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Abstract

To model the context history in multi-turn conversations has
become a critical step towards a better understanding of the
user query in question answering systems. To utilize the con-
text history, most existing studies treat the whole context
as input, which will inevitably face the following two chal-
lenges. First, modeling a long history can be costly as it re-
quires more computation resources. Second, the long context
history consists of a lot of irrelevant information that makes
it difficult to model appropriate information relevant to the
user query. To alleviate these problems, we propose a rein-
forcement learning based method to capture and backtrack
the related conversation history to boost model performance
in this paper. Our method seeks to automatically backtrack
the history information with the implicit feedback from the
model performance. We further consider both immediate and
delayed rewards to guide the reinforced backtracking policy.
Extensive experiments on a large conversational question an-
swering dataset show that the proposed method can help to
alleviate the problems arising from longer context history.
Meanwhile, experiments show that the method yields bet-
ter performance than other strong baselines, and the actions
made by the method are insightful.

Introduction
Conversational Question Answering (ConvQA) have re-
cently interested a lot of researchers in both research com-
munity and industry (Choi et al. 2018b; Reddy, Chen, and
Manning 2018a). Under the ConvQA setting, the current
query in each dialogue turn may not be self-contained and
depends greatly on the dialogue history, as the phenomenon
of coreference and pragmatic omission frequently occurs in
the dialogs. Thus modeling the dialogue history becomes a
critical step towards better understanding the query. Most
of the existing works tend to model the semantic changes
using the whole history as the input and perform corefer-
ence resolution in a single model, such as FlowQA (Huang,
Choi, and Yih 2018), FlowDelta (Yeh and Chen 2019) and
MC2(Zhang 2019). Recent state-of-the-art studies append
all dialogue history by using history answer embedding (Qu
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et al. 2019a) or question attention (Qu et al. 2019b), which
can be viewed as a form of soft selection for related history.

However, considering the whole history in the single
model will inevitably face some challenges. First, it requires
more computation resources to incorporate the representa-
tion of all the history, including both the relevant and irrele-
vant ones, which may be unnecessary for understanding the
query. Moreover, this issue gets even worse when we adopt a
heavy model such as BERT large, as a longer input sequence
with the whole history need to be maintained. Second, ex-
isting works that model the whole history usually employ
attention or gating based mechanisms to selectively attend
to different history turns (Yeh and Chen 2019; Huang, Choi,
and Yih 2018). However, those methods still achieve less
ideal results due to the irrelevant parts that appeared in the
dialogue history. In other words, the existing methods can
benefit from an additional step of relevant history extraction.

To alleviate the above-mentioned problems, in this pa-
per we work from a different perspective and seek to make
meaningful selections of conversation history. The advan-
tage of our method is that it can avoid the negative impact
of unimportant history turns from the source by not consid-
ering them. We model the ConvQA task as two subtasks: a
conversational QA task using a neural MRC model and a
conversation history selection task with a reinforced back-
tracker. The reinforced backtracker is an agent that interacts
with the environment constructed by the ConvQA.

More specifically, for each query, we view the process of
finding the related history as a sequential decision-making
process. The agent acts on the available conversation his-
tory and backtracks the history question-answer pairs turn
by turn to decide whether it is relevant/useful based on the
observations. The MRC model then uses the selected history
turns to help itself answer the current question and generates
a reward to evaluate the utility of the history selection. How-
ever, the rewards generated by the MRC model are sparse, as
they can only be obtained at the end of the decision process.
To address this sparse reward problem, we further propose a
novel training scheme, in which the agent first learns from
the examples with only one history turn, followed by learn-
ing from examples with two history turns, and so on so forth.

As irrelevant histories are filtered, the MRC model can
be better trained with a more sophisticated mechanism and
concentrate on fitting the history turns with higher confi-
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dence. Moreover, as the reinforced backtracker is a separate
module, it can be flexibly adapted and further improved with
techniques such as transfer learning in the future.

In all, our contributions can be summarized as follows:

1. We propose a novel solution for modeling the conversa-
tion history in the ConvQA setting. We incorporate a rein-
forced backtracker in the traditional MRC model to filter
the irrelevant history turns instead of evaluating them as
a whole. As a consequence, the MRC model can concen-
trate on the more relevant history and obtain better perfor-
mance.

2. We model the conversation history selection problem as a
sequential decision-making process, which can be solved
by reinforcement learning (RL). By interacting with a pre-
trained MRC model, the reinforced backtracker is able
to generate good selection policies. We further propose a
novel training scheme to address the sparse reward issue.

3. We conduct extensive experiments on a large conver-
sational question answering dataset QuAC (Choi et al.
2018a), and the results show that the learned conversation
history selection policy by RL could help boost answer
prediction performance.

The rest of our paper is organized as follows. We first
formulate the conversation history selection problem in the
ConvQA setting and thoroughly elaborate our proposed ap-
proach that uses reinforcement learning to train backtracking
policy for useful history-turn selection. We then conduct de-
tailed experiments on the QuAC dataset. Finally, we present
related works and conclude the work.

Models
In this section, we first define our task and then present our
proposed reinforced backtracker.

Task Definition
We define the conversation history selection task on top of
the ConvQA task. We formulate our task into two subtasks:
a conversational QA task and a conversation history selec-
tion task. Given the current questionQk and dialogue history
H = {(Qi, Ai)|i=k−1i=0 }, our reinforced backtracker aims to
find a subset H ′ ∈ H of most relevant history turns, to max-
imize the performance of the ConvQA task.

Model Overview
As illustrated in Figure 1, we model the history selection
problem as a sequential decision-making process. Given the
current query, the agent backtracks the history and obtains
the state representation in each dialogue turn through the
state network. The policy network takes the state representa-
tion and the last action to decide whether this history turn is
related to the query. Subsequently, the MRC model uses the
selected history turns and the passage as the inputs to pre-
dict the answer span. The history selection quality has a di-
rect impact on the answer prediction performance. Thus, the
MRC model is able to generate a reward to evaluate the util-
ity of the history selection. Finally, the reward is used to up-

date the policy network. We now introduce the state, agent,
environment, and reward in detail in the following sections.

State
The state of a given history turn (Qi, Ai) is denoted as a con-
tinuous real valued vector Si ∈ Rl, where l is the dimension
of the state vector. The state vector S in i-th selection is the
concatenation of the following features:

Si = [hi ⊕ V (ai−1)⊕ V (i)⊕ ωi] (1)

• Sentence Vector hi. We adopt the average of the word’s
hidden representation generated by the vanilla BERT
model as the sentence vector, where the input to the BERT
is a sentence pair as follows: [CLS]QiAi[SEP].

• Last Action’s Vector V (ai−1). We embed the last action
into an action vector with a length of 20.

• Position Vector V (i). We embed the current relative step
into this vector, which is designed to inject the position
information.

• Segment Embedding ω. This vector is defined as the av-
erage of past sentence embeddings whose corresponding
action is 1 (denotes being selected), formally:

ωi =
i∑

m=1

hm, where am = 1. (2)

RL Agent
Policy Network. Given the state, our policy network is a
fully connected neural network, defined as follows:

P = softmax(W × S). (3)

At the training stage, we calculate the action distribution
and sample actions from the distribution. At the evaluation
stage, we select the action according to the max probability.

The policy gradient is calculated as followings:

∇θJ(θ) = E
( L∑
t=1

(R− b(τ))∇θlog πθ(at|st)
)
, (4)

where b is the baseline, designed to reduce the variance. We
adopt the average return in the batch as our baseline.R is the
accumulated reward, which will be discussed in the section .

Action. Since our goal is to select the related history turns,
the agent has two possible options for each turn, i.e., 0 (ig-
nored) or 1 (selected).

Environment
Given the current question Qk, a subset of the dialogue his-
tory H ′ and passage P , the environment prepends the con-
versation history to the current question to convert the multi-
turn conversational QA task to the single-turn QA task. Then
the model predicts the answer span and generates a reward
to evaluate the utility of the history selection for predicting
the answer.

In this paper, we adopt BERT (Devlin et al. 2018)
as our MRC model. The input for BERT is defined as
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Dialogue History
Q1: what happened in 1983?
A1: In May 1983, she married Nikos Karvelas, a composer

Q2:did they have any children?
A2:in November she gave birth to her daughter Sofia.

Q3:did she have any other children?
A3:CANNOTANSWER"

Q4:what collaborations did she do with nikos?
A4:Since 1975, all her releases have become gold..

Q5:what influences does he have in her music?
A5:CANNOTANSWER

Question
Q6:what were some of the songs?

Q6
+

Q1
+

A1
Predicted 
Answer
Span

Gold 
Answer

Reward

State
Network

Policy
Network

1

MRC
Network

Update the Policy

0

0

0

0

1

+
P

Figure 1: Overview of the our proposed MRC model with reinforced backtracker for the ConvQA task. The left part is an
example of a dialogue selected from the QuAC dataset. Given the current questionQ6, the agent (middle part) starts to backtrack
the history. It obtains the state representation in each dialogue turn through the state network. The policy network takes state
representation and the last action to decide whether this turn is related toQ6. Subsequently, the MRC network takes the selected
history turns (e.g. Q6, Q1, A1) and the passage P as the inputs, to predict the answer span. Finally, the reward is used to update
the policy network.

[CLS]Qk[SEP]H ′[SEP]P[SEP], where Qk and P re-
fer to the current k-th question and the passage, H ′ is the set
of the selected history turns. We denote the output of BERT
as Hrc ∈ RL×Dm , where L is the passage length and Dm

is the dimension of the vector. Formally, we predict the start
and end positions of the answer as the following:

Ps = Softmax(WsH
T
rc + bs), (5)

Pe = Softmax(WeH
T
rc + be), (6)

where Ws, We ∈ R1×Dm , bs, be ∈ R1×L, and s stands for
the start while e stands for the end.

Reward
Our goal is to maximize the accuracy of the MRC model’s
prediction through the inputs selected by the agent. So an
intuitive way is to adopt the word-level F1 score between the
predicted answer and the gold answer as our rewardR. If the
input information is not sufficient for the model to predict
the answer correctly, the F1 score can be low. Formally, the
F1 score is defined as follows:

F1 =
2 ∗ P ∗R
P +R

, (7)

where P is the overlap percentage of the gold answer that
counts in the predicted answer, R is the overlap percentage
that counts in the gold answer. We then define the delayed
reward as the difference of F1 scores after model updates,
i.e., Rdelayed = ∆F1.

Note that the above F1 score serves as the delayed re-
ward as it is obtained after all the selection actions at all

the history turns. Such sparse reward poses challenges for
the RL policy. Hence, we further consider incorporating im-
mediate rewards for all actions to help RL training. Let’s
denote the representation for the history sentences H =
{(Qi, Ai)|i=k−1i=0 } as SH = {Si|i=k−1i=0 } and the action for
the i-step as ai. Then the immediate reward is defined based
on the similarity between the current sentence vector and
history segment embeddings as defined in Eq. 2. The idea
is we shall encourage adding a sentence that is close to the
history segment embeddings, as it may provide coherent in-
formation to help history modeling. Formally, we have:

Rimmediatei = sign(ai == 1)cos(hi, ωi−1), (8)

where sign(·) is 1 if the action ai is 1, and -1 otherwise.
Clearly, if action is 1, the reward is higher if the current sen-
tence is closer to the segment embeddings.

The final reward for state i is obtained as follows:

Ri = δT−iRdelayed +Rimmediatei , (9)

where δ is the discount factor and T is the final step index.

Algorithm
As illustrated in Figure 1, our method consists of three mod-
ules: a state network using a vanilla BERT, a policy net-
work (i.e., the agent), and a pretrained MRC model. The
state network provides state representations for the policy
network to make history backtracking actions. The result-
ing history turns and the user question are feed to the MRC
model to obtain the prediction results. The policy network
is updated according to the defined rewards computed based
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Algorithm 1 RL Training Procedure

Require: Environment M: A pre-trained MRC model with
latest 8 history turns;
Sentence Representation Model: (Vanilla ) BERTs
Policy Network: Pn

1: for j in range(MAX History Turn) do
2: for Qk, H = {(Qi, Ai)|i=k−1i=0 } in training data do
3: Vq = BERTs(Qk)
4: if len(H) > j then
5: continue
6: end if
7: Actions=[]
8: for (Qi, Ai) in H do
9: hi = BERTs(Qi ⊕Ai)

10: State = hi ⊕ ω ⊕ V (ai−1)⊕ Vi
11: ai = Pn(State)
12: Actions.append(ai)
13: end for
14: Obtain history subset H ′ according to Actions
15: end for
16: Obtain reward R according to Eq. 9
17: Update the policy network according to Eq. 4
18: end for

on the prediction results and the ground truth answer. As
for the state network, we adopt the pre-trained model from
github1 and freeze its weights. And we use REINFORCE al-
gorithm (Williams 1992) to update the policy of the agent.
The detailed algorithm is presented in Algorithm 1.

Training Scheme Inspired by curriculum learning (Ben-
gio et al. 2009), we consider gradually increasing the diffi-
culty of learning to help the training of the RL agent. The
agent first learns policy from the episodes with only one his-
tory, which can be viewed as a simplified selection proce-
dure. Then we increase the length of the episodes to help the
agent developing its context modeling strategies.

Experiments
Datasets
We conduct experiments on the QuAC dataset2. QuAC is a
machine reading comprehension task with multi-turn inter-
actions, where the current question often refers to the dia-
logue history. Some dialogue behaviors often occur such as
topic shift, drill down, and topic return. There are mainly
100k questions and 10k dialogue in the dataset. The maxi-
mum round in the dialogue is 12.

We also evaluate the methods on an additional Canard 3

dataset. This dataset contains manually-generated questions
based on the context history, which can serve as ground-
truth for context modeling. This dataset can help to examine
whether the competing methods have the ability to choose
proper context history to generate high quality rewritten
questions close to the manually-generated questions.

1https://github.com/google-research/bert
2https://quac.ai/
3https://sites.google.com/view/qanta/projects/canard

Evaluation Metrics The QuAC challenge provides two
evaluation metrics, i.e., the word-level F1 and the human
equivalence score (HEQ). The word-level F1 evaluates the
overlap of the prediction and the ground truth answer span. It
is a classic metric used in (conversational) machine compre-
hension tasks (Rajpurkar et al. 2016; Reddy, Chen, and Man-
ning 2018b). HEQ measures the percentage of examples for
which system F1 exceeds or matches human F1. Intuitively,
this metric judges whether a system can provide answers as
good as an average human. This metric is computed on the
question level (HEQQ) and the dialog level (HEQD).

Environment
We test our method on the following varied environments.
We adopt the same model architecture but with different in-
puts and training corpus.

• Env-ST (Single Turn) We denote the method of train-
ing a single turn MRC model on the first turn of dia-
logues in QuAC dataset as Env-ST. This is to avoid in-
fluence brought by introducing dialogue history for the
MRC model. Note the number of examples is the same
as the number of dialogues in QuAC. The training dataset
has 11,567 examples.

• Env-Canard (Canard Dataset)) As the Canard dataset
has re-written questions based on the history turns, it can
serve as a perfect environment to examine different his-
tory modeling policies. We denote the method of training
the MRC model on the re-written questions from Canard
as Env-Canard. It has about 31k training examples.

• Env-ConvQA (Multi-turn) We denote the method of ap-
pending the latest k history question-answer pairs to its
current question as Env-ConvQA. Formally, the current
question Qk and its latest 8 history turns H8 = {(Qk −
i, Ak − i)|i=min(8,k)i=1 } are concatenated to be a new long
question and then accepted as the input of the model. This
method is a strong baseline as shown in (Zhu, Zeng, and
Huang 2018; Ju et al. 2019).

Baselines
We compare our method with the recent studies on Con-
vQA (Choi et al. 2018a; Qu et al. 2019b,a). Note that these
studies can be treated as variants of our method where
we define a rule-based policy to select the latest k history
question-answer pairs. Hence these variants are denoted as
Rule-K, where K is the number of selected history pairs.

The Necessity of the Selection
As shown in the previous study (Yatskar 2019), topic shift
and topic-return are common in conversations, thus it is nec-
essary to prepend history turns in the model. But there still
remains the question: is it true that, the more history turns
appended, the better the performance will be?

To examine this, we conduct experiments on training Con-
vQA model with various history turns. As shown in Table
1, the performance will increase when we append 8 history
turns instead of 4, but decrease when we append the latest 12
turns. In general, it is beneficial to incorporate appropriate
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Models F1 HEQQ HEQD Total

ConvQA w/o history 55.93 49.43 3.3 108.66
ConvQA w/ 4 avg 63.84 59.29 5.8 128.93
ConvQA w/ 8 avg 64.02 59.59 6.3 129.91
ConvQA w/ 12 avg 63.12 58.37 5.5 126.99

Table 1: The model performance on ConvQA. Here we ap-
pend the past k history question-answer pairs to the current
question. We report the averaged results on the development
dataset for k in {0,4,8,12} over 5 runs.

Env-Canard F1 HEQQ HEQD Total
Rule-0 48.61 41.43 2.2 92.24
Rule-4 44.26 36.92 0.9 82.08
Rule-8 44.25 36.91 0.9 82.06
Rule-12 44.25 36.91 0.9 82.06
Agent 49.90 42.89 2.3 95.09

Table 2: The model performance on Env-Canard.

history turns. The incorporation of history poses challenges
for modeling as well, thus it is not always better to incor-
porate more history turns. The potential reasons behind this
are: 1) Information conflict. It is hard for the model to auto-
matically capture the dependencies between related parts. 2)
Length limitation. The pretrained BERT model is limited to
a length of 512. The more turns we appended, the more pas-
sage or history terms need to be truncated to fit the model,
which makes the model difficult to extract the key informa-
tion from the input. This motivates us to consider history
selection to further improve the model performance.

Reinforcement Learning vs. Rule Policy
In this section, we aim to examine the benefits of our re-
inforcement learning method. We conduct reinforcement
learning on three environments Env-ConvQA, Env-ST, and
Env-Canard as discussed above.

As shown in Table 2, we compare the performance of
different settings of our agent learning and rule policy. For
Env-Canard, the training samples are backed with manually
rewritten questions, which can be viewed as a good environ-
ment without the need for history modeling. We use such an
environment to examine how the appended history pairs af-
fect model performance. We can see that Rule-0, the policy
with no history, can achieve the best performance. And with
more histories appended, the performances of Rule-4, Rule-
8, and Rule-12 start to drop dramatically. This is intuitive as
the re-written question with no history has already contained
all the useful information, more history turns may bring
more noise information which makes the modeling more
challenging. When applied our method, the performance in-
creases greatly. This shows our agent can help to backtrack
helpful history turns to achieve better performance, i.e., dig
out useful information from history turns. Surprisingly, our
method even outperforms Rule-0, which shows our method
has the potential to track more useful information to further

Env-ST F1 HEQQ HEQD Total
Rule-0 33.60 27.58 1.0 62.18
Rule-4 31.00 21.89 0.5 53.39
Rule-8 31.05 21.92 0.5 53.47
Rule-12 31.05 21.92 0.5 53.47
Agent 33.62 27.49 1.1 62.21

Table 3: The model performance on single-turn environment
(Env-ST).

Env-ConvQA F1 HEQQ HEQD Total
Rule-0 46.98 38.14 1.8 86.92
Rule-4 66.05 61.89 7.3 135.24
Rule-8 66.09 61.97 7.3 135.36
Rule-12 66.09 61.97 7.3 135.36
Agent 66.11 62.06 7.3 135.47

Table 4: The model performance on a tailored Env-ConvQA
with the same training samples from Env-Canard but with-
out re-written questions.

enhance the manually crafted questions.
We further test our method on Env-ST to examine the ef-

fectiveness if no rewritten dataset is provided. As shown in
Table 3, all model performances drop drastically. The rea-
son is that without a perfect environment, the RL and rule-
based agent have less satisfactory performance. But, our
method can still boost the performance over all the rule-
based agents, which shows the effectiveness of our policy.

We also report the results of our agent on Env-ConvQA
to examine the model performance on datasets without re-
written questions. Note that for fair comparison with Env-
Canard, Env-ConvQA is tailored to only incorporate the
same training samples from Env-Canard but without re-
written questions. As shown in Table 4, the more history
turns are appended, the better performance the rule policy
can obtain. But it stops increasing when we append 8 his-
tory turns. This further echoes our findings that it is not al-
ways better to incorporate longer history turns. Despite of
this, when applied our reinforcement learning scheme, the
model performance can be further boosted, thanks to its his-
tory selection policy.

In a nutshell, we find that it is not always better to incorpo-
rate more history turns in ConvQA, as longer history poses
new challenges for history modeling. We then propose a his-
tory selection policy to alleviate this problem and examine
the effectiveness of the proposed method on three environ-
ments. The above results show our method consistently out-
performs the competing baselines, which demonstrates the
advantage of our proposed method.

The Comparison of Our Learning Scheme and
Episode Learning
Recall that our training scheme is inspired by curriculum
learning (Bengio et al. 2009), where we first learn the policy
from examples with only one history, followed by learning
from examples with two history turns, and so on so forth.
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Learning Scheme F1 HEQQ HEQD Total
Our Scheme 47.69 40.48 2.5 90.67
Episode Learning 43.26 35.98 1.1 80.34

Table 5: Different learning procedure of reinforcement
learning on Env-Canard on the full corpus.

We examine the effectiveness of the training scheme in this
section.

As shown in Table 5, we conduct experiments with dif-
ferent learning methods. The agent with Episode learning
interacts with the environment with examples in the natural
order that appeared in datasets. We can see that the training
scheme performs much better than episode learning. A po-
tential reason is that the training scheme can provide a warm
start stage, as it first learns the policy from examples with
less history turns, followed by learning from examples with
more history turns. It can be viewed as a student learning
from easy courses to hard courses.

The Comparison of Our Method and other
ConvQA Methods
We compare our method on Env-ConvQA with the follow-
ing state-of-the-art ConvQA methods:
• BiDAF++: a classic ConvQA model without history (Choi

et al. 2018a).
• BiDAF++ w/ 2-C: BiDAF++ with two history turns.
• FlowQA: a ConvQA model with history flow model-

ing (Huang, Choi, and tau Yih 2018).
• BERT+HAE: a recent proposed ConvQA model with his-

tory modeling (Qu et al. 2019b).
• BERT+PosHAE: an improved method based on

BERT+HAE (Qu et al. 2019b).
• HAM: the most recent study with history attention mod-

eling from (Qu et al. 2019c).
Note that we omit the comparison of the methods that

consider transfer learning or data augmentation here, as
these studies used external data. We leave the study of en-
hancing our method with external data as the future work.

As shown in Table 6, our method obtains the best perfor-
mance in F1, HEQD, and wins first place in the total score.
Our method exceeds the recent history attended model HAM
by a score of 0.4 in F1. Given the task is very challenging,
this improvement is not small. This further shows our pol-
icy of selecting related history turns is superior to the other
methods.

Case Study
We sample two examples from the development dataset in
QuAC and visualize the actions made by the agent.

As shown in Table 7, it lists two consequent questions in
one dialogue. The upper part shows the question “Is there
anything else interesting in the article ?”, the agent thinks
all the history is relevant as the actions made by the agent
are all ones. In the bottom part, given the question, “Are

Methods F1 HEQQ HEQD Total
BiDAF++ 51.8 45.3 2.0 99.1
BiDAF++ w/ 2-C 60.6 55.7 5.3 121,6
BERT+HAE 63.9 59.7 5.9 129.5
FlowQA 64.6 59.6 5.8 130.0
BERT+PosHAE 64.7 60.7 6.0 131.4
HAM 65.7 62.1 7.3 135.1
Our method 66.1 62.2 7.3 135.6

Table 6: Comparison between our method and the state-of-
art ConvQA methods.

they close to solving it?”, we find the term ‘it’ refers to the
event mentioned in the last turn. Interestingly, the agent se-
lects only the last turn as the most relevant part, which is
reasonable. This is intuitive, as to answer the first question,
the agent needs to attend to all the history, while for the sec-
ond question, only the latest information is required. Despite
the history of these two questions are almost the same, the
RL agent is capable of making different choices according
to the given questions. This shows our RL agent can selec-
tively backtrack conversation history turns to help the Con-
vQA task.

Related Work
Our task is related to machine reading comprehension, con-
versations, and reinforcement learning.
Machine Reading Comprehension (MRC) and Conver-
sational Question Answering. MRC is at the central part
of natural language understanding. Many high-quality chal-
lenges and datasets (Rajpurkar et al. 2016; Rajpurkar, Jia,
and Liang 2018; Nguyen et al. 2016; Joshi et al. 2017;
Kwiatkowski et al. 2019) have greatly boosted the research
progress in this field, resulting in a wide range of model ar-
chitectures (Seo et al. 2016; Hu et al. 2018; Wang et al. 2017;
Huang et al. 2017; Clark and Gardner 2018). The MRC
task is typically conducted in a single-turn QA manner.
The goal is to answer the question by predicting an answer
span in the given passage. The ConvQA task formulated in
CoQA (Reddy, Chen, and Manning 2018b) and QuAC (Choi
et al. 2018a) is closely related to the MRC task. A major dif-
ference is that the questions in ConvQA are organized in
conversations. Thus we need to incorporate the conversation
history to better understand the current question. Most meth-
ods seek to incorporate modeling the dialogue history into
the process of the passage representation. FlowQA (Huang,
Choi, and Yih 2018) adopts RNN to convert the passage rep-
resentation from the past. FlowDelta (Yeh and Chen 2019)
seeks to employ delta operation to model the change in rel-
ative turns. GraphFlow (Chen, Wu, and Zaki 2019) views
each word in the passage as a node, uses the attention
score as their connections, and then adopts a gating mecha-
nism to fuse the representation of the past and the current.
MC2 (Zhang 2019) proposes to use CNN in multiple per-
spectives to capture the semantic changes based on FlowQA.
On the other hand, methods that adopt history answer em-
bedding is also competitive. HAE (Qu et al. 2019a) employs
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Turns Question Answer Action
0 Did they have any clues? probably FSB) are known to have targeted the webmail account of

the murdered Russian journalist Anna Politkovskaya
1

1 How did they target her email? On 5 December 2005, RFIS initiated an attack against the account
annapolitovskaya@US Provider1, by deploying malicious software

1

2 Did they get into trouble for that? CANNOTANSWER 1
3 Did they have any murder suspects? After the three Makhmudov brothers, Khadjikurbanov and Lom-Ali

Gaitukayev were convicted in 2014’)
1

4 Did they go to jail? CANNOTANSWER 1
5 Is there anything else interesting in

the article?
1

0 Did they have any clues? probably FSB) are known to have targeted the webmail account of
the murdered Russian journalist Anna Politkovskaya

0

1 How did they target her email? On 5 December 2005, RFIS initiated an attack against the account
annapolitovskaya@US Provider1, by deploying malicious software

0

2 Did they get into trouble for that? CANNOTANSWER 0
3 Did they have any murder suspects? After the three Makhmudov brothers, Khadjikurbanov and Lom-Ali

Gaitukayev were convicted in 2014’)
0

4 Did they go to jail? CANNOTANSWER 0
5 Is there anything else interesting in

the article?
In accordance with Russian law, there is a 15-year statute of limita-
tion for the p̈articularly gravec̈rime of first degree murder.

1

6 “Are they close to solving it? 1

Table 7: Two sample examples from development dataset in QuAC. Although with similar conversation history (the same
history turns from 0 to 4), the RL agent acts differently for each dialogue turn.

answer embedding to indicate the position the history an-
swers. HAM (Qu et al. 2019b) further adopts an attention
mechanism to select related history questions.
Reinforcement Learning (RL). RL seeks to train agents
with implicit feedback, and it comprises a series of goal-
oriented algorithms that have been studied for many decades
in many disciplines (Sutton and Barto 1998; Arulkumaran
et al. 2017; Li 2017). The recent development in deep learn-
ing has greatly contributed to this area and has delivered
amazing achievements in many domains, such as playing
games against humans (Mnih et al. 2013; Silver et al. 2017).

There are generally two lines of work in RL: value-based
methods and policy-based methods. Value-based methods,
including SARSA (Rummery and Niranjan 1994) and the
Deep Q Network (Mnih et al. 2015), take actions based on
estimations of expected long-term return. On the other hand,
policy-based methods optimize for a strategy that can map
states to actions that promise the highest reward. Finally,
hybrid methods, such as the actor-critic algorithm (Konda
and Tsitsiklis 2003), integrate a trained value estimator into
policy-based methods to reduce variance in rewards and
gradients. In this work, we mainly experiment with hybrid
methods.

The nature of RL problems is making a sequence of ac-
tions based on certain observations in order to achieve a
long-term goal. This nature has made RL suitable to deal
with data selection problems in many areas (Fang, Li, and
Cohn 2017; Wu, Li, and Wang 2018; Fan et al. 2017; Patel,
Chitta, and Jasani 2018; Wang et al. 2018; Feng et al. 2018).
The study in (Takanobu et al. 2018) adopts reinforcement
learning in the topic segmentation task. The agent is respon-

sible for assigning a label for the segment in the dialogue.
The study in (Buck et al. 2018) adopts reinforcement learn-
ing to generate questions of better quality. It freezes the QA
model and regards the seq2seq model as the agent.

Our proposed method seeks to identify helpful conversa-
tion history to construct better training data. To the best of
our knowledge, our work is the first to study reinforcement
learning to backtrack history turns in the ConvQA setting.
Our proposed method is an end-to-end trainable approach
that shows better results than the competitive baselines.

Conclusion
In this study, we proposed a reinforcement learning method
to automatically select related history turns for multi-turn
machine reading comprehension. Compared with the re-
cent history modeling approaches, our method can select
helpful history turns to boost the performance of the MRC
model. For a question in the dialogue, the actions made
by the learned policy are shown to be helpful to select the
related history turns and achieves better performance than
the competing methods. Extensive experiments on public
datasets show our method yields consistently better perfor-
mance than the competing methods. Quantitative analysis
also shows the selection behaviors made by the learned pol-
icy are insightful.

As for future work, we seek to examine the generalization
capability of our RL method for more context-aware appli-
cations in dialogue modeling. We also seek to leverage the
recent advance of RL to further boost model efficiency.
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