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Abstract

The majority of current research in Automated Essay Scor-
ing (AES) focuses on prompt-specific scoring of either the
overall quality of an essay or the quality with regards to cer-
tain traits. In real-world applications obtaining labelled data
for a target essay prompt is often expensive or unfeasible,
requiring the AES system to be able to perform well when
predicting scores for essays from unseen prompts. As a re-
sult, some recent research has been dedicated to cross-prompt
AES. However, this line of research has thus far only been
concerned with holistic, overall scoring, with no exploration
into the scoring of different traits. As users of AES systems
often require feedback with regards to different aspects of
their writing, trait scoring is a necessary component of an ef-
fective AES system. Therefore, to address this need, we in-
troduce a new task named Automated Cross-prompt Scoring
of Essay Traits, which requires the model to be trained solely
on non-target-prompt essays and to predict the holistic, over-
all score as well as scores for a number of specific traits for
target-prompt essays. This task challenges the model’s abil-
ity to generalize in order to score essays from a novel domain
as well as its ability to represent the quality of essays from
multiple different aspects. In addition, we introduce a new,
innovative approach which builds on top of a state-of-the-art
method for cross-prompt AES. Our method utilizes a trait-
attention mechanism and a multi-task architecture that lever-
ages the relationships between each trait to simultaneously
predict the overall score and the score of each individual trait.
We conduct extensive experiments on the widely used ASAP
and ASAP++ datasets and demonstrate that our approach is
able to outperform leading prompt-specific trait scoring and
cross-prompt AES methods.

Introduction
Automated Essay Scoring (AES) is the task of using compu-
tation to score an essay according to either its overall qual-
ity or its quality with regards to certain traits, e.g., organi-
zation, prompt adherence, narrativity, etc. The majority of
AES research focuses on scoring in a prompt-specific set-
ting, whereby the model is both trained and tested on es-
says belonging to the same prompt. This can be seen in the
top-left and bottom-left images of Figure 1, where both the
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Figure 1: AES Tasks Summary

training and test data are drawn from the same distribution
DA.

Early work in prompt-specific AES primarily leveraged
handcrafted features used in combination with regression,
classification or ranking algorithms to award a holistic, over-
all score (Burstein et al. 1998; Miltsakaki and Kukich 2004;
Rudner and Liang 2002; Farra, Somasundaran, and Burstein
2015; Chen and He 2013).

Following the rise of deep learning, a number of neural-
network-based approaches have also been effective for holis-
tic prompt-specific AES (Alikaniotis, Yannakoudakis, and
Rei 2016; Taghipour and Ng 2016; Dong and Zhang 2016;
Dong, Zhang, and Yang 2017; Tay et al. 2018).

In consideration for the need for richer feedback in AES
systems, some research has been dedicated to scoring essays
with regards to different traits. For example, Persing, Davis,
and Ng (2010) and Wachsmuth, Al-Khatib, and Stein (2016)
model the quality of the organization; Ke et al. (2018) score
essays with regards to their persuasiveness; Persing and Ng
(2013) model thesis clarity; and Persing and Ng (2014) pro-
vide feedback with regards to prompt adherence. More re-
cently, researchers have explored providing feedback for
both the overall quality and the quality across multiple traits
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(Mathias and Bhattacharyya 2018, 2020; Hussein, Hassan,
and Nassef 2020).

As researchers have previously pointed out (Jin et al.
2018; Ridley et al. 2020), it is often the case that real-world
AES systems do not have access to ample target-prompt es-
says, so it is necessary to develop approaches that are effec-
tive when predicting scores for essays belonging to prompts
not present in the training data. As a result, some recent re-
search has explored cross-prompt AES, where a model is
trained on either non-target-prompt essays in conjunction
with low quantities of target-prompt essays (Phandi, Chai,
and Ng 2015; Cummins, Zhang, and Briscoe 2016) or only
on non-target-prompt essays (Attali, Bridgeman, and Tra-
pani 2010; Jin et al. 2018; Ridley et al. 2020) to achieve
better generalized approaches that can perform better for es-
says belonging to novel prompts. This task is visualized in
the top-right image of Figure 1, whereby the training data
and test data are drawn from different distributions, DA and
DB .

Cross-prompt AES research has so far only been con-
cerned with grading essays according to their holistic, over-
all quality, with no existing research exploring trait scoring
in this setting. Due to the need for high performance in the
cross-prompt setting and the need for an ability to provide
feedback across different traits, we contest that an effec-
tive AES system should incorporate these two components.
Therefore, we introduce a new AES task named Automated
Cross-prompt Scoring of Essay Traits, whereby the model
is required to be trained solely on non-target-prompt essays
and to predict the overall score as well as scores for a num-
ber of traits for essays belonging to the target prompt. This is
visualized in the bottom-right image of Figure 1, where the
training and test data are drawn from different distributions
and the output is the score for different traits.

This new task exhibits two main challenges: first, the
model needs to possess sufficient generalizability in order
to perform well on novel domains; second, the model needs
to be able to represent essay quality from different aspects
to be effective in scoring various essay traits.

In approaching the task of Automated Cross-prompt Scor-
ing of Essay Traits, we address two issues: first, partial cov-
erage of scores for traits across different prompts leads to
insufficient training data for certain traits. For example, it
may be the case that essays from only two prompts have
scores for the narrativity trait. As a result, a model trained
to award a score for this trait can be trained only on the es-
says from these two prompts. Second, there is a high degree
of relatedness between different traits. For example, an es-
say that scores well on the word choice dimension can also
be expected to score well on the conventions dimension.

To address the issue of limited training data that arises
from partial trait coverage, we introduce a multi-task ap-
proach named Cross-prompt Trait Scorer (CTS)1 that simul-
taneously predicts the overall score and the scores for all
traits. This enables the model to train on all data in the train-
ing set to learn a more robust representation. In order to ad-

1Our code is available at https://github.com/robert1ridley/cross-
prompt-trait-scoring.

dress the issue of inter-trait relationships, we design a trait-
attention mechanism, which learns to utilize the most rele-
vant trait information in predicting the score for each trait.

In summary, the contributions of this work are as follows:
• We introduce a new task named Automated Cross-prompt

Scoring of Essay Traits, which integrates cross-prompt es-
say scoring and essay trait scoring, two vital tasks in real-
world AES solutions.

• We design a novel approach named Cross-prompt Trait
Scorer (CTS), which utilises a multi-task approach to ad-
dress the issue of limited training data due to partial trait
coverage.

• We design a trait-attention mechanism to take advantage
of the relationships that exist between the different traits.

Related Work
Prompt-specific Holistic Scoring
Initial research in prompt-specific holistic essay scoring pri-
marily utilized handcrafted features combined with tradi-
tional machine learning algorithms. For instance, Rudner
and Liang (2002) explore using various word, phrase and
argument features in combination with two Bayesian-based
models; Chen and He (2013) use lexical, syntactic, grammar
and prompt-specific features in combination with a ranking-
based approach; and Miltsakaki and Kukich (2004) use co-
herence features in combination with the e-rater scoring sys-
tem (Burstein et al. 1998).

In recent years, neural-network-based approaches have
proven effective. The earliest such approach (Taghipour and
Ng 2016) uses one-hot encodings in combination with con-
volutional and recurrent layers. Other researchers have since
developed more sophisticated architectures, with Alikanio-
tis, Yannakoudakis, and Rei (2016) learning score-specific
word embeddings, Dong and Zhang (2016) representing es-
says at both word-level and sentence-level in a hierarchical
approach, Dong, Zhang, and Yang (2017) using an attention-
pooling mechanism to attend to the most relevant parts of the
text, and Tay et al. (2018) measuring similarity across differ-
ent sections of text to model coherence.

Prompt-specific Trait Scoring
For essays graded with the use of a rubric, providing feed-
back with regards to different traits can be of great use to
users. In the prompt-specific setting, a number of works have
explored automated scoring of different traits. For instance,
Persing, Davis, and Ng (2010) present a new annotated cor-
pus and utilize sequence-alignment, alignment-kernel and
string-kernel techniques to score essays according to the
quality of their organization; Wachsmuth, Al-Khatib, and
Stein (2016) also score essays in the organization dimen-
sion, which they perform through argument mining; and Ke
et al. (2018) address modeling argument persuasiveness and
the attributes of those arguments in student essays.

More recently, some works have explored methods to
award holistic overall scores as well as scores for multi-
ple attributes. Mathias and Bhattacharyya (2018) introduce
a new multi-trait dataset and use a random forest classifier;
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Figure 2: Architecture of both PAES (Ridley et al. 2020) on the left and our proposed CTS model (right)

Mathias and Bhattacharyya (2020) adapt some leading ap-
proaches for prompt-specific holistic scoring to the task of
trait scoring; and Hussein, Hassan, and Nassef (2020) also
adapt a leading prompt-specific holistic scoring method, em-
ploying a multi-task architecture to output the overall score
and scores for various traits simultaneously.

Cross-prompt Holistic Scoring
Obtaining a sufficient quantity of pre-graded essays to a
specific prompt is expensive and often not possible. There-
fore, it is necessary for AES systems to be able to per-
form well when trained on essays belonging to non-target
prompts. This necessity has given rise to research into cross-
prompt holistic essay scoring. Attali, Bridgeman, and Tra-
pani (2010) explore the use of non-content features with a
regression model. Other early works in this setting (Phandi,
Chai, and Ng 2015; Cummins, Zhang, and Briscoe 2016)
train models with large quantities of non-target-prompt and
a small quantity of target-prompt essays and perform trans-
fer learning to score target-prompt essays.

Some more recent research has explored cross-prompt
holistic scoring in the scenario where there is no access to
target-prompt essays. Jin et al. (2018) apply a two-stage ap-
proach, in which the first stage utilizes prompt-independent
features to award pseudo labels to target-prompt essays. In
the second stage, the pseudo-labeled essays are then used
as training data in a neural network which awards the fi-
nal scores. Ridley et al. (2020) apply a single-stage neural-
network-based method that utilizes a set of general features
to award scores to target-prompt essays.

One drawback of current research into cross-prompt es-
say scoring is that only scoring of the holistic dimension is
explored. Since feedback regarding different traits is also of
great value to users, we believe it is necessary to provide

scores for different traits in the cross-prompt setting. As a
result, we put forward a new task named Automated Cross-
prompt Scoring of Essay Traits, which we introduce in the
next section.

Task Definition
In Automated Cross-prompt Scoring of Essay Traits, all
training samples are non-target-prompt essays and belong
to the source domain DA = {xiA, Y iA}

NA
i=1, where NA is

the number of essays in DA. For testing, essays belong to
the target prompt and are within the target domain DB =

{xjB , Y
j
B}

NB
j=1, with NB being the number of essays in DB .

Traits for each essay belong to a possible trait set Y =
{y1, y2, ..., yM}, where y1 is the overall score. Each essay
in the training set possesses gold-label scores for a trait sub-
set Y iA ⊂ Y . Essays in DB all belong to the same prompt,
so YB ⊂ Y , and Y jB = YB for every j-th essay in DB .

Approach
Our approach builds on top of PAES (Ridley et al. 2020),
a leading method in cross-prompt AES. The architecture for
this method is displayed in the image on the left-hand side of
Figure 2. This approach uses part-of-speech (POS) embed-
dings to learn generalized syntactic representations. First, a
convolutional layer is applied to each sentence and attention
pooling is applied to achieve sentence-level representations.
Then, these representations are fed through a recurrent layer
implemented with an LSTM (Hochreiter and Schmidhuber
1997) followed by a second attention pooling layer to learn
the full essay representation. A set of non-prompt specific
features are then concatenated with the essay representation
before a linear layer with a sigmoid activation is applied to
predict a single score.
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This approach can be directly applied to our proposed task
in a naive fashion, whereby the model is trained on each
trait independently. This method, however, suffers from two
shortcomings. First, if a target trait is underrepresented in
the training data, then there will be insufficient data to train a
robust model. Second, the traits are not independent of each
other, but are in fact related. This naive approach does not
utilize any inter-trait relationships that exist.

To address these shortcomings, we design a model named
Cross-prompt Trait Scorer (CTS), which is depicted in the
image on the right-hand side of Figure 2. In consideration
for the issue of insufficient data due to partial trait cover-
age, our design applies a multi-task-based architecture. This
enables the model to train on all samples in the dataset in
order to learn a more robust encoder representation. To ad-
dress the inter-trait relationships issue, we implement shared
layers at the lower levels of the architecture followed by pri-
vate layers at the higher levels. The shared low-level layers
aim to learn low-level representations that are useful across
all tasks. Higher-level layers in multi-task architectures have
been shown to represent more complex information (Sanh,
Wolf, and Ruder 2019). Thus high-level private layers are
employed to learn more task-specific representations. In ad-
dition, to share information between traits more explicitly,
we design a trait-attention mechanism, which allows each
trait to focus on the relevant information from each of the
other traits. Details of our design are introduced in the fol-
lowing sections.

Shared Layers
The parameters in the lower layers of our model are shared
to enable the sharing of information relevant to all tasks.
As with Ridley et al. (2020), we first perform POS-tagging
on each sentence using the python NLTK2 package. The
POS-tagged words w1, w2, ..., wn in each sentence are then
mapped to dense embedding vectors x1, x2, ..., xn:

A 1D convolutional layer is then applied to the POS rep-
resentation for each sentence:

zi = f(Wz · [xi : xi+hw−1] + bz) (1)

where Wz is a trainable weights matrix, bz is a bias vec-
tor, and hw is the size of the convolutional window.

Attention pooling (Dong, Zhang, and Yang 2017) is then
applied to learn a sentence representation, shown in Equa-
tions 2, 3 and 4.

ai = tanh(Wa · zi + ba) (2)

ui =
ewu·ai∑
ewu·aj

(3)

s =
∑

uizi (4)

where Wa and wu are a weights matrix and weights vec-
tor, ba is a bias vector, ai and ui are the attention vector and
attention weight for the i-th word, and s is the final sentence
representation.

2http://www.nltk.org

Private Layers
In total, there are M tasks, and thus each private layer has
M separate copies. The first private layer is a recurrent layer,
which is implemented with an LSTM:

hjt = LSTM(st−1, st), t = 1, 2, ..., T (5)
where the inputs are sentence representations

{s1, s2, ..., sT } and hjt is the hidden representation for
the j-th task at time-step t.

A private attention-pooling layer is then applied to the
hidden representations:

ejt = tanh(Wj
e · h

j
t + bje) (6)

αjt =
ewjα·e

j
t∑

ewjα·ejk
(7)

oj =
∑

αjth
j
t (8)

where, for the j-th task, Wj
e and wjα are a weights matrix

and weights vector, bje is a bias vector, ejt and αjt are the
attention vector and attention weight for the t-th sentence,
and oj is the final essay representation.

As with PAES (Ridley et al. 2020), a non-prompt-specific
features set designed to represent the general essay quality
from various perspectives is extracted. We use the same fea-
tures as PAES in this case, including length-based, readabil-
ity, text-complexity, text variation, and sentiment-based fea-
tures. The features set is a vector f, which is concatenated
with the representation for each task:

cj = [oj ; f] (9)
where [; ] denotes the concatenation operation.
To obtain a final representation for each task, we apply

a trait-attention mechanism so that each trait can utilize
the relevant information from the other trait representations.
This mechanism is described by Equations 10 –13.

A = [c1, c2, ..., cM ] (10)

vji =
exp (score(cj , A−j,i))∑
l exp (score(cj , A−j,l))

(11)

pj =
∑

vjiA−j,i (12)

gj = [cj ; pj ] (13)
where A is a concatenation of the representations for each

task {c1, c2, ..., cM}, and vji , as calculated in Equation 11,
is the attention weight for the i-th trait. We then calculate at-
tention vector pj (Equation 12) through a summation of the
product of each weight vji and A−j,i. The final representa-
tion gj is a concatenation of cj and pj .

Finally, a linear layer with a sigmoid activation is applied
to the representation of each task, as shown in Equation 14.

ŷj = σ(wjy · gj + bjy) (14)

where ŷj is the predicted score for the j-th trait, σ is the
sigmoid function, wjy is a weights vector, and bjy is a bias.
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Set Num Essays Traits
1 1783 Content, Organization, Word Choice, Sentence Fluency, Conventions
2 1800 Content, Organization, Word Choice, Sentence Fluency, Conventions
3 1726 Content, Prompt Adherence, Language, Narrativity
4 1772 Content, Prompt Adherence, Language, Narrativity
5 1805 Content, Prompt Adherence, Language, Narrativity
6 1800 Content, Prompt Adherence, Language, Narrativity
7 1569 Content, Organization, Conventions
8 723 Content, Organization, Word Choice, Sentence Fluency, Conventions

Table 1: ASAP and ASAP++ dataset traits

Multi-task Training
Loss We use mean squared error (MSE) as our loss func-
tion. Given that there are N essays and M tasks, the loss is
calculated as follows:

loss(y, ŷ) =
1

NM

N∑
i=1

M∑
j=1

(ŷij − yij)2 (15)

Partial Trait Coverage Since the trait set for the i-th
training sample is a subset Y iA of the entire trait set Y , we
need to account for traits without gold scores when calculat-
ing the loss. To do this, we introduce a masking function:

∀j ∈ Y, maskij =

{
1, if Yj ∈ Y iA
0, otherwise

(16)

yi = yi ⊗maski (17)

ŷi = ŷi ⊗maski (18)

where Y is the set of all possible traits, and maskij ∈
[0, 1] for the j-th trait in the i-th essay. Through performing
an element-wise multiplication ofmaski with predictions ŷi
and yi, the trait-wise loss (ŷij − yij)2 from Equation 15 will
be 0 when there is no gold score for yij .

Experiment Settings
Datasets
In the past, a variety of datasets have been used for English
AES (Yannakoudakis, Briscoe, and Medlock 2011; Blan-
chard et al. 2013; Granger et al. 2011; Stab and Gurevych
2014). However, these are all relatively small-scale datasets.
In this work, our experimentation is carried out on the Auto-
mated Student Assessment Prize (ASAP)3 dataset. ASAP is
a large-scale dataset that was introduced as part of a Kag-
gle competition in 2012 and it has since become widely
used in prompt-specific AES (Alikaniotis, Yannakoudakis,
and Rei 2016; Taghipour and Ng 2016; Dong and Zhang
2016; Dong, Zhang, and Yang 2017; Tay et al. 2018) and
cross-prompt AES (Phandi, Chai, and Ng 2015; Cummins,
Zhang, and Briscoe 2016; Jin et al. 2018; Ridley et al. 2020)
research.

The ASAP dataset contains eight different essay sets, with
essays in each set responding to a different prompt. Each es-
say is awarded a human-rated score for the overall quality of

3The dataset is available at https://www.kaggle.com/c/asap-aes.

the essay, and the essays for Prompts 7 and 8 are addition-
ally awarded scores for a number of relevant traits according
to a scoring rubric.

Each trait has been graded by two raters. We calculate
a resolved score through a summation of these two scores,
rather than an average, in order to maintain integer values.

Since only Prompts 7 and 8 possess trait scores, we ad-
ditionally utilize the ASAP++ dataset (Mathias and Bhat-
tacharyya 2018), which builds on top of the original ASAP
dataset. The authors of ASAP++ provide scores for various
relevant traits for Prompts 1–6 to supplement the original
overall scores from ASAP.

The traits for each prompt are presented in Table 1, with
trait scores for Prompts 1–6 coming from the supplemented
ASAP++ dataset and the trait scores for Prompts 7 and 8
coming from the ASAP dataset. All overall scores are from
the original ASAP dataset.

One further piece of pre-processing we perform is to re-
move traits that appear in only one prompt, because when
this prompt is the target prompt, no training samples (i.e. es-
says from non-target-prompts) will possess scores for the
trait. In our case, we remove the unique traits style from
Prompt 7 and voice from Prompt 8. We leave the scoring
of novel traits for future work.

Cross Validation
Following research in cross-prompt holistic AES (Jin et al.
2018; Ridley et al. 2020), we perform prompt-wise cross
validation, whereby essays for one prompt are used as test
data and essays from the remaining prompts are used as
training data. This is repeated for each prompt. In each
case, the development set comprises essays from the same
prompts as the training set.

Evaluation
To evaluate the performance of our model, we use the
Quadratic Weighted Kappa (QWK) metric, which has been
widely-adopted in both holistic essay scoring and essay
trait scoring research (Alikaniotis, Yannakoudakis, and Rei
2016; Cummins, Zhang, and Briscoe 2016; Phandi, Chai,
and Ng 2015; Chen and He 2013; Dong and Zhang 2016;
Dong, Zhang, and Yang 2017; Jin et al. 2018; Ridley et al.
2020; Mathias and Bhattacharyya 2020; Hussein, Hassan,
and Nassef 2020) and is designed to measure the level of
agreement between two raters.
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Prompts
Model 1 2 3 4 5 6 7 8 Avg
Hi att 0.315 0.478 0.317 0.478 0.375 0.357 0.205 0.265 0.349
AES aug 0.330 0.518 0.299 0.477 0.341 0.399 0.162 0.200 0.341
PAES 0.605 0.522 0.575 0.606 0.634 0.545 0.356 0.447 0.536
CTS no att 0.619 0.539 0.585 0.616 0.616 0.544 0.363 0.461 0.543
CTS 0.623 0.540 0.592 0.623 0.613 0.548 0.384 0.504 0.553

Table 2: Average QWK scores across all traits for each prompt on ASAP/ASAP++ dataset

Traits
Model Overall Content Org WC SF Conv PA Lang Nar Avg
Hi att 0.453 0.348 0.243 0.416 0.428 0.244 0.309 0.293 0.379 0.346
AES aug 0.402 0.342 0.256 0.402 0.432 0.239 0.331 0.313 0.377 0.344
PAES 0.657 0.539 0.414 0.531 0.536 0.357 0.570 0.531 0.605 0.527
CTS no att 0.659 0.541 0.424 0.558 0.544 0.387 0.561 0.539 0.605 0.535
CTS 0.670 0.555 0.458 0.557 0.545 0.412 0.565 0.536 0.608 0.545

Table 3: Average QWK scores across all prompts for each trait on ASAP/ASAP++ dataset: Due to space limitations, some trait
names have been simplified—Org refers to organization, WC to word choice, SF to sentence fluency, Conv to conventions, PA
to prompt adherence, Lang to language and Nar to narrativity.

Baselines
We compare our approach with four strong baselines, each
of which is described below:

• Hi att: This model is a leading prompt-specific holis-
tic scoring model (Dong, Zhang, and Yang 2017) and is
the best performing model tested by Mathias and Bhat-
tacharyya (2020) for prompt-specific trait scoring. The
model captures the hierarchical structure of the essays
and utilises a convolutional layer with attention pooling
to capture sentence-level representations followed by a
recurrent layer and another attention pooling layer to cap-
ture the essay-level representation. As with Mathias and
Bhattacharyya (2020), we use a single-task architecture,
training the model on each trait individually.

• AES aug: This model (Hussein, Hassan, and Nassef 2020)
is a trait-scoring model, which converts the holistic scor-
ing model from Taghipour and Ng (2016) into a multi-task
approach through adding a linear layer for each trait on
top of the original encoder from Taghipour and Ng (2016).

• PAES: This is a leading cross-prompt holistic scoring
model (Ridley et al. 2020) and is the model on which our
approach is based. The architecture is depicted in the left-
hand-side image of Figure 2. As with Hi att, training is
performed on each trait individually.

• CTS no att: This model uses the multi-task architecture
of our CTS model, utilizing the shared- and private-layer
architecture as depicted in the right-hand-side image of
Figure 2, but without the use of the trait-attention mecha-
nism.

Implementation Details
We first convert all the words into lower case and tok-
enize them using NLTK tokenizer. For the Hi att and AES
aug models, we use 50-dimension pre-trained GloVe word

embeddings (Pennington, Socher, and Manning 2014). For
PAES, CTS no att and CTS, we learn 50-dimension POS em-
beddings.

Optimization for all models is carried out with the RM-
Sprop algorithm (Dauphin, de Vries, and Bengio 2015) with
the learning rate set to 0.001.

We train all models for a total of 50 epochs. For the single-
task approaches, the best epoch is the epoch for which the
development dataset has the highest QWK score for the tar-
get trait. We then report the QWK score for the test set on
the same epoch. For multi-task approaches, we consider all
traits to be equally important so the best epoch is determined
by taking the highest mean QWK score over all traits.

All models are implemented with Tensorflow4 in Python.
We run each model five times on an NVIDIA5 GeForce GTX
1080 graphics card; we report the mean scores across the five
runs.

Results and Analyses
We report the results for our experiments across two dimen-
sions. In Table 2, we display the average score across all
traits for each prompt, and in Table 3 we display the average
score across all prompts for each trait.

From looking at both Tables 2 and 3, we can see that the
two prompt-specific trait-scoring models (Hi att and AES
aug) both perform poorly across both dimensions. This is
due to the fact that these models are not designed for cross-
prompt scoring and thus they both overfit considerably.

When we compare the three cross-prompt models, we can
see that CTS outscores both PAES and CTS no att on all but
Prompt 5 (Table 2) and also that the multi-task approach CTS
no att performs better than the single-task approach PAES on
most prompts. This is due to the fact that PAES is unable to

4https://www.tensorflow.org/
5https://www.nvidia.com/
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Traits
Model Overall Content Organisation Word Choice Sent Fluency Conventions Avg
PAES 0.593 0.576 0.496 0.480 0.534 0.453 0.522
CTS no att 0.578 0.558 0.498 0.544 0.567 0.488 0.539
CTS 0.617 0.518 0.514 0.534 0.567 0.488 0.540

Table 4: Average QWK scores for Prompt 2 for each trait on ASAP/ASAP++ dataset

Figure 3: Attention weights for all traits when predicting
overall score for Prompt 3

Figure 4: Attention weights for all traits when predicting the
language score for Prompt 3

utilize the full training dataset, as it can only train on sam-
ples for which there is a gold score for the target trait. This
is not the case for either CTS no att or CTS, which, due to
their multi-task architectures, are able to utilize all samples
in the training set.

Effect of Limited Number of Samples for Target
Traits
Something that seems to have an impact on the performance
of the PAES model is the number of training data avail-
able. Displayed in Table 4 is the performance for each of
the traits of Prompt 2 for PAES, CTS no att and CTS. In
this table, there are two traits, Word Choice and Sentence
Fluency, which appear in only two other prompts. As a re-
sult, the single-task-based approach is only able to train on
2129 essays of the 9499 essays in the training set when scor-
ing these particular traits. This leads to the performance for
these two traits being significantly reduced when compared
with the other two models.

Effect of Trait Attention
In order to gain some insight into the workings of our trait-
attention mechanism, we visualize the attention weights. In
Figure 3, the attention weights are displayed for all traits
when predicting the overall score for Prompt 3. This is a
holistic score, which should consider the quality of the essay
from a variety of different aspects. From the image, we can
see that the attention is distributed fairly evenly throughout
the traits, without any one trait having a significantly higher
score than the others.

In contrast, Figure 4 displays the trait attention weights
when predicting the language score for Prompt 3. This is a
specific and more focused trait than the overall score. Here,
we can see that the attention weights for most traits are fairly
low, except for the trait word choice, which is closely related
to language, and has a considerably higher weight than the
others.

Conclusion and Future Work
To address the needs of real-world AES systems, namely
that there is a need to be able to score essays to novel
prompts and that feedback across different trait dimensions
is desirable for users, we introduce a new AES task named
Automated Cross-prompt Scoring of Essay Traits.

In addition, we introduce a new method called Cross-
prompt Trait Scorer (CTS) that utilizes a multi-task archi-
tecture with shared and private layers along with a trait-
attention mechanism to address the issues of limited training
data for certain traits in the cross-prompt setting and inter-
trait relationships.

Given that in this paper we choose not to address the issue
of scoring novel traits, we believe that our work could fur-
ther be improved by exploring methods of scoring unseen
traits. We leave this task for future work in the domain of
Cross-prompt Scoring of Essay Traits.
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