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Abstract

Motivated by the recent successful application of span-based
models to entity-based information extraction tasks, we in-
vestigate span-based models for event coreference resolution,
focusing on determining (1) whether the successes of span-
based models of entity coreference can be extended to event
coreference; (2) whether exploiting the dependency between
event coreference and the related subtask of trigger detection;
and (3) whether automatically computed entity coreference
information can benefit span-based event coreference reso-
lution. Empirical results on the standard evaluation dataset
provide affirmative answers to all three questions.

1 Introduction
Within-document event coreference resolution is the task of
determining which event mentions in a document refer to the
same real-world event. Consider the following example:

Yesterday the Delhi Police {slapped}ev1 a protester
while she was {demonstrating}ev2 outside a hospital.
At almost the same time, a woman in her 60s was
{beaten up}ev3 by policemen in another {protest}ev4
in the northern Indian state of Uttar Pradesh. As of
now, the Delhi Police has suspended the cop who
{assaulted}ev5 the woman protester.
In this example, there are five event mentions (ev1−ev5),

which are triggered by the words/phrases slapped, demon-
strating, beaten up, protest, and assaulted, respectively.
While ev1, ev3, and ev5 are of subtype ATTACK, only ev1
and ev5 are coreferent, as ev3 took place during a different
protest. In addition, ev2 and ev4 are not coreferent because
they refer to different PROTEST events.

Event coreference resolution is arguably more challeng-
ing than its entity counterpart, entity coreference resolu-
tion. To understand the reason, consider the standard in-
formation extraction (IE) pipeline (Figure 1), which in-
volves (1) extracting entity mentions from a given document
(the entity extraction component) and determining which
of them are coreferent (the entity coreference component);
(2) extracting event mentions by identifying their trigger
words/phrases and determining which entity mentions are
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Figure 1: The standard information extraction pipeline.

their arguments/participants (the event extraction compo-
nent); and (3) determining which event mentions are corefer-
ent using information from both the entity pipeline and the
event pipeline. As we can see, while an entity coreference
resolver has to assume as inputs the noisy outputs of an en-
tity extraction component, an event coreference resolver has
to assume as inputs the noisy outputs of a larger set of up-
stream components in both the entity pipeline and the event
pipeline, each of which involves challenging tasks.

Despite these challenges, a relatively new type of neural
models known as span-based models has recently been suc-
cessfully applied to entity-based IE tasks, including entity
extraction and entity coreference resolution (Lee et al. 2017;
Luan et al. 2019; Wadden et al. 2019). Span-based models,
unlike many other neural models, focus on learning task-
specific span rather than word representations. For instance,
when applied to entity coreference, span-based models seek
to learn representations of text spans that correspond to en-
tity mentions so that two coreferent entity mentions have
similar span representations. Span-based models have revo-
lutionized the way entity coreference research is conducted:
while traditional entity coreference research has focused on
designing complex coreference models, span-based models
focus on learning span representations that can be used in
conjunction with relatively simple coreference models. In
addition, while traditionally entity mention extraction is per-
formed prior to entity coreference resolution (see Figure 1),
span-based models learn entity mention boundaries as part
of the entity coreference resolution process. This mitigates
the propagation of errors from the entity extraction compo-
nent to the entity coreference resolution component.

Our work is motivated by our belief that the successful
application of span-based models to entity-based IE tasks
creates new opportunities for event coreference research. In
particular, our work is driven by three research questions.

First, how well would span-based models work for event
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coreference resolution? As mentioned above, event corefer-
ence is more challenging than its entity counterpart. Struc-
turally, an event mention is more complex than an entity
mention: while an entity mention is composed of the men-
tion span and its entity type, an event mention is composed
of not only the trigger but also the arguments (i.e., the event
participants) and the roles they play in the event. Determin-
ing whether two event mentions are coreferent requires not
only that their event subtypes are the same, but also that
their corresponding arguments are entity-coreferent. In other
words, unlike entity coreference where much of the informa-
tion needed to determine coreference is encoded within the
entity mention itself, event coreference depends heavily on
the context in which an event trigger appears. Whether span-
based models can effectively learn representations of event
mentions based purely on knowledge provided by contextu-
alized embeddings is an interesting question.

Second, what would be the best way to exploit the de-
pendency between event coreference and trigger detection
in span-based event coreference models? Trigger detection
is the subtask of event coreference that involves identify-
ing the event mentions in a text document and determining
their event subtypes. While span-based models enable trig-
ger detection and event coreference to be learned simulta-
neously in a multi-task learning framework, they fail to ex-
ploit an important cross-task consistency constraint between
trigger detection and event coreference: two event mentions
with different event subtypes cannot be coreferent. In other
words, it is possible for a span-based model to posit two
event mentions having different event subtypes as corefer-
ent. Motivated by this potential weakness, we explore dif-
ferent methods for exploiting this cross-task dependency.

Third, can entity coreference information benefit event
coreference resolution? Intuitively, the answer is yes. Recall
from our running example that ev3 is not coreferent with
ev1 and ev5 and that ev2 and ev4 are not coreferent. Deter-
mining such non-coreference relations requires knowledge
of entity coreference over their arguments/participants. For
instance, while the victim in each of ev1, ev3 and ev5 was
a woman, only ev1 and ev5 are coreferent since their at-
tackers, the cop in the Delhi Police, are entity-coreferent.
In contrast, ev3 is not coreferent with ev1 and ev5 be-
cause its attackers, the policemen in Uttar Pradesh, are not
entity-coreferent with the Delhi Police. Despite the useful-
ness of entity coreference information for event coreference,
the vast majority of existing event coreference resolvers do
not use entity coreference information because of the noise
inherent in computing it. Lee et al.’s (2012) work represents
one of the few attempts that employ entity coreference in-
formation for event coreference and show that entity coref-
erence information can be profitably used for event corefer-
ence resolution. Nevertheless, we believe that it is time to re-
visit Lee et al.’s results. The reason is that the event corefer-
ence model they used (i.e., the so-called mention-pair model
(Soon, Ng, and Lim 2001; Ng and Cardie 2002)) is consid-
ered a weak model in today’s standard. In other words, while
they showed that entity coreference information can be used
to improve a weak event coreference model, it is not clear
whether it can improve strong event coreference models.

In sum, our contributions in this paper are two-fold. First,
we investigate the application of span-based models to event
coreference resolution and the exploitation of cross-task
consistency constraints and entity coreference information
in span-based event coreference resolution. Second, results
on the KBP 2017 event coreference dataset demonstrate the
effectiveness of our span-based event coreference models,
especially when augmented with consistency constraints and
entity coreference information. In particular, the resulting
model achieves state-of-the-art results on this dataset.

2 Related Work
Event coreference: models and features. While there ex-
ist heuristic models (e.g., Lu and Ng (2016)), unsupervised
models (e.g., Bejan and Harabagiu (2014), Chen and Ng
(2015)) and semi-supervised models (e.g., Peng, Song, and
Roth (2016)) for event coreference resolution, the vast ma-
jority of event coreference resolvers are supervised (e.g.,
Ahn (2006), Chen, Ji, and Haralick (2009), Nguyen, Mey-
ers, and Grishman (2016)). Broadly, supervised approaches
can be divided into two categories. In pipeline models (e.g.,
Choubey and Huang (2017), Choubey and Huang (2018)),
event mentions are first extracted in the trigger detection
component and then used for event coreference. While most
of the existing approaches to event coreference are pipeline-
based, errors in trigger detection can propagate to the event
coreference component. To address error propagation, re-
searchers developed joint models, including joint inference
models using Integer Linear Programming (Chen and Ng
2016) and Markov Logic Networks (Lu et al. 2016), as
well as joint learning models using structured perceptrons
(Araki and Mitamura 2015) and structured conditional ran-
dom fields (CRFs) (Lu and Ng 2017). Our span-based model
is the first joint event coreference model that is neural-based.

There is a large body of work on designing features for
supervised event coreference resolution. These features can
broadly be divided into four categories: lexical (e.g., features
that encode string-matching facilities) (Lee et al. 2012), se-
mantic (e.g., features that encode semantic similarity mea-
sures) (Liu et al. 2014), argument-based (i.e., features that
determine how compatible the arguments of two event men-
tions are) (Yang, Cardie, and Frazier 2015), and discourse-
based (e.g., the token and sentence distances between two
event mentions) (Cybulska and Vossen 2015). In contrast,
span-based models operate without feature engineering.

Exploiting cross-task constraints for event coreference.
The cross-task constraint that two coreferent event mentions
must have the same event subtype has been exploited in both
pipeline and joint models of event coreference. In pipeline
approaches, the subtypes predicted by the trigger detector
for the two event mentions under consideration have been
used as features and as constraints for event coreference.
Specifically, some coreference models have been trained on
a feature that encodes whether two event mentions have the
same subtype (Chen and Ng 2014), while others have used
the subtypes as a hard constraint to disallow two event men-
tions with different subtypes to be posited as coreferent dur-
ing resolution (Chen and Ji 2009). In Lu and Ng’s (2017)
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structured CRF-based joint event coreference model, these
cross-task consistency constraints are implemented as soft
constraints in the form of binary and ternary factors.

As noted before, we will explore different methods for ex-
ploiting the dependency between trigger detection and event
coreference in span-based event coreference models. Re-
gardless of whether we encode this dependency as a feature
or as a hard/soft constraint, we believe that the impact of
explicitly encoding and exploiting this dependency on span-
based coreference models is likely to be greater than that on
traditional models. The reason is that this dependency will
be exploited to train our span-based models, meaning that it
will have an impact on the learned span representations.
Using entity coreference information for event corefer-
ence. Lee et al. (2012) employ entity coreference infor-
mation for event coreference. Using heuristically extracted
seeds consisting of pairs of mentions that are either entity-
or event-coreferent, they iteratively bootstrap event corefer-
ence output using entity coreference output and vice versa,
and show that event coreference performance can be im-
proved using entity coreference information. Nevertheless,
their resolver is considered a fairly weak model given to-
day’s technologies: it has since been superseded by mod-
els that no longer make locally optimal decisions involv-
ing only two (clusters of) event mentions. In particular, it
is not clear whether entity coreference information can im-
prove strong event coreference models, such as the span-
based event coreference model that we will describe in the
next section.

For a comprehensive survey of recent related work on
event coreference, we refer the reader to Lu and Ng (2018).

3 Baseline Event Coreference Model
To determine how well span-based models work for event
coreference resolution, we begin by designing a span-based
event coreference model, which we will use as a baseline and
augment with cross-task constraints and entity coreference
information in subsequent sections. This model takes as in-
put a documentD represented as a sequence of word tokens,
from which we extract all possible intra-sentence spans of up
to length L. Each such span corresponds to a candidate trig-
ger, and the model simultaneously learns trigger detection
and event coreference resolution, which we define below.

The trigger detection task aims to assign each span i a
subtype yi. Each yi takes a value in a subtype inventory or
NONE, which indicates that i is not a trigger. The model pre-
dicts the subtype of i to be y∗i = arg maxyt st(i, yt), where
st is a scoring function suggesting i’s likelihood of having
yi as its subtype.

The event coreference resolution task aims to assign span
i an antecedent yc, where yc ∈ {1, . . . , i − 1, ε}. In other
words, the value of each yc is the id of its antecedent, which
can be one of the preceding spans or a dummy antecedent ε
(if the event mention underlying i starts a new cluster). We
define the following scoring function:

sc(i, j) =

{
0 j = ε
sm(i) + sm(j) + sp(i, j) j 6= ε

(1)

where sm(i) is the score suggesting i’s likelihood of being
a trigger and sp(i, j) is a pairwise coreference score com-
puted over i and a preceding span j. The model predicts the
antecedent of i to be y∗c = arg maxj∈Y(i) sc(i, j), where
Y(i), the set of candidate antecedents of i, contains all spans
preceding i in the associated document.

Model Structure
The model structure (Figure 2(a)) is described below.
Span Representation Layer. We adapt the independent
version of Joshi et al.’s (2019) state-of-the-art entity coref-
erence resolver to event coreference resolution. Specifically,
we divide an input document into non-overlapping regions,
each of which has sizeLd. The word sequence in each region
serves as an input training sequence. We then pass the se-
quence into a pretrained transformer encoder in SpanBERT-
large (Joshi et al. 2020) to encode tokens and their con-
texts. Finally, we set gi, the representation of span i, to
[hstart(i); hend(i); hhead(i); fi], where hstart(i) and hend(i)

are the hidden vectors of the start and end tokens of the
span, hhead(i) is an attention-based head vector and fi is a
span width feature embedding. To maintain computational
tractability, we first compute a score sm for each span i:

sm(i) = wm · FFNNm(gi) (2)
where FFNN is a feedforward neural network. Then we re-
tain only the top N% of the spans for further processing.
Trigger Prediction Layer. For each span i that survives
the filtering, we pass its representation gi to a FFNN, which
outputs a vector oti of dimension T , where T is the number
of possible event subtypes (including NONE). oti(y), the yth
element of oti, is a score indicating i’s likelihood of belong-
ing to event subtype y. Specifically:

oti = FFNNt(gi) (3)
st(i, y) = oti(y) (4)

Coreference Prediction Layer. To predict event corefer-
ence links, we first calculate the pairwise score between
spans i and j as follows:

sp(i, j) = wc · FFNNc([gi; gj ; gi ◦ gj , uij ]) (5)
where ◦ denotes element-wise multiplication, gi◦gj encodes
the similarity between span i and span j, and uij is a fea-
ture embedding encoding the distance between two spans.
We can then compute the coreference score defined in Equa-
tion 1 using Equations 2 and 5.

To improve running time, we follow Lee, He, and Zettle-
moyer (2018) and use their antecedent pruning method.

Training
The loss function we use, L(Θ), is composed of the losses
of two tasks, and is defined as follows:

L(Θ) =
d∑

i=1

(λcLc + λtLt) (6)

where hyperparameters λt and λc determine the trade-off
between two task losses. The model is trained to minimize
L(Θ), whereas the hyperparameters are tuned using grid
search to maximize AVG-F (the standard event coreference
evaluation metric; see Section 6) on development data.
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(a) Baseline event coreference model

(b) Independent entity coreference model

(c) Joint model

Figure 2: Model architectures.

Task Losses. We employ a max-margin loss for each task.
Defining the coreference loss is tricky since the coref-

erence annotations for each document are provided in the
form of clusters. We adopt the coreference loss function
defined by Wiseman et al. (2015) for entity coreference
resolution. Specifically, let GOLDc(i) denote the set of
spans preceding span i that are coreferent with i, and ylc be
arg maxy∈GOLDc(i) sc(i, y). In other words, ylc is the highest
scoring (latent) antecedent of i according to sc among all the
antecedents of i. The coreference loss function is defined as:

Lc(Θ) =
n∑

i=1

max
j∈Y(i)

(∆c(i, j)(1 + sc(i, j)− sc(i, ylc)) (7)

where ∆c(i, j) is a mistake-specific cost function that re-
turns the cost associated with a particular type of error (Dur-
rett and Klein 2013).1 Intuitively, the loss function penalizes
a span i if the predicted antecedent j has a higher score than
the correct latent antecedent ylc.

We similarly define the loss for trigger detection:

Lt(Θ) =
∑n

i=1

∑
l̂ 6=yt

max(0,∆t(i, l̂)(1 + st(i, l̂)− st(i, yt))) (8)

where ∆t(i, l̂) is a mistake-specific cost function that re-
turns the cost associated with a particular type of error.2 Intu-
itively, the loss function penalizes each span for which each
of the wrong subtypes l̂ has a higher score than the correct
subtype yt according to st.

4 Exploiting Cross-Task Dependency
While the multi-task learning setup employed by the Base-
line allows trigger detection and event coreference to bene-
fit each other via the shared representation layer, it fails to
exploit the dependency that exist between them. Below we
examine four methods for exploiting this dependency.

Gold feature (GF). In the first method, we train the Base-
line coreference model with an additional feature that en-
codes whether the two event mentions under consideration
have the same subtype. During training, we compute this
feature using gold subtypes. During testing, we compute this
feature using the subtypes predicted by the trigger detector.
Predicted feature (PF). Our second method is essentially
the same as the first method, except that the feature is com-
puted using the event subtypes predicted by the trigger de-
tector during both training and testing. This allows the model
to be trained in the same setup in which it will be evaluated.
Hard constraint (HC). In the first two methods, the de-
pendency between trigger detection and event coreference
is encoded implicitly as a feature, so it is possible for the
event coreference model to posit two event mentions having
different subtypes as coreferent. Our third method encodes
this dependency explicitly as a hard constraint. Specifically,
given an event mention to be resolved, we filter all of its can-
didate antecedents whose gold subtypes are different from
that of the event mention during training. During testing, we
filter based on the predicted subtypes.
Soft constraint (SC). Finally, we explore a new method
for encoding this dependency as soft consistency constraints.
Specifically, we incorporate into the Baseline the following
two consistency constraints on the outputs of trigger detec-
tion and event coreference.
P1: If two spans do not have the same event subtype, they

1There are three error types: (1) false link (incorrectly resolved
anaphoric mentions); (2) false new (anaphoric mentions misclassi-
fied as non-anaphoric); and (3) wrong link (non-anaphoric men-
tions misclassified as anaphoric). We use hyperparameters αc1,
αc2, αc3 to adjust their trade-offs.

2We define three error types: (1) non-triggers misclassified as
triggers, (2) triggers misclassified as non-triggers, and (3) triggers
labeled with the wrong subtype. We use hyperparameters αt1, αt2,
αt3 to determine their trade-offs.
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cannot be coreferent.
P2: If a span has NONE as its event subtype, its antecedent
must be the dummy antecedent.

To make use of each constraint in the event corefer-
ence model, we define a penalty function, which imposes
a penalty on two spans i and j if they violate a constraint,
where i is an anaphor and j is a candidate antecedent of i.
For P1, the penalty function p1 is computed as follows:

p1(i, j) = min(|st(i, yi)− st(i, yj)|, |st(j, yj)− st(j, yi)|)
(9)

where yi = arg maxyt st(i, yt) and yj =
arg maxyt st(j, yt). Informally, p1 returns the mini-
mum amount of adjustment needed to ensure that i and j
have the same event subtype.

For P2, we employ the following penalty function p2:

p2(i) =


0 arg max

y∈Y
st(i, y) 6= None

st(i,None)− max
y∈Y\{None}

st(i, y) otherwise

(10)
where Y is the set of possible subtypes. Informally, p2 re-
turns the smallest amount of adjustment needed to ensure
that the subtype of i is not NONE.

Finally, we employ these two penalty functions in the
coreference model by updating sc (Equation 1) as follows:

sc(i, j) =

{
0 j = ε
sm(i) + sm(j) + sp(i, j)− [γ1p1(i, j) + γ2p2(i)] j 6= ε

(11)
where γ1 and γ2 are positive constants. To see why we incor-
porate p1 and p2 into sc, recall that pk will return a positive
value if span i and span j violate constraint Pk. This will in
turn decrease the value of sc(i, j), thus making it less likely
for j to be chosen as the antecedent of i. Note that γ1 and
γ2 are the weights associated with p1 and p2. For instance,
setting γk to a smaller value will undermine the effect of pk
and thus soften the corresponding constraint Pk.

5 Exploiting Entity Coreference Information
In this section, we first describe how we compute entity
coreference chains and then show how we exploit the re-
sulting chains for span-based event coreference resolution.

Computing Entity Coreference Chains
To compute entity coreference chains, we use two models.
Independent model. The first model is an independent
model, which is trained to compute coreference chains over
the entity mentions in a given document independently of
the Baseline event coreference model.

The structure of the Independent model, which is shown
in Figure 2(b), mirrors that of the event coreference model.
Specifically, the entity coreference model also has three lay-
ers: (1) the span representation layer, which learns the spans
corresponding to entity mentions; (2) the entity mention pre-
diction layer, which assigns to each span an entity type taken
from a repository of predefined entity types or NONE if the
span does not correspond to an entity mention; and (3) the
entity coreference layer, which computes coreference links
over spans augmented with its predicted entity type. The loss

function is a weighted combination of two losses, one corre-
sponding to entity mention detection, which predicts entity
mentions and their entity types, and the other correspond-
ing to entity coreference, whose loss is defined in a similar
manner as the one used for event coreference.

Joint model. One weakness of the Independent model is
that the interaction between entity coreference and event
coreference is minimal. To more tightly couple the two
tasks, we train the Independent entity coreference model and
the Baseline event coreference model jointly.

The structure of the Joint model is shown in Figure 2(c).
When trained in a joint fashion, Independent and Baseline
share the span representation layer, and the loss function em-
ployed by Joint is a weighted combination of the loss func-
tions employed by Independent and Baseline.

Incorporating Entity Coreference Information
We explore two methods for exploiting entity coreference
information for span-based event coreference resolution.

As a hard constraint. Our first method uses the entity
coreference information to create a constraint between en-
tity coreference and event coreference, which specifies that
two event mentions cannot be coreferent if their correspond-
ing arguments are not entity-coreferent. For instance, recall
that the ATTACKER arguments ev1 and ev3 in our running
example are not entity-coreferent, so this constraint will be
violated if ev1 and ev3 are predicted to be event-coreferent.
We implement this constraint as a hard constraint, enforcing
it during both training and testing by pruning any candidate
antecedent that violates this constraint with its anaphor.

Implementing this constraint requires that we (1) identify
the arguments of an event mention and (2) compute their se-
mantic roles. For simplicity, we approximate these two tasks
as follows: we consider an entity mention en as an argument
of an event mention ev if en is reachable from ev’s trigger
via a dependency path of length less than 4; moreover, we set
en’s “semantic role” w.r.t. ev to be the sequence of depen-
dency labels over the dependency path connecting them. De-
pendency relations are obtained using the Stanford CoreNLP
toolkit (Manning et al. 2014).

As features. Our second method uses the entity corefer-
ence information to compute three binary features for train-
ing the event coreference model. The first feature encodes
whether the two event mentions under consideration have
any semantic role in common. The second feature encodes
whether any of their arguments having the same semantic
role are not entity-coreferent. The third feature is comple-
mentary to the second feature: its value is 1 if and only if the
value of the second feature is 0.

These two methods for exploiting entity coreference in-
formation for span-based event coreference resolution can
be used in combination with any of the two aforemen-
tioned models for computing event coreference chains.
This results in four combinations that we will evaluate
in the next section, namely Independent/Feature (IF),
Independent/Constraint (IC), Joint/Feature (JF), and
Joint/Constraint (JC).
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6 Evaluation
Experimental Setup
Datasets. We employ the English corpora made available
to us as part of the TAC KBP 2017 Event Nugget Detection
and Coreference task. For training, we use LDC2015E29,
E68, E73, E94 and LDC2016E72. For testing, we use the
official KBP 2017 evaluation set (Mitamura, Liu, and Hovy
2017). Statistics on these datasets are shown in Table 1.

Evaluation metrics. Results of event coreference are ob-
tained using version 1.8 of the official scorer provided by
the KBP 2017 shared task organizers. This scorer reports re-
sults in terms of AVG-F, which is the unweighted average of
the F-scores of four coreference evaluation metrics, namely
MUC (Vilain et al. 1995), B3 (Bagga and Baldwin 1998),
CEAFe (Luo 2005) and BLANC (Recasens and Hovy 2011).

For completeness we also report the results of trigger de-
tection, entity coreference, and entity detection. Trigger de-
tection results are expressed in terms of recall (R), precision
(P), and F-score (F), where a trigger is considered correctly
detected if it has an exact match with a gold trigger in terms
of boundary and event subtype. For entity coreference, we
express results in terms of the CoNLL score (Pradhan et al.
2012), which is the unweighted average of the MUC, B3,
and CEAFe F-scores. Entity detection results are expressed
in terms of F-score, where an entity mention is considered
correctly detected if it has an exact match with a gold entity
mention in terms of boundary and type.

Implementation details. We use SpanBERT-large in the
span representation layer.3 We split each document into seg-
ments of length 512 and generate all spans of length up to 10.
Each FFNN has 1 hidden layer of size 3000. The size of the
width feature embedding is 20. For span pruning, we keep
the top 30% of the spans. For candidate antecedent pruning,
we keep the top 20 antecedents. For training, we use doc-
ument sized mini-batches. We apply a dropout rate of 0.3.
Following Joshi et al. (2019), we use different learning rates
for training the task parameters and the SpanBERT param-
eters. Specifically, the task learning rate is 1 × 10−5 and is
decayed linearly, whereas the learning rate for SpanBERT is
2×10−4 and is decayed linearly. For the hyperparameters in
the loss function, we search for λi, the weight of each task,
out of {1, 5, 10}. For the weights associated with the task
errors, we search out of {0.1, 0.5, 1, 5, 10, 20, 50, 100}.

Results and Discussion
We report results of experiments that can provide answers to
the three research questions mentioned in the introduction.

Research question 1. Recall that the first question con-
cerns how well span-based models work for event corefer-
ence resolution. To answer this question, we compare our
Baseline model (see Section 2) with two state-of-the-art
event coreference models. The first one is Huang et al.’s
(2019) resolver, which is a neural (but not span-based) re-
solver that leverages the argument compatibility informa-
tion acquired from a large unlabeled corpus. The second

3https://github.com/facebookresearch/SpanBERT

Train Dev Test
#docs 735 82 167
#event mentions 20458 2436 4375
#event chains 12988 1806 2963
#entity mentions 43450 8161 13860
#entity chains 15094 3180 5482

Table 1: Dataset statistics.

Coreference Trigger Detection
System MUC AVG F P R F
Huang et al. (2019) 35.7 36.8 56.8 46.4 51.1
Lu and Ng (2020) 37.1 37.9 64.5 46.9 54.3
Baseline 37.6 43.8 71.5 55.3 62.4

Table 2: Comparison with the current state of the art.

Coreference Trigger Detection
Method MUC AVG-F P R F
BL 37.6 43.8 71.5 55.3 62.4
GF 40.5 44.6 73.6 54.8 62.8
PF 40.1 44.1 74.1 53.5 62.1
HC 38.9 43.9 73.4 54.2 62.4
SC 40.9 44.5 73.9 53.3 62.0

Table 3: Results of using different methods for exploiting
the dependency between trigger detection and coreference.

one is Lu and Ng’s (2020) resolver, which extends Lu and
Ng’s (2017) structured CRF-based resolver by incorporating
topic and discourse information. As we can see from Table 2,
our Baseline model outperforms the better state-of-the-art
model by 5.9% points in event coreference AVG-F score and
8.1% points in trigger detection F-score. For trigger detec-
tion, the increase in F-score is accompanied by large gains
in both recall and precision. To understand whether the sub-
stantial improvement in event coreference stems from bet-
ter identification of coreference links or better identification
of singleton clusters, we also report the MUC F-score in
Table 2. Given the modest improvement of the Baseline’s
MUC F-score over that of Lu and Ng, we can conclude that
the improvement in AVG-F stems largely from better iden-
tification of singleton clusters. Overall, our Baseline model
achieves state-of-the-art results on the KBP 2017 test set.

Research question 2. Next, we seek to understand
whether exploiting the dependency between event corefer-
ence and trigger detection can improve coreference perfor-
mance by applying the four methods described in Section 4
to the Baseline model.

Results are shown in Table 3. For comparison purposes,
we show the results of the Baseline (BL), which does not
exploit cross-task dependency, in row 1. For trigger detec-
tion, the four methods consistently yield higher precision
scores and lower recall scores in comparison to BL; more-
over, except for GF, their F-scores are not better than that of
BL. Nevertheless, in terms of coreference AVG-F, the four
methods consistently outperform BL. Note that the gains in
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Event Entity
Coreference (AVG-F) Trigger Detection (F) Coreference (CoNLL) Mention Detection (F)

NC IF IC JF JC NC IF IC JF JC IF/IC JF JC IF/IC JF JC
BL 43.8 44.9 45.1 46.4 46.7 62.4 63.1 64.2 64.1 64.6 71.2 64.9 62.2 86.8 81.7 80.0
GF 44.6 45.9 45.9 47.0 46.7 62.8 62.8 63.6 65.0 65.1 71.2 62.8 62.0 86.8 79.3 80.8
PF 44.1 45.3 45.9 46.6 46.5 62.1 63.7 63.5 65.3 64.3 71.2 61.4 62.8 86.8 78.7 80.8
HC 43.9 45.3 45.7 46.6 46.6 62.4 62.9 64.0 64.1 64.9 71.2 65.1 54.8 86.8 82.1 71.1
SC 44.5 46.1 45.8 47.1 47.0 62.0 63.8 64.3 65.1 65.7 71.2 60.9 54.8 86.8 78.6 71.0

Table 4: Results of exploiting cross-task dependency and entity coreference information on four tasks.

AVG-F are always accompanied by gains in MUC F-score,
meaning that the four methods allow additional coreference
links to be discovered. Overall, these results suggest that ex-
ploiting the dependency between event coreference and trig-
ger detection can indeed improve coreference performance,
with GF and SC offering the largest improvements.

Research question 3. Finally, we examine whether entity
coreference information can benefit event coreference by
evaluating the four combinations for computing and exploit-
ing entity coreference information described in Section 5.

Results of the four tasks (namely, event coreference, trig-
ger detection, entity coreference, and entity mention detec-
tion) are shown in Table 4. For each task, columns 2-5 show
the four combinations of exploiting entity coreference in-
formation. For comparison purposes, we show in the “NC”
columns the results obtained without entity coreference in-
formation. The rows correspond to the different methods for
exploiting the cross-task dependency between event corefer-
ence and trigger detection, and can be interpreted in the same
manner as those in Table 3. Each number in Table 4 therefore
corresponds to a specific combination of method for exploit-
ing cross-task dependency and method for exploiting entity
coreference chains. Note that the BL/NC combination cor-
responds to the Baseline described in Section 2.

Consider first the results of event coreference and trigger
detection. As we can see, stronger event coreference results
are usually accompanied by better trigger detection results.
This is perhaps not surprising, as an event coreference link
will not be considered correct unless the underlying triggers
also have the correct subtype. In addition, using entity coref-
erence information consistently and considerably improves
trigger detection and event coreference performance regard-
less of which method for exploiting cross-task dependency
is used. In particular, the Joint results (JF and JC) are bet-
ter than the Independent results (IF and IC), which in turn
are better than those when entity coreference information
is not used. These results suggest that tightly coupling the
two coreference tasks can improve event coreference per-
formance. Similar to the results in Table 3, the best event
coreference results are obtained using SC.

A closer examination of the system outputs reveals
that exploiting entity coreference information facilitates the
identification of event triggers that are not seen in the train-
ing set and the coreference link between them in those sen-
tences that contain both entity and event coreference links.
For example, in the sentence “President Vladimir Putin sent
his condolences to U.S. President Barack Obama on Tues-

day over the deadly tornado that struck Oklahoma City. In
his cable, Putin expressed his compassion for relatives of
the victims of the powerful twister”, the Joint and Indepen-
dent models successfully posit the event mentions “condo-
lences” and “cable” as coreferent, while the Baseline fails to
do so. The reason is that the occurrences of “his” in the two
sentences are predicted as coreferent, which in turn helps
predict “condolences” and “cable” as coreferent.

Next, consider the results of entity coreference and entity
mention detection. The IF/IC results are identical across dif-
ferent methods for exploiting cross-task dependency. Recall
that the Independent entity coreference model is trained in-
dependently of the event coreference model. Hence, the en-
tity coreference and mention detection results no longer de-
pend on how cross-task dependency and entity coreference
information are exploited for event coreference resolution.

Interestingly, the differences between the Independent
model results (IF and IC) and the Joint model results (JF
and JC) are much larger for entity mention detection than
for trigger detection. A closer examination of the system
outputs reveals that compared to the Independent model,
the Joint model achieves poorer F-scores in mention detec-
tion owing to large gains in precision accompanied by even
larger drops in recall. This is somewhat surprising, since
joint models are typically expected to outperform their in-
dependent counterparts. We speculate that the poorer results
achieved by the Joint model is the consequence of parame-
ter tuning: since the parameters are tuned to maximize event
coreference AVG-F on development data, Joint’s solid event
coreference performance may have been achieved at the ex-
pense of its entity coreference performance. Additional ex-
periments are needed to determine the reason, however.

The drastic performance difference between the Indepen-
dent model and the Joint model for mention detection is also
reflected in the entity coreference results. This should not be
surprising, as entity coreference performance depends heav-
ily on successful identification of entity mentions.

7 Conclusion
We explored span-based neural event coreference resolution,
showing that our adaptation of Joshi et al.’s (2019) span-
based entity coreference model to event coreference resolu-
tion already resulted in a baseline model that outperformed
the previous state of the art on the KBP 2017 event corefer-
ence dataset. We further demonstrated that cross-task depen-
dency and entity coreference information could be profitably
exploited for span-based event coreference resolution.
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