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Abstract

Multi-headed attention heads are a mainstay in transformer-
based models. Different methods have been proposed to clas-
sify the role of each attention head based on the relations be-
tween tokens which have high pair-wise attention. These roles
include syntactic (tokens with some syntactic relation), local
(nearby tokens), block (tokens in the same sentence) and de-
limiter (the special [CLS], [SEP] tokens). There are two
main challenges with existing methods for classification: (a)
there are no standard scores across studies or across func-
tional roles, and (b) these scores are often average quantities
measured across sentences without capturing statistical sig-
nificance. In this work, we formalize a simple yet effective
score that generalizes to all the roles of attention heads and
employs hypothesis testing on this score for robust inference.
This provides us the right lens to systematically analyze at-
tention heads and confidently comment on many commonly
posed questions on analyzing the BERT model. In particular,
we comment on the co-location of multiple functional roles
in the same attention head, the distribution of attention heads
across layers, and effect of fine-tuning for specific NLP tasks
on these functional roles. Code is made publicly available at
https://github.com/iitmnlp/heads-hypothesis

Introduction
In the short span of two years, the BERT model (Devlin et al.
2019) has become a top contender in many NLP tasks. This
success has led to a sub-field of research that tries to ana-
lyze why BERT works. This sub-field has become so promi-
nent that it has even received its own name - BERTology.
The state of BERTology is well captured by the summary
in a recent survey paper: “while BERTology has come a
long way it is fair to say we still have more questions than
answers about how BERT works” (Rogers, Kovaleva, and
Rumshisky 2020). We see these questions as being broadly
classified into three types: (a) what does BERT know, (b)
what are BERT outputs sensitive to, and (c) what do the at-
tention heads in BERT attend to? For identifying what BERT
knows, a typical strategy is to run probing experiments, for
instance by evaluating POS tagging with contextual embed-
dings from a specific layer of BERT (Liu et al. 2019). For un-
derstanding how BERT outputs vary, ablation studies such as
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pruning attention heads and dropping layers are performed
(Budhraja et al. 2020; Michel, Levy, and Neubig 2019; Saj-
jad et al. 2020). Quite separate from these two questions,
the third question aims to analyze the intrinsic properties of
the attention heads, which are characteristic of Transformer-
based models (Vaswani et al. 2017). Analysis and interpre-
tation of attention patterns has been a matter of debate (Jain
and Wallace 2019; Wiegreffe and Pinter 2019). However, it
is agreed that studying a single attention head at a time en-
ables us to structurally localize linguistic knowledge within
the model. In this work, we survey the current approaches
to analyze attention heads, identify some deficiencies, and
propose a unifying and statistically robust alternative.

Multi-headed self-attention is characterised by attention
weights which specify the weights of other tokens when
computing the representation of the current token. A natural
curiosity is if these attention weights encode patterns that are
linguistically or structurally meaningful. More specifically,
analysis aims to classify the role of an attention head into
functional roles such as local (attending to tokens in a small
neighbourhood of the current token), syntactic (attending to
tokens which are syntactically related to the current token),
delimiter (attending to delimiter tokens such as [CLS] and
[SEP]) and block (attending to tokens within the same sen-
tence). Several methods have been proposed for such clas-
sification of functional roles of attention heads. However,
these methods vary significantly from one work to the other
and also amongst the different functional roles. For exam-
ple, (Kovaleva et al. 2019) use the attention heatmap as an
image and a CNN-based classifier to determine whether the
image exhibits a local attention pattern. Contrast this with
the method used in (Voita et al. 2019) which classifies a
head as local if 90% of the attention of the head lies within
a small neighbourhood of the current token. Contrast this
further with the method used in the same work to identify a
syntactic role: A head is labeled as syntactic if the classifica-
tion accuracy of this head on certain syntactic roles is higher
than baseline classifiers. The “higher than” assertion is itself
based on the subjectively chosen parameter of 10%.

Thus, existing studies present a diverse set of methods
for analysis with their respective parameters which impedes
systematic comparison and evolution of ideas. Furthermore,
existing studies have an additional challenge: statistical sig-
nificance. Clearly, as we change the input sequence (one or
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more sentences) to the model, the attention patterns across
heads would significantly vary. Thus, any claim on the func-
tional role of an attention head must be shown to be consis-
tent across the variation of input sequences. Such analysis is
well formalized in the domain of statistics where hypothesis
tests must be validated with high confidence. However, no
existing work formally presents such analysis for classifica-
tion of attention heads. This observation is in line with the
general call for more rigorous statistical validation across
NLP (Azer et al. 2020).

To address these challenges with existing analysis of at-
tention heads, we propose a single unifying metric which
is then validated with hypothesis testing to determine func-
tional roles of the attention heads. The metric we propose is
quite straightforward and is based on two observations. First,
for every hypothesized functional role of attention heads, for
a given input sequence, we can identify a target set of tokens
which the current token is supposed to attend to. We call this
target set of tokens, the attention sieve. Second, we need to
score the preferential bias of a head in attending to tokens
in a sieve. We can aggregate the attention weights of a head
to all tokens in the sieve, but we must normalize this against
the number of tokens in the sieve and the total number of
tokens in the input sequence. This normalized aggregate at-
tention paid by an attention head to the sieve for each of the
functional roles is referred to as the sieve bias. Then, clas-
sifying an attention head to one of the functional roles can
be formulated as a hypothesis test that the population mean
of the corresponding sieve bias across the population of in-
put sequences exceeds a specified threshold. The threshold
here specifies how sharp the attention bias should be to clas-
sify the functional role of a head. It is still subjective, but is
interpretable and consistent across functional roles.

The above formulation is proposed to unify and system-
atize the analysis of attention heads. Additionally, it provides
us a lens to confidently comment on many questions posed
during analysis of attention heads. We take up three main
questions in this paper.
1. Are functional roles mutually exclusive? Most exist-
ing works (Kovaleva et al. 2019) classify attention heads to
one of the different functional roles. This precludes the op-
tion that multiple functional roles can co-exist in the same
head. There are two reasons to consider this possibility. One,
functional roles defined in terms of structure (such as lo-
cal heads) may overlap with syntactic roles (such as attend-
ing to nsubj) given that these syntactic relations are of-
ten local in the sentences. This is a crucial overlap as recent
studies have attempted to exclusively use local attention in
Transformer-based models (Raganato, Scherrer, and Tiede-
mann 2020). Two, a single head may perform multiple roles
simultaneously - e.g. attending to two different syntactic re-
lations (such as dobj and amod). In the paper, we quantify,
visualise, and comment on such overlap in functional roles.
2. How are functional roles distributed across layers? Ex-
isting works have shown that more syntactic attention heads
are found in middle layers as opposed to other layers (Jawa-
har, Sagot, and Seddah 2019; Hewitt and Manning 2019;
Goldberg 2019). Our work with hypothesis testing on sieve
bias scores provides a fresh perspective on these studies. We

can define fine-grained functional roles such as separating
out the individual syntactic relations and delimiter tokens.
Then we can quantify the fraction of heads in each layer
than are skilled to perform each of these fine-grained roles.
In this work, we quantify such skills across layers and reaf-
firm existing findings.
3. What is the effect of fine-tuning on functional roles?
A common workflow of BERT is to fine-tune the model for
specific NLP tasks. Earlier studies (Kovaleva et al. 2019)
have shown that only the last few layers specialize during
fine-tuning. We can analyse such specialization by quantify-
ing the change in the sieve bias across layers and functional
roles. In this paper, we compute these changes in sieve bias
across four different NLP tasks from the GLUE benchmark.

In summary, we propose a unifying approach to analyze
attention heads that generalizes across functional roles and
is statistically significant. The new metrics and visualization
tools enable a fresh commentary on existing findings from
BERTology.

Related Work
As mentioned earlier, the field of BERTology deals with
three main questions: (a) what does BERT know? (Lin,
Tan, and Frank 2019a; Tenney et al. 2019; Ettinger 2020)
(b) what are BERT outputs sensitive to? (Ethayarajh 2019;
Wiedemann et al. 2019; Mickus et al. 2019) and (c) what do
the attention heads in BERT attend to (Kovaleva et al. 2019;
Clark et al. 2019; Cui et al. 2019)? Of these, in this work we
focus on the last question. In particular, we are interested in
understanding the functional role of heads in BERT. In this
section, we review existing work along two different axes.
Types of roles identified: Different works have identified a
variety of functional roles for attention heads. These are:
local: heads which attend to tokens in a small neighborhood
around the input token, typically, previous and/or next to-
kens (Clark et al. 2019; Kovaleva et al. 2019; Htut et al.
2019). Some works refer to such heads as diagonal heads
(Kovaleva et al. 2019) or positional heads (Voita et al. 2019).
syntactic: heads which attend to tokens which are syntacti-
cally related to the input token. The syntactic relations are
identified using a dependency parser (Voita et al. 2019; Clark
et al. 2019; Htut et al. 2019; Kovaleva et al. 2019; Correia,
Niculae, and Martins 2019).
vertical/delimiter: heads which attend to the [SEP] and
[CLS] tokens in the input sequence (Clark et al. 2019; Ko-
valeva et al. 2019). Some works (Lin, Tan, and Frank 2019b;
Htut et al. 2019) specifically ignore the attention on [SEP]
and [CLS] as these are artificially introduced tokens and
not a part of the input sentence(s).
block: heads which attend to tokens within the same sen-
tence as opposed to tokens in other sentence before (or after)
the [SEP] token (Kovaleva et al. 2019).
rare word: heads which attend to rare words, i.e., words with
a low frequency in the corpus (Voita et al. 2019).
BPE-merging: heads which attend to siblings of the current
token resulting from the tokenisation using BPE (Correia,
Niculae, and Martins 2019).
interrogative: heads which attend to question marks at the
end of a question (Correia, Niculae, and Martins 2019).
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In this work, we focus on local, syntactic, block, and delim-
iter heads which are commonly studied in existing works.
Methods used for classifying a head into a functional
role: Once the above functional roles are defined, existing
works classify heads into these roles using a scoring func-
tion and an appropriate threshold. However, across differ-
ent works there is no uniformity in the scoring function and
the thresholds used for different functional roles. For exam-
ple, Voita et al. classify a head as local if in at least 90% of
the cases, the head pays maximum attention to tokens which
are immediately before or after the input token. In contrast,
for determining whether a head is syntactic or not, its per-
formance in classifying syntactic roles is compared with a
simple position based baseline classifier. A head is then la-
belled as syntactic if its performance is at least 10% higher
than the baseline classifier. Clark et al. also follow a simi-
lar strategy wherein they classify a head as syntactic based
on its performance on identifying syntactic roles. However,
unlike Voita et al. they do not use a threshold of 10% but
instead look for heads which substantially outperform a po-
sition based baseline classifier. Kovaleva et al. use a CNN
based classifier to assign roles to heads based on attention
heatmaps. They also propose certain semantic and syntactic
tests for attributing roles to heads. For example, they check if
certain heads pay more attention to predicates of core frame
elements as captured in FrameNet. Existing methods also
differ in the treatment of special tokens such as [SEP] and
[CLS]. For example, (Htut et al. 2019) and (Lin, Tan, and
Frank 2019b) exclude these tokens from their analysis (and
thus don’t consider delimiter heads). In contrast, (Clark et al.
2019) show that delimiter heads are prominent in the later
layers and thus important. Thus, the mechanisms for deter-
mining head’s functional role not only varies from one work
to another but also from one functional role to another.

Another limitation with existing work is that they rely on
average functional scores of heads across a large number of
input sequences. Since the attention patterns (e.g., of syn-
tactic heads) vary sensitively from one input sequence to an-
other, this raises the question of statistical significance. In-
deed, in our experiments we find that averages are inflated
by outliers sufficiently to incorrectly infer functional roles
that are not statistically significant. In this work, we address
these deficiencies by proposing a statistically sound unified
approach which can be adapted to any functional role.

Unifying Analysis of Attention Heads
The BERT Model
We analyze the BERT model which is a stack of layers each
consisting of multi-headed self-attention followed by a fully
connected network. The self-attention scheme works as fol-
lows: For every token in the input sequence an attention head
transforms the token’s input embedding into key, value, and
query vectors, which are then linearly combined based on
attention weights. The outputs of all heads in a layer are con-
catenated and then passed through the fully connected net-
work. The embeddings for the next layer are generated by
combining the output of a layer with a skip connection from
the previous layer. We specifically consider the BERTBASE

configuration (Devlin et al. 2019) which has 12 layers with
12 attention heads each, and embedding vector of size 64.

Attention Sieves
As noted, attention heads are classified to have different
functional roles: local, syntactic, block, and delimiter. Our
primary aim is to define a unifying scheme to analyze atten-
tion heads across all functional roles. The first observation
is that attention heads for different functional roles are ex-
pected to attend to different sets of tokens. We characterize
this set of tokens for a given attention role as an attention
sieve. Formally, attention sieve SI,f (t) for input sequence I ,
functional role f , and token t is the set of all tokens of I
that should be attended to compute the embedding of t by
an attention head classified to be of functional role f . We il-
lustrate this for the example sequence shown in Figure 1. A
local attention head has a clear sieve that does not depend on
the content of the input sequence. The local attention sieve
for a token are all tokens around its neighbourhood within
a distance of say 2, i.e., 5 tokens. For a syntactic attention
head we have to first identify all tokens syntactically related
to the current token with a dependency parser. These set of
tokens would define the syntactic attention sieve. Similarly,
we define block and delimiter attention sieves. These atten-
tion sieves can be further partitioned to consider sub-types
of functional roles. For instance, a delimiter attention sieve
can be partitioned to a [CLS] attention sieve and a [SEP]
attention sieve. A local attention sieve can be partitioned to
a prev-local or a next-local attention sieve that defines lo-
cality in only one directly. Thus, for all tokens of an input
sequence, we get attention sieves for each functional role.

Sieve Bias Score
For a token t of an input sequence I , an attention head h
computes an attention weight αh(t, t

′) for each token t′ ∈ I
as follows:

αh(t, t
′) = softmax

(
qᵀt kt′√
dl

)
,

where qt is the query vector for token t, and kt′ is the key
vector for token t′ in the sentence. dl is the size of the em-
bedding. This weight captures the relative contribution of t′
in computing the next representation of t. If we are to posit
that an attention head has a specific functional role, then at-
tention weights to tokens in the sieve of that functional role
must be higher. Formally, if attention head h is of functional
role f then

∑
ts∈SI,f (t)

αh(t, ts) should be relatively large.
This aggregation of attention weights must be normalized to
consider both the number of tokens in a sieve and the num-
ber of tokens in the input sequence. For example, the sieve
of a local attention role may have 5 tokens, while that of a
delimiter role may have only 2. Even within the same atten-
tion role, different words may be broken into varying num-
ber of tokens leading to different sizes of attention sieves.
For attention head h, current token t, input sequence I , and
functional role f , we can capture this normalization with a
sieve bias score as:

βf
h(t, I) =

(∑
ts∈SI,f (t)

αh(t, ts)

|SI,f (t)|

)/(∑
t′∈I αh(t, t

′)

|I|

)
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Figure 1: Attention sieves for a sample input sequence: Tokens in boxes show the current token and edges point to other tokens
that are in its sieve for various functional roles: (a) block, (b) nsubj (syntactic), (c) local, (d) amod (syntactic) and, (e) delimiter.

Figure 2: Sieve score distribution across sentences for a
head. Note the distribution is skewed with large variation.

In the numerator, we have the average attention weight of
the head to tokens within the sieve ts ∈ SI,f (t). In the de-
nominator, we have the average attention paid by the head to
all tokens in the input sequence. Higher this ratio, higher is
the attentive bias to the sieve.

A randomly initialised head would pay roughly equal at-
tention weights to all tokens and thus an sieve bias score of
1 for all functional roles. If upon learning, a head becomes
more selective, then its sieve bias score would increase for
specific sieves. Our concern then is to identify for each head
the functional roles for which sieve bias scores are high.

Hypothesis Testing
We have established a relation between a head’s high sieve
bias score and its functional role. But the sieve bias scores
βf
h(t, I) vary across input sequences. Can we take the av-

erage sieve bias score across many input sequences? This
would work if the sieve bias scores are symmetrically dis-
tributed with a relatively narrow standard deviation across
input sequences. On the contrary, we found that the distribu-
tions can be skewed and broad, as shown in Figure 2 for a
specific head. In the presence of such variation, simple av-
eraging is error-prone, and we instead need robust statistical
inferences. For instance, an assertion based on the average
being ≥ 3 would assign the functional role to the head in
Figure 2 . However, hypothesis testing to assert that popu-
lation mean is more than 3 would fail. To the best of our
knowledge, no current work on analyzing attention heads
considers either this variation or a statistical treatment.

We define the null hypothesis as the mean of the sieve bias
score βf

h across all input sequences is less than or equal to
some threshold τ .

This threshold τ specifies how sharp the attention bias
should be to classify the functional role of a head: Higher
the value of τ , stricter is the classification rule. We can eval-
uate this hypothesis by using a one-tailed test of the mean
with z-statistics , since population variance is unknown. To
this end, we can measure βf

h for a large number N of in-
put sequences as the sample. We can then compute the sam-
ple mean of βf

h and derive the p-value using the one-tailed
test. As is the convention, we say that the null hypothesis is
rejected if the p-value is smaller than 0.05. If the null hy-
pothesis is rejected, it follows that the attention head h is
satisfying the functional role f . If the p-value is greater than
0.05, then the test is inconclusive, and we do not ascribe the
functional role to the head.

In summary, our proposed method involves the follow-
ing steps: (a) computing attention sieves for all functional
roles, (b) computing sieve bias scores for all pairs of atten-
tion heads and functional roles, and (c) performing hypoth-
esis testing on the mean sieve bias score across input se-
quences to ascribe functional roles to each head.

Results and Discussions
In this section, we first describe our experimental setup and
the datasets used for our analysis. We then provide details
about the assignment of functional roles to heads using our
method described earlier. Finally, based on these assigned
roles, we discuss the three questions outlined earlier: i) Are
functional roles mutually exclusive? ii) How are functional
roles distributed across layers? and iii) What is the effect of
fine-tuning on functional roles?

Experimental Setup
We pre-train the BERTBASE model using the English
Wikipedia corpus and a subset of of the Project Gutenberg
corpus released by (Lahiri 2014).We pre-trained the model
for around 300K steps with a sequence length of 128 and an-
other 1K steps with a sequence length of 512 and a batch size
of 2K tokens (Devlin et al. 2019) on a single Cloud TPU (v3-
8). We then tune this model individually for four NLU tasks
from the GLUE benchmark (Wang et al. 2018): QNLI (QA
Natural Language Inference), QQP (paraphrase detection),
MRPC (paraphrase detection) and SST-2 (sentiment analy-
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(a)

(b)

Figure 3: (a) Distribution of sieve scores (144 × |tasks| ×
|roles| × |num sents| scores are included) (b) p-values ob-
tained for each head (144×|tasks| × |roles|) with hypothesis
testing. High density of points on {0,1} indicate a high con-
fidence level to accept/reject the Null hypothesis.

sis). For each task, we used the standard train and test splits
for fine-tuning and evaluation. We used the recommended
setting of hyperparameters (Devlin et al. 2019) with batch
sizes chosen among {32, 128} and learning rates among
{1e-4, 2e-4}. Warm-up was set to 10K steps and LAMB op-
timizer was used.The performance of the fine-tuned model
on these four GLUE tasks is at par with the one reported in
Devlin et al. (BERTBASE) and suitable for further analysis.
We use 1000 input sequences (num sents) from the standard
test sets of the 4 GLUE tasks for all our analysis experi-
ments. We use open-source library spaCy for dependency
parsing.

Assigning Functional Roles to Heads
For each task, we feed all the input sequences to the fine-
tuned BERTBASE model and compute the sieve bias score
βf
h(t, I) for each input sequence I as described earlier. This

gives us a sample of 1000 sieve bias scores (one score cor-
responding to each input sequence). Once we compute these
scores for a given head h, and a given functional role f ,
we evaluate the null hypothesis as discussed in the earlier
section based on the obtained p-value for each head. If the
null hypothesis is rejected then it means that the head indeed
performs this specific functional role. Note that we perform
this hypothesis test independently for all heads and the four
functional roles. This method thus allows multiple roles to
be assigned to the same head.

It is important to discuss the choice of the threshold τ .
A large value of τ would lead to the null hypothesis being

rejected for most heads and thus fewer functional roles as-
signed to heads. A small value of τ would lead to multiple
functional roles being assigned to the same head. One ap-
proach to set the value of τ is to subjectively decide what
constitutes attentive bias, i.e., to decide the ratio of atten-
tion that a head must pay to tokens in a sieve than to all
tokens. For instance, one may suggest that τ = 2 with dou-
ble the attention to the sieve tokens than to other tokens is
a reasonable choice for assigning functional roles to heads.
Any such value of τ can be decided and the resulting func-
tional roles can be analysed as we do in the rest of the paper.
In addition to this subjective check, we set the value of τ
informed by data on the sieve bias scores. Specifically, we
plot the cumulative frequency distribution (see Figure 3(a))
of the sieve bias score across all functional roles for 1,000
input sequences, and identify that the mean sieve bias score
is around 2.8. We then set τ to be the smallest integer larger
than this mean, i.e., 3. We then perform the described hy-
pothesis testing and compute the p-values. We plot the in-
dividual p-values across all the input sequences (see Fig-
ure 3(b)). We observe that this distribution is distinctly bi-
modal with values either close to 1 or close to 0. Indeed,
there are only 1.8% of points in the range (0.05, 0.95). This
indicates that the hypothesis testing made clear inferences:
Either the null hypothesis was rejected (due to p-values less
than 0.05) or the test was inconclusive but with very high
p-values. In the former case, we assign the functional role to
the head with high confidence, and in the latter case the head
is clearly not satisfying that functional role as indicated by
the high p-values. Thus, we set the threshold τ = 3 to meet
the two criteria: a subjective criterion of attentive bias and
the objective requirement that the hypothesis testing gener-
ates clear inferences. Further, note that this threshold is inter-
pretable as it simply means that the attention on the tokens
within the sieve is 3 times the attention on tokens outside
the sieve. Based on this statistically sound unified approach
of classifying heads we now revisit some commonly asked
questions while analysing attention heads.

Are Functional Roles Mutually Exclusive?
As mentioned earlier, existing methods typically assign only
one functional role to a head. In contrast, as we do the
hypothesis test independently for each functional role, the
same head can potentially be labeled with multiple func-
tional roles.To find out whether this is really the case, we
present a Venn Diagram where heads being labeled with the
same role constitute of a set (see Figure 4). We make the
following observations from this figure:
Density of delimiter roles: Across tasks, there are signifi-
cant number of delimiter heads (on average 73.43% across
the 4 tasks). Also given their high prevalence, they naturally
intersect with other functional heads.
Unskilled heads: There are very few heads which do not
perform any functional role (avg. 9.37% across the 4 tasks).
Overlap between local and syntactic roles: There is a sig-
nificant overlap between local and syntactic heads. More
specifically, across the four tasks, 42.1% to 88.8% (with a
mean of 70.9%) of syntactic heads overlap with local heads.
This observation has an interesting connection to other stud-
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Figure 4: Venn diagram with each circle representing a set of heads with a specific role. The intersection between various sets
indicate that many heads are multi-functional. Note that the size of the circle is proportional to the cardinality of the set.

ies which show that restricting attention to local patterns can
still lead to good performance (Yang et al. 2019). Our find-
ings lend more credence to this observation, as they indi-
cate that by attending to local tokens a head invariably also
attends to syntactically related tokens. This is simply be-
cause many syntactically related tokens are in a small neigh-
borhood around the input token. To further strengthen this
claim, we compute the Spearman correlation between the lo-
cal and syntactic sieve scores. We observe a very high corre-
lation score of 0.78, 0.81, 0.85, 0.73 scores for QNLI, QQP,
MRPC, SST-2 tasks respectively, with a p-value of 0. We
further split the syntactic and location heads based on type
of syntactic relations and location of attended token (previ-
ous or next) respectively. We observe that nsubj heads have a
high overlap with next-loc heads and dobj-heads have a high
overlap with the prev-loc heads.
Role of block heads: There is only a marginal overlap be-
tween block heads and syntactic/local heads indicating that
these specialisations are unique. Note that there are no block
heads in the SST-2 task as it is a single sequence task.

How Are Functional Roles Distributed across
Layers?
Existing works have shown that the middle layers in BERT
are more important as they contain many syntactic heads
(Hewitt and Manning 2019; Goldberg 2019; Clark et al.
2019). Our results suggest that while this is largely true,
there is significant variance across tasks. To understand this,
we refer the reader to Figure 5. Every larger gray colored
cell in this figure corresponds to one head and each row cor-
responds to one layer. Thus, there are are total of 12 × 12 =
144 larger gray squares in each plot. We further divide each
of these larger gray squares into 9 smaller squares. Each
of these 9 squares corresponds to a different functional role
represented by a different color as defined in the legend. For
this analysis, we have split the four coarse functional roles
into more fine-grained functional roles. In particular, we
have split the delimiter role into [SEP] and [CLS] roles.
Similarly, we have split the syntactic role into nsubj, dobj,
amod and advmod roles. Squares which are predominantly
gray correspond to heads which perform very few functional
roles. On the other hand, multi-colored squares correspond
to multi-skilled heads, i.e., heads performing multiple func-

tional roles. For example, in the first plot in Figure 5 (QNLI),
the first head in Layer7 performs eight different functional
roles, whereas the last head in the same layer performs only
one functional role [SEP]. Also, to aid better visualisation,
in each layer we have sorted the heads based on the num-
ber of functional roles they perform (hence, the more multi-
colored heads appear at the beginning of the row). Based on
these plots we make the following observations:
Multi-skilled heads across layers: The number of multi-
skilled heads is higher in the middle layers (layers 5 to 9)
for MRPC, QNLI and SST-2 tasks. However, for QQP the
number of multi-skilled heads is relatively higher in the ini-
tial layers. This suggests that the role of heads across layers
varies from one task to another. Further, these observations
may differ since earlier studies have been mostly based on
analyzing a single functional role at a time.
Distribution of delimiter heads: Across tasks we find a
large number of delimiter heads ([SEP] and/or [CLS])
across all layers. In fact, such delimiter heads are often the
only functional heads in the last three layers across different
tasks. Interestingly, the first layer contains very few (if any)
delimiter heads. This may be because the delimiter tokens
[CLS] and [SEP] start accumulating meaningful informa-
tion from the entire sequence only after the first layer.
Distribution of block heads. For all the tasks which take
two sentences as inputs (MRPC, QNLI and QQP) block
heads are prevalent in the zeroth layer. However, their pres-
ence in the later layers varies from one task to another. For
example, in both QNLI and MRPC, block heads consistently
show up in layers 1 to 4, in addition to layer 0. However, in
QQP block heads do not show up in the middle layers but are
prevalent in the first and last layer. Lastly, for MRPC block
heads consistently show up across all layers.
Distribution of syntactic heads. Across all tasks there are
at least 3 syntactic heads (nsubj, dobj, amod and advmod)
for all layers (with very few exceptions). Across tasks, the
prevalence of syntactic heads is higher in layers 6 to 8 which
is in line with observations made in other studies (Rogers,
Kovaleva, and Rumshisky 2020; Jawahar, Sagot, and Seddah
2019; Liu et al. 2019).However, our findings suggest that the
heads in these layers do not just perform syntactic roles but
are highly multi-skilled. Lastly, across tasks the last two lay-
ers have very few syntactic or multi-functional heads.
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Figure 5: Visualization of the functional roles of the attention heads of the BERT model fine-tuned on four different tasks. In
each layer, the heads are arranged in a sorted order (decreasing) of their degree of multi-functionality.

Figure 6: Difference between the average sieve bias score
after and before fine-tuning across functional roles and tasks.

What is the Effect of Fine-Tuning on Functional
Roles?
Existing works have shown that the final layers of BERT
are more task specific. For example, Kovaleva et al. show
that the weights in the final layers change a lot during fine-
tuning, whereas, Hao et al. show that the performance is
less sensitive to weights in the middle layers. To substan-
tiate these findings we measure the change in the average
sieve bias scores for the 4 functional roles across initial, mid-
dle, and final sets of 4 layers for the 4 tasks (see Figure 6).
A positive (negative) value indicates that the average sieve
bias score increases (decreases) after fine-tuning. We make
the following observations from these plots:
Functional roles get redistributed in the final layers: We
observe that in the final layers, there is a decrease in the aver-
age delimiter bias score (i.e., avg. βdelimiter

h across all heads
in these layers). On further investigation, we find that this
decrease is mainly due to a lower attention on the [SEP]
but the attention on the [CLS] token does not change much.
This seems to substantiate the hypothesis made in Clark

et al. that the [SEP] tokens serve as a no-op indicator and
hence the attentive bias to those tokens is reducing as fine-
tuning specializes the final layers. We also find that there is
an increase in the average block bias score (i.e., avg. βblock

h
across all heads in these layers). Thus, the later layers are
specialising to generally attend to tokens within their sen-
tence without specific syntactic bias.
Functional roles do not change in the initial and middle
layers: In contrast to the final layers, we observe that av-
erage bias scores do not change much in the initial layers
that is in line with observations made in other studies. Hao
et al.(2019) observe low sensitivity to the weights in middle
layers. However, we offer a different perspective that bias
scores in initial and middle layers do not change much.

Conclusion
In this work, we present a unified and formal approach for
analysing the functional roles of attention heads. In partic-
ular, the sieve bias score generalizes across functional roles
and hypothesis tests ensure statistical significance. This sys-
tematises the study of attention heads in BERTology. Based
on this analysis, we make several observations. Delimiter
heads are prevalent in the network and thus overlap with
other functional heads. Syntactic heads often are also lo-
cal heads which explains claims made in other studies about
the sufficiency of local attention patterns (Yang et al. 2018,
2019; Wu et al. 2019). Middle layers have most number
of multi-skilled heads, in line with observations made in
other studies about the drop in performance while pruning
heads in middle layers. Lastly, we are able to carefully study
the impact of task-specific fine-tuning on the roles of the
attention heads. We find that later layers have the largest
change in their roles and specifically the number of delim-
iter heads drops sharply indicating specialization for task-
specific roles. This again supports existing claims about the
importance of later layers for specific tasks while providing
a fresh perspective based on functional roles. In summary,
our formal unified approach to analysing attention heads
provides us the right lens to confidently comment on vari-
ous questions about the functional roles of attention heads.
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