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Abstract

Non-autoregressive neural machine translation (NAT) gener-
ates each target word in parallel and has achieved promis-
ing inference acceleration. However, existing NAT models
still have a big gap in translation quality compared to autore-
gressive neural machine translation models due to the mul-
timodality problem: the target words may come from mul-
tiple feasible translations. To address this problem, we pro-
pose a novel NAT framework ReorderNAT which explicitly
models the reordering information to guide the decoding of
NAT. Specially, ReorderNAT utilizes deterministic and non-
deterministic decoding strategies that leverage reordering in-
formation as a proxy for the final translation to encourage the
decoder to choose words belonging to the same translation.
Experimental results on various widely-used datasets show
that our proposed model achieves better performance com-
pared to most existing NAT models, and even achieves com-
parable translation quality as autoregressive translation mod-
els with a significant speedup.

Introduction
Neural machine translation (NMT) models with encoder-
decoder framework (Sutskever, Vinyals, and Le 2014; Bah-
danau, Cho, and Bengio 2014) significantly outperform
conventional statistical machine translation models (Koehn,
Och, and Marcu 2003; Koehn et al. 2007). Despite their suc-
cess, the state-of-the-art NMT models usually suffer from
the slow inference speed, which has become a bottleneck to
apply NMT in real-world translation systems. The slow in-
ference speed of NMT models is due to their autoregressive
property, i.e., decoding the target sentence word-by-word
according to the translation history.

Recently, Gu et al. (2018) introduced non-autoregressive
NMT (NAT) which can simultaneously decode all target
words to break the bottleneck of the autoregressive NMT
(AT) models. To this end, NAT models (Gu et al. 2018;
Wei et al. 2019; Wang et al. 2019; Guo et al. 2019a) usu-
ally directly copy the source word representations to the in-
put of the decoder, instead of using previous predicted tar-
get word representations. Hence, the inference of different
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target words are independent, which enables parallel com-
putation of the decoder in NAT models. NAT models could
achieve 10-15 times speedup compared to AT models while
maintaining considerable translation quality.

However, NAT models still suffer from the multimodal-
ity problem (Gu et al. 2018): it discards the dependencies
among the target words, and therefore the target words may
be chosen from multiple feasible translations, resulting in
duplicate, missing or even wrong words. For example, the
German phrase “Vielen Dank” can be translated as both
“thank you” and “many thanks”. Unfortunately, as each tar-
get word is generated independently, “thank thanks” and
“many you” may also be assigned high probabilities, result-
ing in inferior translation quality. In this work, we argue re-
ordering information is essential for NAT models and help-
ful for alleviating the multimodality problem.

To this end, we propose a novel NAT framework named
ReorderNAT in this work, which explicitly models the re-
ordering information to guide the decoding of NAT. To be
specific, as shown in Figure 1, ReorderNAT first reorders the
source sentence into a pseudo-translation formed by source
words but in the target language word order, and then trans-
lates the source sentence conditioned on it. We further intro-
duce two guiding decoding strategies which utilize the re-
ordering information (i.e. pseudo-translation) to guide the
word selection in decoding. The first one is deterministic
guiding decoding which first generates a most likely pseudo-
translation and then generates the target sentence based on
it. The second one is non-deterministic guiding decoding
which utilizes the conditional distribution of the pseudo-
translation as a latent variable to guide the decoding of target
sentences.

Ideally, the pseudo-translation can be viewed as a final
translation written in source language. Guiding decoding
with it could help to model the conditional dependencies of
the target words and encourage the decoder to choose words
belonging to the same translation, which naturally reduces
the multimodality problem. Moreover, the decoding space of
generating pseudo-translation is limited to the permutation
of words in the source sentence, which can be well modeled
by a small model. Therefore, ReorderNAT could effectively
alleviate the multimodality problem by introducing the re-
ordering information in NAT.

Experimental results on several widely-used benchmarks
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Figure 1: The architecture of our ReorderNAT model. Different from original NAT models, our model adds a reordering module
between the encoder and decoder modules to explicitly model the reordering information. For original NAT models, the decoder
inputs are the copied embeddings of source sentence (No.1 dashed arrow), and for our ReorderNAT model, the decoder inputs
are the embeddings of pseudo-translation generated by reordering module (No. 2 dashed arrow). The encoder and decoder
blocks are the same as existing NMT models (e.g., Transformer block).

show that our proposed ReorderNAT model achieves signifi-
cant and consistent improvements compared to existing NAT
models by explicitly modeling the reordering information to
guide the decoding. Moreover, by introducing a simple but
effective AT module to model reordering information, our
ReorderNAT immensely narrows the translation quality gap
between AT and NAT models, while maintaining consider-
able speedup (nearly six times faster). The source codes are
available at https://github.com/ranqiu92/ReorderNAT.

Background
Non-autoregressive neural machine translation (NAT) is first
proposed by Gu et al. (2018) to alleviate the slow decod-
ing issue of autoregressive neural machine translation (AT)
models, which could simultaneously generate target words
by removing their dependencies. Formally, given a source
sentence X = {x1, · · · , xn} and a target sentence Y =
{y1, · · · , ym}, NAT models the translation probability from
X to Y as a product of conditionally independent target
word probability:

P (Y|X) =
m∏
i=1

P (yi|X). (1)

Instead of utilizing the translation history, NAT models
usually copy source word representations as the input of the
decoder. Hence, when translating a sentence, NAT models
could predict all target words with their maximum likeli-
hood individually by breaking the dependency among them,
and therefore the decoding procedure of NAT models is in
parallel and has very low translation latency.

However, since NAT models discard the sequential de-
pendencies among words in the target sentence, they suf-
fer from the potential performance degradation due to the
multimodality problem. To be specific, a source sentence
may have multiple translations. During decoding, NAT mod-
els may choose the target words from different translations,

resulting in duplicate, missing or even wrong words. Con-
sequently, NAT models cannot effectively learn the intri-
cate translation patterns from source sentences to target sen-
tences, leading to inferior translation quality.

Methodology
In this section, we introduce a novel NAT model named Re-
orderNAT, which aims to alleviate the multimodality prob-
lem in NAT models.

ReorderNAT
As shown in Figure 1, ReorderNAT employs a reordering
module to explicitly model the reordering information in the
decoding1. Formally, ReorderNAT first employs the reorder-
ing module to translate the source sentence X into a pseudo-
translation Z = {z1, · · · , zm} which reorganizes source
sentence structure into the target language, and then uses
the decoder module to generate target translation Y based
on the pseudo-translation. ReorderNAT models the overall
translation probability as:

P (Y|X) =
∑
Z

P (Y|Z,X)P (Z|X), (2)

where P (Z|X) is modeled by the reordering module and
P (Y|Z,X) is modeled by the decoder module. Next, we
will introduce the reordering and decoder modules in detail2.

Reordering Module The reordering module determines
the source-side information of each target word by learn-
ing to translate the source sentence into a pseudo-translation.

1We do not employ positional attention (Gu et al. 2018) as the
mechanism may be misguided by target supervision due to the in-
direct optimization and lead to inferior translation.

2The encoder module of ReorderNAT is a multi-layer Trans-
former (Vaswani et al. 2017), which is the same as original NAT
models.
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We propose two feasible implementations of the reordering
module:

(1) NAT Reordering Module: Intuitively, the pseudo-
translation probability can also be modeled as NAT:

P (Z|X) =
m∏
i=1

P (zi|X), (3)

where P (zi|X) is calculated by a single-layer Transformer.
During inference, the NAT reordering module needs to de-
termine the length of the pseudo-translation. To this end, we
use a length predictor and copy the embeddings of the source
sentence as the input of the reordering module similar to ex-
isting NAT models.

(2) AT Reordering Module: We find that AT models are
more suitable for modeling the reordering information com-
pared to NAT models, and even a light AT model with simi-
lar decoding speed to a large NAT model could achieve bet-
ter performance in modeling reordering information. Hence,
we also introduce a light AT model to model the pseudo-
translation probability as:

P (Z|X) =
m∏
i=1

P (zi|z<i,X), (4)

where z<i = {z1, · · · , zi−1} indicates the pseudo-
translation history, and P (zi|z<i,X) is calculated by a
single-layer recurrent neural network.

Decoder Module The decoder module translates the
source sentence into the target translation with the guiding
of pseudo-translation, which regards the translation of each
word as NAT:

P (Y|Z,X) =
m∏
i=1

P (yi|Z,X). (5)

As shown in Figure 1, the encoder module and the de-
coder module can be viewed as a seq-to-seq model which
translates the source sentence to target sentence. Different
from original NAT, the input of our decoder module is the
embeddings of pseudo-translation instead of copied embed-
dings of source sentence, which is used to guide the word
selection. Note that the encoder outputs are also fed into the
decoder attention module, which can help alleviate the re-
ordering errors.

To make the model parameter number comparable with
the baseline model, we use K and N − K decoder blocks
for the reordering and decoder modules respectively 3.

Guiding Decoding Strategy
ReorderNAT explicitly models reordering information of
NAT and aims to utilize it to alleviate the multimodality
problem. Now the remaining problem is how to perform de-
coding with the guide of reordering information. We propose

3We set K to 1 for an AT module while N − 1 for an NAT
module as it is more difficult for an NAT module to model the re-
ordering information (see Experiments).

to utilize the pseudo-translation as a bridge to guide the de-
coding of the target sentence, which can be formulated as:

Y∗ = argmax
Y

P (Y|X)

= argmax
Y

∑
Z

P (Y|Z,X)P (Z|X). (6)

It is intractable to obtain an exact solution for maximizing
Eq. 6 due to the high time complexity. Inspired by the pre-
ordering works in statistical machine translation, we propose
a deterministic guiding decoding (DGD) strategy and a
non-deterministic guiding decoding (NDGD) strategy to
solve this problem.

The DGD strategy first generates the most probable
pseudo-translation of the source sentence, and then trans-
lates the source sentence conditioned on it:

Z∗ = argmax
Z

P (Z|X), (7)

Y∗ = argmax
Y

P (Y|Z∗,X). (8)

The DGD strategy is simple and effective, but the hard
approximation may bring in some noises.

Different from the DGD strategy which utilizes a deter-
ministic pseudo-translation, the NDGD strategy regards the
probability distribution Q of words to generate the most
probable pseudo-translations as a latent variable, and models
the translation as generating the target sentence according to
Q, i.e., Eq. 8 is re-formulated as:

Y∗ = argmax
Y

P (Y|Q,X), (9)

where Q is defined as:

Q(zi) = P (zi|z∗<i,X) =
exp

(
s(zi)/T

)∑
z′
i
exp

(
s(z′i)/T

) , (10)

where s(·) is a score function of pseudo-translation (the in-
put of softmax layer in the decoder) and T is a temperature
coefficient. Since Q can be viewed as a non-deterministic
form of the pseudo-translation, the translation with the
NDGD strategy is also guided by the pseudo-translation.

To be specific, as shown in Figure 1, the major differ-
ence between DGD and NDGD strategy is the inputs of
decoder module (No. 2 dashed arrow), where the DGD
strategy directly utilizes the word embeddings of generated
pseudo-translation and the NDGD strategy utilizes the word
embeddings weighted by the word probability of pseudo-
translation.

Discussion
In ReorderNAT, the decoding space of generating pseudo-
translation with reordering module is much smaller than
that of the whole translation in NAT since the decoding
vocabulary is limited to the words in the source sentence.
The reordering module is more likely to be guided to one
pseudo-translation among multiple alternatives. Therefore,
ReorderNAT could easily capture the reordering informa-
tion compared to the original NAT by explicitly modeling
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with pseudo-translation as internal supervision. Besides, the
candidates of the i-th word of the final translation can be
narrowed to the translations of zi to some extent since zi
is the i-th word in the pseudo-translation which indicates
the corresponding source information of yi. In other words,
pseudo-translations could be viewed as a translation writ-
ten in source language which helps the decoder to capture
the dependencies among target words and choose words be-
longing to the same translation.

Training
In the training process, for each training sentence pair
(X,Y) ∈ D, where D is the training set, we first generate
its corresponding pseudo-translation Ẑ. And then Reorder-
NAT is optimized by maximizing a joint loss:

L = LR + LT , (11)
where LR and LT indicate the reordering and translation
losses respectively. Formally, for both DGD and NDGD, the
reordering loss LR is defined as4 :

LR =
∑

(X,Ẑ,Y)∈D

logP (Ẑ|X). (12)

For the DGD approach, the translation loss is defined
as an overall maximum likelihood of translating pseudo-
translation into the target sentence:

LT =
∑

(X,Ẑ,Y)∈D

logP (Y|Ẑ,X), (13)

For the NDGD approach, the translation loss is defined as
an overall maximum likelihood of decoding the target sen-
tence from the conditional probability of pseudo-translation:

LT =
∑

(X,Ẑ,Y)∈D

logP (Y|Q,X). (14)

In particular, we use the trained model for the DGD ap-
proach to initialize the model for the NDGD approach since
if Q is not well trained, LT will converge very slowly.

Experiments
Datasets
The main experiments are conducted on three widely-used
machine translation tasks: WMT14 En-De (4.5M pairs),
WMT16 En-Ro (610k pairs) and IWSLT16 En-De (196k
pairs)5. For WMT14 En-De task, we take newstest-2013
and newstest-2014 as validation and test sets respectively.
For WMT16 En-Ro task, we employ newsdev-2016 and
newstest-2016 as validation and test sets respectively. For
IWSLT16 En-De task, we use test2013 for validation.

We also conduct our experiments on Chinese-English
translation which differs more in word order. The training
set consists of 1.25M sentence pairs extracted from the LDC
corpora. We use NIST 2002 (MT02) as validation set, and
NIST 2003 (MT03), 2004 (MT04), 2005 (MT05) as test sets.

4Note that since Q(Z) = P (Z|X), the reordering loss could
also learnQ for the NDGD approach.

5We use the prepossessed corpus provided by Lee, Mansimov,
and Cho (2018) at https://github.com/nyu-dl/dl4mt-nonauto/tree/
multigpu.

Experimental Settings
We use the fast align tool6 to generate the pseudo-translation
in our experiments. We follow most of the model hyperpa-
rameter settings in (Gu et al. 2018; Lee, Mansimov, and Cho
2018; Wei et al. 2019) for fair comparison. For IWSLT16
En-De, we use a 5-layer Transformer model (dmodel = 278,
dhidden = 507, nhead = 2, pdropout = 0.1) and an-
neal the learning rate linearly (from 3 × 10−4 to 10−5) as
in (Lee, Mansimov, and Cho 2018). For WMT14 En-De,
WMT16 En-Ro and Chinese-English translation, we use a
6-layer Transformer model (dmodel = 512, dhidden = 512,
nhead = 8, pdropout = 0.1) and adopt the warm-up learning
rate schedule (Vaswani et al. 2017) with twarmup = 4000.
For the GRU reordering module, we set it to have the same
hidden size with the Transformer model in each dataset. We
employ label smoothing of value εls = 0.15 and utilize the
sequence-level knowledge distillation (Kim and Rush 2016).
For each dataset, we select the optimal guiding decoding
strategy according to the model performance on validation
sets. We also set T in Eq. 10 to 0.2 according to a grid
search on the validation set.We measure the model inference
speedup on the validation set of IWSLT16 En-De task with
a NVIDIA P40 GPU and set batch size to 1.

Baselines
In the experiments, we compare ReorderNAT (NAT) and Re-
orderNAT (AT) which utilize an NAT and an AT reordering
modules respectively with several baselines.

We select three models as our autoregressive base-
lines: (1) Transformerfull (Vaswani et al. 2017), which
is the teacher model used in the knowledge distillation
and of which the hyperparameters are described in ex-
perimental settings. (2) Transformerone, a lighter ver-
sion of Transformer, of which the decoder layer number
is 1. (3) Transformergru, which replaces the decoder of
Transformerfull with a single-layer GRU (Cho et al. 2014).
And we set the beam size to 4 in the experiments.

Besides, we compare with several typical NAT models,
which also have the ability to alleviate the multimodality
problem and are highly relevant to our work: (1) NAT-
IR (Lee, Mansimov, and Cho 2018), which adopts an it-
erative refinement mechanism enabling the model to per-
form inference based on surrounding words in the transla-
tion; (2) NAT-FS (Shao et al. 2019a), which introduces the
autoregressive property to the top decoder layer of NAT;
(3) FlowSeq-base (Ma et al. 2019), which uses generative
flow to help model dependencies within target sentences. For
fair comparison, We use the “base” version as it has com-
parable model size with our model; (4) imitate-NAT (Wei
et al. 2019), which imitates the behavior of an AT model. (5)
CMLM-small (Ghazvininejad et al. 2019), which is built
on a conditional masked language model and also itera-
tively refines the translation. We use the “small” version for
fair comparison; (6) NART-DCRF (Sun et al. 2019), which
uses CRF to capture the word dependencies; (7) LevT (Gu,
Wang, and Zhao 2019), which models the sequence genera-
tion as multi-step insertion and deletion operations.

6https://github.com/clab/fast align
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Model Multi-Step WMT14 WMT16 IWSLT16 SpeedupEn→De De→En En→Ro Ro→En En→De

Autoregressive Models
Transformerfull - 27.17 31.95 32.86 32.60 31.18 1.00×
Transformerone - 25.52 29.31 30.61 31.23 29.52 2.42×
Transformergru - 26.27 30.62 30.41 31.23 29.26 3.10×
Non-Autoregressive Models
NAT-IR (iter=1) - 13.91 16.77 24.45 25.73 22.20 8.98×
NAT-IR (iter=10)

√
21.61 25.48 29.32 30.19 27.11 1.55×

NAT-FS - 22.27 27.25 30.57 30.83 27.78 3.38×
FlowSeq-base - 21.45 26.16 29.34 30.44 - <1.5×
FlowSeq-base+NPD (s=30) - 23.48 28.40 31.75 32.49 - <1.5×
imitate-NAT - 22.44 25.67 28.61 28.90 28.41 18.6×
imitate-NAT+LPD (s=7) - 24.15 27.28 31.45 31.81 30.68 9.70×
CMLM-small (iter=10)

√
25.51 29.47 31.65 32.27 - <1.5×

NART-DCRF - 23.44 27.22 - - - 10.4×
NART-DCRF+LPD (s=19) - 26.80 30.04 - - - 4.39×
LevT

√
27.27 - - 33.26 - 4.01×

Our Models
ReorderNAT (NAT) - 22.79 27.28 29.30 29.50 25.29 16.11×
ReorderNAT (NAT)+LPD (s=7) - 24.74 29.11 31.16 31.44 27.40 7.40×
ReorderNAT (AT) - 26.49 31.13 31.70 31.99 30.26 5.96×

Table 1: Overall results of AT and NAT models in BLEU score on the test sets of WMT14 and WMT16, and validation set of
IWSLT16. “DCRF” denotes a CRF layer with dynamic transition (Sun et al. 2019). “NPD” denotes noisy parallel decoding (Gu
et al. 2018), “LPD” denotes length parallel decoding (Wei et al. 2019), and “s” denotes sample size. “iter” denotes translation
refinement iterations. Better BLEU scores with low speedup are underlined.

Overall Results

We compare ReorderNAT (NAT) and ReorderNAT (AT) that
utilize an NAT reordering module and an AT reordering
module respectively with all baseline models. All the results
are shown in Table 1. From the table, we can find that:

(1) Excluding six better BLEU scores with significant low
speedup, ReorderNAT (AT) achieves the best performance
on most of the benchmark datasets, which is even close to
the AT model with smaller than 1 BLEU gap (26.49 vs.
27.17 on WMT14 En→De task, 31.99 vs. 32.60 on WMT16
Ro→En task, 30.26 vs. 31.18 on IWSLT16 En→De task).
It is also worth mentioning that although ReorderNAT uti-
lizes a small AT model to better capture reordering infor-
mation, it could still maintain low translation latency (about
16× speedup for ReorderNAT (NAT) and 6× speedup
for ReorderNAT (AT)). Compared to Transformerone and
Transformergru, ReorderNAT (AT) uses a much smaller vo-
cabulary in the AT reordering module, which is limited to the
words in the source sentence and makes it faster. Besides,
unlike NAT-IR, CMLM-small and LevT, our model can de-
code all target words in parallel without multiple iterations,
which helps maintain the efficiency.

(2) ReorderNAT (NAT) and ReorderNAT (NAT)+LPD
also gain significant improvements compared to most exist-
ing NAT models. It verifies the reordering information mod-
eled by ReorderNAT could effectively guide its word selec-
tion.

(3) A small AT model with close latency to large NAT
models could perform much better in modeling reorder-

ing information7. On all benchmark datasets, ReorderNAT
(AT) with small AT GRU reordering module achieves much
better translation quality than that with large NAT model
(2-5 BLEU scores). Moreover, we find that the AT model
Transformerone and Transformergru with a single-layer AT
Transformer or GRU for decoding could also outperform
most existing NAT models while maintaining acceptable la-
tency (2.42× and 3.10× speedup respectively). The reason
is that a major potential performance degradation of NAT
models compared to AT models comes from the difficulty
of modeling the word order difference between source and
target language, i.e., reordering information, which is ne-
glected by most existing NAT models but can be well mod-
eled by the small AT module8.

Results on Chinese-English Translation
To show the effectiveness of modeling reordering informa-
tion in NAT, we compare ReorderNAT with baselines on
Chinese-English translation since the word order between
Chinese and English is more different than that between Ger-
man and English (En-De). From Table 2, we can find that

7The decoding speed of ReorderNAT (AT) is limited by the au-
toregressive property of the reordering module, which is the main
drawback of our model. How to further improve its speed is a future
direction we would like to pursue.

8We conduct experiments and find that our model outperforms
the AT model by a big margin when replacing the predicted pseudo-
translation with the ground-truth ones. This also indicates the main
multimodality problem on NAT comes from the difficulty of mod-
eling the reordering information.
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Model MT02* MT03 MT04 MT05

Autoregressive Models
Transformerfull 46.11 43.74 45.59 44.11
Transformerone 43.60 41.24 43.39 41.62
Transformergru 43.68 40.55 43.02 40.73

Non-Autoregressive Models
imitate-NAT 33.77 32.29 34.83 31.96
ReorderNAT (NAT) 37.99 36.03 38.17 36.07
ReorderNAT (AT) 45.22 43.20 44.89 43.45

Table 2: BLEU scores on Chinese-English translation. * in-
dicates the validation set.
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Figure 2: Translation quality on the IWSLT16 validation set
over various input sentence lengths.

in Chinese-English translation, ReorderNAT (AT) achieves
much more improvements (6-7 BLEU points) compared to
ReorderNAT (NAT) and imitate-NAT. The reason is that
more different word order in Chinese-English translation
makes the decoding search space more complicated, which
could be effectively alleviated by ReorderNAT.

Translation Quality v.s. Sentence Lengths

Figure 2 shows the BLEU scores of translations generated
by the Transformer (AT model), the NAT model (Reorder-
NAT without the reordering module), ReorderNAT (NAT)
and ReorderNAT (AT) on the IWSLT16 validation set with
respect to input sentence lengths. We can observe that:

(1) ReorderNAT (NAT) and ReorderNAT (AT) achieve
significant improvement compared to the NAT model for
most lengths and ReorderNAT (AT) achieves nearly compa-
rable performance to Transformer. It verifies the reordering
information modeled by ReorderNAT could effectively help
word selection and improve the translation quality.

(2) ReorderNAT (AT) achieves much better translation
performance than the NAT model for sentences longer than
20 words, of which word order tends to be more differ-
ent. Together with the results on Chinese-English transla-
tion (Table 2), we can conclude that NAT is weak on word
reordering and our model is more effective especially when
word order is more different.

Model BLEU RIBES Dup Mis

Transformerfull 31.18 83.74 - -

NAT 24.57 82.21 50.09 9.09

ReorderNAT (NAT) 25.29 82.35 37.52 7.35
ReorderNAT (NAT)+LPD 27.04 83.21 24.31 5.59
ReorderNAT (AT) 30.26 83.55 2.84 0.52

Table 3: Relative increment of duplicate (“Dup”) and miss-
ing (“Mis”) token ratios on the IWSLT16 validation set.
Smaller is better.

Multimodality Related Error Reduction
In this section, we investigate how our reordering mod-
ule reduces the multimodality errors in NAT. Specially, we
evaluate the RIBES (Isozaki et al. 2010) score and the re-
duction of duplicate and missing words (two most typical
multimodality related errors). The results are shown in Ta-
ble 3, where “Dup” and “Mis” denote the relative incre-
ment of duplicate and missing token ratios compared with
the Transformerfull model respectively9 , and NAT is Re-
orderNAT without the reordering module. From the table,
we can observe that:

(1) Our three ReorderNAT models achieve higher RIBES
scores than the NAT model, validating our reordering mod-
ule can help capture the word order difference between
source and target languages. Moreover, the ReorderNAT
(AT) model performs the best in RIBES, indicating the AT
reordering module can model reordering information more
effectively than the NAT reordering module.

(2) Compared with the NAT model, both Dup and Mis
are significantly better for the three ReorderNAT models,
indicating ReorderNAT is effective for alleviating the multi-
modality problem.

Case Study
Table 4 shows example translations of the NAT model, Re-
orderNAT (NAT) and ReorderNAT (AT). We find the prob-
lem of missing and duplicate words are severe in the trans-
lation (both 5 occurrences) of the NAT model, while this
problem is effectively alleviated by ReorderNAT. Moreover,
we find that most of the missing, duplicate or wrong words
in the translation of our two ReorderNAT models come from
the errors in the pseudo-translation, demonstrating that NAT
models could well translate the pseudo-translation which is
in the the target language word order, and the remaining
problem of NAT lies on modeling reordering information.

Related Work
Non-Autoregressive Neural Machine Translation
Gu et al. (2018) first proposed the non-autoregressive neural
machine translation (NAT), which enables parallel decoding
for neural machine translation (NMT) and significantly ac-
celerates the inference of NMT. However, its performance

9The formal definition of metrics “Dup/Mis” can be found in
Ran et al. (2020).
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Source eventually , after a period of six months of brutal war and a toll rate of almost 50,000 dead , we managed
to liber ate our country and to t opp le the ty rant

Reference schließlich , nach einem Zeitraum von sechs Monaten bru talen Krieges und fast 50.000 Toten , gelang
es uns , unser Land zu befreien und den Tyran nen zu stürzen .

NAT Translation schließlich , nach einer [ ] von sechs Monaten bru bru [ ] Krieg und einer Z rate fast 50.000 50.000
[ ] , schafften wir es geschafft , unser Land [ ] befreien befreien und den Ty r ann [ ] ann entge-
gen entgegen deln .

ReorderNAT
(NAT)

Pseudo-
Translation

eventually , after a period of six [ ] brutal brutal war and a toll of almost 50,000 dead , managed we
managed managed, [ ] country country to liber [ ] and the ty ty rant rant opp opp opp .

Translation schließlich , nach einer Zeit von sechs [ ] bru talen Krieges und einer Z von fast 50.000 Toten , schafften
wir es geschafft , unser Land zu befreien und den Ty r r ten zu zu ieren .

ReorderNAT
(AT)

Pseudo-
Translation

eventually , after a period of six months brutal brutal war and a toll toll rate of almost 50,000 dead ,
managed we managed , our country to liber [ ] and the ty ty rant to liber .

Translation schließlich , nach einer Zeitraum von sechs Monaten bru talen Krieg und einer Z oll rate von fast 50.000
Toten , schafften wir es , unser Land zu befreien und den Ty r ann zu reparieren .

Table 4: Translation examples of NAT baseline and ReorderNAT. We use “[ ]” to denote missing words and underline the wrong
words. We use to concatenate sub-words.

degrades greatly since it discards the sequential dependen-
cies among target words. Recently, a variety of works have
been investigated to improve its performance including (Guo
et al. 2019a; Bao et al. 2019) which enhance the represen-
tation of decoder with source information; (Libovický and
Helcl 2018; Shao et al. 2019a,b; Ghazvininejad et al. 2020)
which optimize models with respect to sequence-level loss
functions; (Wang et al. 2019; Li et al. 2020) which attempt
to solve the multimodality problem using regularization or
speical decoding strategies; (Li et al. 2019; Wei et al. 2019;
Guo et al. 2019b; Liu et al. 2020; Sun and Yang 2020)
which use AT models to guide the learning of NAT mod-
els; (Kaiser et al. 2018; Akoury, Krishna, and Iyyer 2019;
Lee, Shu, and Cho 2020) which introduce latent variables
to guide the decoding process of NAT models; and (Wang,
Zhang, and Chen 2018; Lee, Mansimov, and Cho 2018; Gu,
Wang, and Zhao 2019; Stern et al. 2019; Ghazvininejad et al.
2019; Ghazvininejad, Levy, and Zettlemoyer 2020; Kasai
et al. 2020; Tu et al. 2020; Guo, Xu, and Chen 2020; Ran
et al. 2020) which extend one-step NAT to multi-step NAT
and generate translations iteratively. Different from exist-
ing works, we propose to explicitly model reordering infor-
mation in NAT models, which serves as a proxy in captur-
ing target word dependencies and encourages the decoder
to choose words belonging to the same translation to alle-
viate the multimodality problem. This work intends to en-
hance the translation quality of one-step NAT models and
has the potential to improve the performance of each itera-
tion of multi-step NAT methods without loss of efficiency.

Modelling Reordering Information in Machine
Translation
Re-ordering model is a key component in statistical ma-
chine translation (SMT), which handles word order differ-
ences between source and target languages. There has been
a number of works focusing on word reordering in SMT, in-
cluding deterministic reordering methods (Xia and McCord

2004; Collins, Koehn, and Kučerová 2005; Wang, Collins,
and Koehn 2007; Li et al. 2007), which find an optimal
reordering of source words; non-deterministic reordering
methods (Kanthak et al. 2005; Zhang, Zens, and Ney 2007)
which encode multiple alternative reorderings into a word
lattice and remain the selection of best path in the decoder;
and target word reordering methods (Bangalore, Haffner,
and Kanthak 2007) which first select target lexicals and
then reorder them to form final sentence. In neural machine
translation (NMT), it has been shown the attention mech-
anism (Bahdanau, Cho, and Bengio 2014) could implicitly
capture reordering information to some extent. Zhang et al.
(2017) presented three distortion models to further incorpo-
rate reordering knowledge into attention-based NMT mod-
els. Chen et al. (2019) proposed to learn reordering embed-
ding of a word based on its contextual information. Except
for incorporating reordering knowledge in attention mecha-
nism, researchers also proposed to learn to reorder source
words according to target sentence structures with neural
networks (Du and Way 2017; Kawara, Chu, and Arase 2018;
Zhao, Zhang, and Zong 2018). This work empirically justi-
fies reordering information is essential for NAT.

Conclusion and Future Work
In this work, to address the multimodality problem in NAT,
we propose a novel NAT framework named ReorderNAT
which explicitly models the reordering information in the
decoding procedure. We further introduce deterministic and
non-deterministic guiding decoding strategies to utilize the
reordering information to encourage the decoder to choose
words belonging to the same translation. Experimental re-
sults on several widely-used benchmarks show that our Re-
orderNAT model achieves better performance than most ex-
isting NAT models, and even achieves comparable transla-
tion quality as AT model with a significant speedup. We be-
lieve that to well model the reordering information is a po-
tential way towards better NAT.
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