ∗O + bo i ∈ {a, b, c, d} (14)

where Wo, bo are trainable parameters. The loss function is
negative log likelihood, defined as:

pi =
exp(scoreri)∑
j exp(scorerj )

(15)

L = −
∑
i

yohi log(pi) (16)

where yoh is the one-hot vector of the real label y.

Experiments
Datasets
We test our proposed GRN on MuTual and MuTualplus. Mu-
Tual is built based on Chinese high school English listening
comprehension test data, consisting of 8,860 challenge ques-
tions, in terms of almost all questions involving reasoning,
which are designed by linguistic experts and professional
annotators. MuTual consists of 8,860 context-response pairs
and has an average of 4.73 turns. Each context-response pair
has four candidate responses. MuTualplus is built based on
MuTual by using safe response to replace one of the candi-
date responses for each instance in MuTual. MuTualplus is
used to check whether the model can select a safe response
when the other candidates are incorrect.

Metrics
We use the same evaluation metrics as those used in previous
works (Cui et al. 2020). Each compared model must give the
recall at position 1 in 4 candidates(R@1), recall at position
2 in 4 candidates(R@2) and Mean Reciprocal Rank (MRR)
(Baeza-Yates and Ribeiro-Neto 1999).

13437



MuTual MuTualplus

Method R@1 R@2 MRR R@1 R@2 MRR
Human 93.8 97.1 96.4 93.0 97.2 96.1
Random 25.0 50.0 60.4 25.0 50.0 60.4
TF-IDF 27.9 53.6 54.2 27.8 52.9 76.4
DuLSTM 26.0 49.1 74.3 25.1 47.9 51.5
SMN 29.9 58.5 59.5 26.5 51.6 62.7
DAM 24.1 46.5 51.8 27.2 52.3 69.5
BIDAF 35.7 58.9 58.9 33.4 49.2 56.2
RNET 27.0 43.5 51.3 26.1 50.6 53.2
QANET 24.7 51.7 52.2 25.1 49.5 51.9
BERT 64.8 84.7 79.5 51.4 78.7 71.5
RoBERTa 82.5 95.3 90.4 75.7 92.8 85.6
SpanBERT 80.6 94.8 89.3 70.3 88.4 83.0
GPT-2 33.2 60.2 58.4 31.6 57.4 56.8
GPT-2-FT 39.2 67.0 62.9 22.6 61.1 53.5
BERTMC 66.7 87.8 81.0 58.0 79.2 74.9
RoBERTaMC 68.6 88.7 82.2 64.3 84.5 79.2
ALBERT 84.7 96.2 91.6 78.9 94.6 88.4
GRN 91.5 98.3 95.4 84.1 95.7 91.3

Table 1: Experimental results of different methods on two
testing sets

Method R@1 R@2 MRR
GRN 93.5 98.5 97.1
-pre-training 90.5 97.3 94.7
-GCN match 91.5 97.9 95.5
-sequence match 91.3 97.6 95.2
-cross attention 92.2 97.3 95.6
-SelfAtt (Vaswani et al. 2017) 92.7 98.2 96.8

Table 2: Ablation experimental results of GRN on MuTual
validation set

Baselines
Basic Models: Models in (Lowe et al. 2015) include TF-
IDF and DuLSTM. SMN (Wu et al. 2017): A matching
model calculates the relevance feature on token-level. DMN
(Zhou et al. 2018): A matching model calculates the rele-
vance based on semantic and functional dependencies by
using stacked self-attention (Vaswani et al. 2017). MRC
Methods: We test the performances of several representa-
tive MRC models, QANET (Yu et al. 2018), BIDAF (Seo
et al. 2017) and R-NET (Wang et al. 2017). BERT (De-
vlin et al. 2019): An autoencoding language model based
on transformer. SpanBERT (Joshi et al. 2020): An autoen-
coding language model with span masking base on trans-
former. RoBERTa (Liu et al. 2019): An autoencoding lan-
guage model with dynamic masking base on transformer.
ALBERT (Lan et al. 2020): An improved language model
base on BERT. GPT-2 (Radford et al. 2019): We fine-tune
the GPT-2 on (context,response) pair and choose the one
with the lowest perplexity as the correct response. In ad-
dition, we fine-tune the GPT-2 only using the positive re-
sponse and context to construct the input sequence, whcih
is denoted as GPT-2-FT. Multi-choice Method: Different

Pre-training Method R@1 R@2 MRR
ALBERT(original) 84.8 96.0 91.6
BERT (Devlin et al. 2019) 78.2 90.6 84.9
Our Pre-training 87.6 96.7 93.6

Table 3: Performance comparison of UBERT using different
pre-training methods on the validation dataset

UDG Type(Figure3) R@1 R@2 MRR
Type a 88.6 93.2 91.9
Type b 90.3 96.7 94.2
Type c 91.8 97.9 95.5
Type d 93.5 98.5 97.1

Table 4: Performance comparison of different UDGs on the
validation dataset

from the previous work (Devlin et al. 2019), we concate-
nate the CLS representations of all input sequences in one
instance to calculate matching score, which is denoted as
BERTMC. This method is also applicable to other language
models similar to BERT, such as RoBERTa.

Implementation Details
Unsupervised Pre-training In this paper, we use AL-
BERT (Lan et al. 2020) as the base model. We construct
the train corpus based on the MuTual train dataset without
using the response candidate. We set the initial learning rate
as 3e-5, the train step is 120,000. The trained model is called
UBERT, which was trained based on the UOP and NUP task.
The accuracy of unsupervised pre-training achieves 0.98.

Fine-tune In the downstream task, we use both the se-
quence and the graph structure network and use pre-trained
U-BERT to initialize downstream model parameters. We set
the learning rate as 2e-5, the number of GCN layers as l = 2
and use Adam optimizer to update the model parameters.
The hidden size of GRN is 512. We train the model for 3
epochs, and the best performance on the validation set was
considered as the final model.

Results
Table 1 reports the testing results of GRN as well as all
comparative models on MuTual and MuTualplus. We can
observe that the performance of GRN significantly outper-
forms all comparative models on both datasets, demonstrat-
ing the superior power of GCN in reasoning questions with
multi-turn context. One notable point is that the performance
of traditional representation models (i.e., TF-IDF, DuLSTM,
SMN and DMN) is relatively low. This indicates that these
representation models have insufficient reasoning ability.
Compared with ALBERT, GRN has an absolute advantage
of 6.8% on R@1, approximately 2% on R@2 and approx-
imately 3.8% on MRR on MuTual. Moreover, nearly the
same performance improvement is observed on MuTualplus,
which again verifies that our reasoning strategy is effec-
tive. The performances of language models such as BERT,
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Model T=2 T=3 T=4 T=5 T ≥ 6
Instances 290 143 115 51 287
RoBERTa 73.1 65.7 63.5 80.4 71.2
RoBERTa-MC 68.1 62.2 60.9 72.5 75.0
ALBERT 85.6 82.1 82.5 84.3 86.0
GRN 92.1 93.1 88.6 88.2 91.9

Table 5: R@1 performance comparison of different number
of turns on the test set. T denotes number of turns.

RoBERTa, etc. cannot compete with our pre-training strat-
egy on both datasets, which demonstrates that the original
language model cannot capture the rich context representa-
tions better in conversation. We also report the testing results
of some classic MRC models such as QANET, BIDAF and
R-NET. Their performances are very close to those of the
previous representation models. The main reason for this is
that these models have limited reasoning capabilities.

Ablation Study
We investigate the effects of different parts of the GRN
through removing them one by one from GRN, as shown
in Table 2. -pre-training: removing our pre-training strat-
egy. The performance of the -pre-training method drops
greatly, which verifies the effectiveness of pre-training in
capturing dependencies among utterances. -GCN reason-
ing: removing the GCN reasoning module including the
graph attention. the -GCN reasoning method causes consid-
erable performance degradation, demonstrating the superior
power of GCN in reasoning tasks. -sequence reasoning: re-
moving the sequence reasoning module including the multi-
head attention. The -sequence reasoning method also causes
notable performance degradation. The sequence reasoning
module can capture the information of clue words from the
global perspective by deep interaction between different (ut-
terance,response) pairs. -cross attention: removing the at-
tention on the top of GCN and using max-pooling for the
hidden vectors of all vertices. The performance of the -graph
biattention method drops slightly, which demonstrates that
the attention mechanism can encourage the interaction be-
tween nonadjacent nodes on UDG. -SelfAtt: removing the
multi-head self-attention on top of the CLS token. There is
also a slight decrease in performance, which demonstrates
that the self-attention module is beneficial for capturing the
key information.

Pre-training Method Discussion Table 3 reports the
results of GRN with different pre-training methods. As
demonstrated, training ALBERT on the target training set
following the previous work (Lan et al. 2020) results in
a significant drop in performance, which verifies our pre-
vious analysis that the domain of our dataset is similar
to the original ALBERT pre-training domain. The perfor-
mance of UBERT exhibits a significantly improvement, wh-
cih demonstrates the effectiveness of our pre-training strat-
egy.

Number of GCN Layers Discussion Figure 4 shows the
effect of GCN layers on model performance. It can be found
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Figure 4: R@1 performance comparison of different number
of GCN layers on validation dataset.

that the accuracy(R@1) of the GRN is highest when the
number of GCN layers is 2. An interesting phenomenon is
noted in that deeper numbers of GCN layers do not corre-
spond with better performance of the model. As analyzed
in previous work (Klicpera, Bojchevski, and Günnemann
2018),the number of GCN layers is related to the depth of
the graph and the sparseness of the adjacency matrix. The
number of turns in Mutual is mostly within 5, which makes
it more appropriate for GRN to use shallow GCN.

UDG Discussion To investigate the effect of different
UDGs on performance, we test the performance of GRN us-
ing different UDGs on the validation dataset. Table 4 reports
the resuts of the model using different UDGs. As demon-
strated, the performance of GRN based on undirected UDG
significantly outperforms the others. The GRN based on di-
rected UDG yields the lowest performance. We can con-
clude that it is not an effective method for ensuring that
the message passes along the chronological order of utter-
ances, which requires the pledge that all key information
can reach the last node by message passing. In fact, accord-
ing to instance analysis, each utterance may contain clue
words and reasoning which is not developmental in one di-
rection. Therefore, reasoning is more realistic for an undi-
rected UDG.

Performance Across Different Context Lengths We in-
vestigate the effects of different turns on the performance
of GRN. Table 5 demonstrates the performance of GRN on
MuTual. As demonstrated, the performance of GRN outper-
forms all the compared methods on different turns of Mu-
Tual. It is notable that the performance of GRN does not de-
crease significantly as the number of turns increase, demon-
strating the good adaptability of the GRN to different turns.

Case Study
Figure 5 (left) shows a case of keyword extraction in a di-
alogue and the right part is the UDG corresponding to this
example. As described before, the topic of each conversa-
tion is an abstract concept. In this paper, the topic is rep-
resented by keywords of utterance. As can be seen from
the Figure 5 (left), the keywords set approximate repre-
sents the main meaning of each sentence. Then, based on
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Turns Utterance
U1 Good morning , two tickets to london , please .
U2 Express train or regular one ?
U3 Any difference ?
U4 The regular ticket is 80 dollars while price of the express 

ticket is 10 % higher .
U5 I see , but how long does the express train take ?
U6 Comparatively , it can save you nearly an hour and the 

next one is leaving at 10:45 .
U7 Oh , we only have 15 minutes to go .
U8 But that ‘s the time to catch the train . Besides , as long as 

I get to london earlier , I don't mind paying a little extra .
U9 Yeah , you 're right . it 's already 10:30. you only have 15 

minutes to go .

(a) (b)

[NULL]

[regular ticket …] 

[express train take ] [time, train …] 
[only, 15 minutes] 

[hour, next one, 10:45] [already 10:30, 15 minutes] 

U4

U1 U3
U2

U8 U5

U7

U9 U6

[two tickets, London] 

Figure 5: Case Study. (a) is one of the keyword examples for utternces in Figure 1 and red tokens is the keywords in utterance.
(b) is the corresponding UDG, the tokens is the keywords for every utterance.

u1 : Excuse me, but I think you 've made a wrong turn. You were 
supposed to turn left on Wilson blvd.
u2 : Oh, I 'm sorry. Did you say 1323 wilson .
u3: No 3023. It is ok though, You don't have to take me there, I can 
walk from here .
ⅹ u4(A): Ok. your house number is 1323 , right ? I'll take you there.
ⅹ u4(B) : Ok. I will take you to your house , wilson 4023.
ⅹ u4(C) : Sorry. I thought your house number is 3023, but it 's 1323, 
right ?
√ u4(D) : Sorry. I will take you to your house, wilson 3023.
predict answer: [C  A  B  D]

Figure 6: Error analysis

the extracted keywords, we use a community detection al-
gorithm to discover the relationship between non-adjacent
utterances. When there is not keyword included in utterance,
we use the special token NULL instead.

Error Analysis
Although GRN outperforms all baseline methods on the two
datasets, there are still some problems which cannot be dealt
with.

• Logical Reasoning. Although the GRN can handle some
basic reasoning problems, it cannot handle more complex
logical reasoning with complex grammatical phenomena.
As demonstrated in Figure 6, the GRN cannot understand
the semantic and logical relationships between ‘NO 3023’
and previous utterances. The GRN thinks ‘1323’ is the
correct number and ”3023” is wrong according to the pre-
dicted answer order. The utterance ‘NO 3023’ gives its
own view while negating the previous conclusion. In ad-
dition, this utterance omits substantial information, where
is the dialogue is more difficult to handle than the general

document.
• Safe Response. The performance on MuTualplus is sig-

nificantly lower than that on MuTual. This demonstrates
that the GRN cannot select the safe response when other
candidate responses are incorrect in some cases.

Conclusion
In this paper, we propose a new architecture for multi-turn
response reasoning. Concretely, we first propose NUP and
UOP pre-training tasks for response selection. We design
the UDG of utterance for reasoning. We introduce sequence
and graph reasoning structure jointly, where the sequence
reasoning module can capture the key information from the
global perspective and the graph reasoning module is re-
sponsible for capturing the clue words information from the
local perspective. The experiment results on MuTual and
MuTualplus achieve a new heights. There is still expansive
room for improvement in performance on MuTualplus. In
future work, we will further investigate how to balance safe
response and meaningful candidate response.
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