
Nutri-bullets: Summarizing Health Studies by Composing Segments

Darsh J Shah,1 Lili Yu,2 Tao Lei,2 Regina Barzilay1

1Computer Science and Artificial Intelligence Lab, MIT
2ASAPP, Inc.

darsh@csail.mit.edu, liliyu@asapp.com, tao@asapp.com, regina@csail.mit.edu

Abstract

We introduce Nutri-bullets, a multi-document summarization
task for health and nutrition. First, we present two datasets
of food and health summaries from multiple scientific stud-
ies. Furthermore, we propose a novel extract-compose model
to solve the problem in the regime of limited parallel data.
We explicitly select key spans from several abstracts using a
policy network, followed by composing the selected spans to
present a summary via a task specific language model. Com-
pared to state-of-the-art methods, our approach leads to more
faithful, relevant and diverse summarization – properties im-
perative to this application. For instance, on the BreastCancer
dataset our approach gets a more than 50% improvement on
relevance and faithfulness.1

1 Introduction
Multi-document summarization is essential in domains like
health and nutrition, where new studies are continuously re-
ported (see Figure 1). Websites like Healthline.com2

are critical in making food and nutrition summaries avail-
able to web users and subscribers. Such summaries provide
a collective view of information – a crucial property, espe-
cially when the consumption of such knowledge leads to
health related decisions. In the current environment, it is crit-
ical to provide users with the the latest health related find-
ings. Unfortunately, summarization is time consuming and
requires domain experts.

Through the introduction of Nutri-bullets, a multi-
document summarization task, we aim to automate this
summarization and expand the availability and coverage of
health and nutrition information.

Recently, summarization has been predominantly solved
by training sequence-to-sequence (seq2seq) models (Rush,
Chopra, and Weston 2015; Vaswani et al. 2017; Hoang et al.
2019; Lewis et al. 2019). In the multi-document setting, pop-
ular seq2seq methods either concatenate all input documents
as a single source or consider a hierarchical setting (Liu et al.
2018). While such methods generate fluent text, in our case,
they fail to produce content faithful to the inputs (examples

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Our code and data is submitted and will be made publicly
available on acceptance.

2https://healthline.com

Figure 1: Our model’s extract-compose summary describing
impacts of whole grains on cancer. Segments from multiple
scientific studies are composed to present the output.

Figure 2: Examples of unfaithful summaries generated by
seq2seq models trained on the HealthLine dataset. Such fic-
titious texts (red) can be extremely misleading for readers.

shown in Figure 2). Two factors make Nutri-bullets particu-
larly challenging for seq2seq models: (i) The concatenation
of health documents constitutes long sequences with key in-
formation being scattered making composing a good sum-
mary extremely difficult; and (ii) While a vast number of sci-
entific abstracts are available in libraries such as Pubmed3,
a very limited number of summaries, ranging from several
hundreds to a few thousands, are available to train a summa-
rization system.

In this paper, we present a novel and practical approach
which learns to extract and compose knowledge pieces from
scientific abstracts into a summary. We side-step the scarcity
of parallel data by focusing on knowledge-extraction from
scientific abstracts, made possible by modules trained on
such crowd-sourced annotations. Furthermore, our model
learns to select a subset of knowledge pieces well-suited for
a summary, from a large pool. The selection is performed
through a multi-step framework, guided by reinforcement
learning and distant supervision from limited available par-

3https://pubmed.ncbi.nlm.nih.gov/
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allel data.
While considering the extracted text as inputs to a seq2seq

model already makes the learning-to-generate process eas-
ier, we further explore an alternative approach to compose
the extracted text into a complete summary using a text in-
filling language model. Once key spans are selected from
different documents, they are fused using a task specific lan-
guage model (Shen et al. 2020) as illustrated in Figure 3.
The fusion of separate yet related spans through genera-
tion is critical in producing meaningful and readable sum-
maries.4

We conduct human and empirical evaluation to compre-
hensively study the applicability and quality of these ap-
proaches. While seq2seq models enjoy high fluency scores,
the extract-compose method performs much stronger on
metrics such as content, relevance, faithfulness and infor-
mativeness. Our method is particularly dominant in scenar-
ios with scarce parallel data, since our model requires lit-
tle summary data for training. For instance, on the Breast-
Cancer dataset, humans rate the extract-compose model’s
summaries more than 50% higher for relevance and faith-
fulness than the next best baseline. Comparison with strong
baselines and model ablation variants highlights the ne-
cessity of a distant supervision and reinforcement learning
based multi-step approach, in selecting key ordered spans
amongst several possible combinations, for text composi-
tion. Our contributions are threefold:
(i) We collect two new nutrition and health related datasets
for multi-document summarization. We also collect large-
scale knowledge extraction annotations, applicable to nu-
merous tasks.
(ii) We demonstrate the effectiveness of our modelling ap-
proach for generating health summaries given limited par-
allel data. Our approach strongly outperforms all baselines
and variants on human and automatic evaluation.
(iii) We conduct comprehensive (human and automatic)
evaluation focusing on content relevance, faithfulness and
informativeness – metrics more relevant to the task. These
set new benchmarks to critically evaluate summaries in high
impact domains.

2 Related Work
Multi-document Summarization Approaches in neural
sequence-to-sequence learning (Rush, Chopra, and Weston
2015; Cheng and Lapata 2016; See, Liu, and Manning 2017)
for document summarization have shown promise and have
been adapted successfully for multi-document summariza-
tion (Zhang, Tan, and Wan 2018; Lebanoff, Song, and Liu
2018; Baumel, Eyal, and Elhadad 2018; Amplayo and La-
pata 2019; Fabbri et al. 2019). Trained on large amounts of
data, these methods have improved upon traditional extrac-
tive (Carbonell and Goldstein 1998; Radev and McKeown
1998; Haghighi and Vanderwende 2009) and abstractive ap-
proaches (Barzilay, McKeown, and Elhadad 1999; McKe-
own and Radev 1995; Ganesan, Zhai, and Han 2010). De-

4Our analysis shows that 91% of all produced tokens are from
extracted components. The generated words allow fusion and co-
hesion.

spite producing fluent text, these techniques also tend to
generate false information which is not faithful to the origi-
nal inputs (Puduppully, Dong, and Lapata 2019; Kryściński
et al. 2019). Side-information, such as citations in scientific
domains (Qazvinian and Radev 2008; Qazvinian et al. 2013)
or semantic representations (Liu et al. 2015), can be used to
improve this (Sharma et al. 2019; Wenbo et al. 2019; Pudup-
pully, Dong, and Lapata 2019; Koncel-Kedziorski et al.
2019a). However, such methods struggle in low resource
scenarios. In this work, we are interested in producing faith-
ful and fluent text in a technical domain where few parallel
examples are available.

Text Fusion Traditionally, sentence fusion ap-
proaches (Barzilay and McKeown 2005) aid the concatena-
tion of different text fragments for summarization. Recent
language modeling approaches like Devlin et al. (2018);
Stern et al. (2019) can also be extended for completion and
fusion of partial text. These models have more flexibility
than those trained on text fusion datasets (Narayan et al.
2017; Geva et al. 2019) that can combine two fragments
only. In this work, we modify the Blank Language Model
(Shen et al. 2020) to combine fragments coming from
different source documents.

Deep Reinforcement Learning for Text Summariza-
tion The inherent discrete and sequential nature of text gen-
eration tasks has made optimizing generation models with
reinforcement learning (Sutton and Barto 2018) very popu-
lar (Keneshloo et al. 2019). Typically, automatic evaluation
metrics, like BLEU (Papineni et al. 2002) or ROUGE (Lin
2004), are used to provide the reward signal to train re-
inforcement learning algorithms in translation (Wu et al.
2018), summarization (Paulus, Xiong, and Socher 2017; Pa-
sunuru and Bansal 2018; Chen and Bansal 2018; Xu et al.
2019) and question generation (Zhang and Bansal 2019)
tasks. In this work, we are interested in using reinforcement
learning to iteratively, select an explicit ordered subset of
text phrases for downstream fusion.

3 Method
In this section, we describe the framework of our extract-
compose solution for nutri-bullets. Our goal is to produce
a text summary y for a food item from a pool of multiple
scientific abstracts X .

3.1 Extract-compose Framework
We attain food health entity-entity relations, for both input
documentsX and the summary y, from entity extraction and
relation classification modules trained on corresponding an-
notations(Table 1).

For input documents, we collect {(xp,Gp)Np=1}, where xp
is the sentence text and Gp is the set of entity-entity re-
lations, in N sentences and X = {xp} is the raw text.
Gp = {(eki , ekj , rk)K} is composed of K ∈ {0, 1, 2, . . . }
tuples of two entities ei, ej and their relation r. r represents
relations such as the effect of a nutrition entity ei on a con-
dition ej (see Table 1). 5

5We train an entity tagger and relation classifier to predict G
and also for computing knowledge based evaluation scores.
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Flaxseed extract may improve heart health by 
lowering cholesterol and triglycerides. …

(i) Sentences from multiple 
Scientific Abstracts

(ii) Knowledge span 
extraction (iii) Selection for summarization P(C|Z)X P(Z|X)

(iv) Text fusion and generation P(y|C)

Figure 3: Illustrating the flow of our extract-compose system. (i) We begin with multiple scientific abstracts to summarize from;
(ii) We extract knowledge spans as possible candidates for generation; (iii) We select key spans (”improve heart health by
lowering cholestrol and triglycerides” in this case) from all possible candidates and (iv) Present a summary sentence using the
spans and a domain specific language model.

Similarly, we denote the summary data as {(yq,Gq)Mq=1},
where yq is a concise summary and Gq is the set of entity-
entity relation tuples, in M summaries.

Joint learning of content selection, information aggrega-
tion and text generation for multi-document summarization
can be challenging. This is exacerbated in our technical do-
main with few parallel examples. We propose to overcome
these challenges by first learning to extract and then com-
posing the informative text pieces.

We model two intermediate variables, distilled text spans
Z associated with all entity-entity relation information G,
and the key content C selected from them.

The probability of an output summary y, conditioned on
the input X is

P (y|X) =
∑
C,Z

P (y|C)P (C|Z)P (Z|X) (1)

Where: (i) P (Z|X) models a knowledge extraction pro-
cess gathering all entity-entity relations and corresponding
text spans, G; (ii) P (C|Z) models the process of selecting
an important subset from all extracted text spans and (iii)
P (y|C) models the text fusion process that composes fluent
text incorporating the extracted content.

3.2 Span Extraction P (Z|X)

We model P (Z|X) as a span extraction task leveraging a ra-
tionale extraction system (Lei, Barzilay, and Jaakkola 2016).
The extraction model picks the fewest words from the input
necessary to make the correct relation label prediction for
an entity pair. Let (ei, ej , r) be one entity relationship tuple,
x be the associated sentence text and z be the considered
rationale text span. P (Z|X) is trained to minimize the loss:

L = L(z, r) + L(z) + L(z, ei, ej) (2)

. WhereL(z, r) is the cross entropy loss for predicting r with
z as the extracted text. L(z) is a regularization term to select
short and coherent text, by minimizing the span lengths and
discontinuities among the spans. In addition to prior work,
we introduced L(z, ei, ej) to encourage the selection of

phrases that contain entities ei and ej . Specifically, we con-
struct verb phrases (from constituency parse trees) contain-
ing the condition entity, and minimize the distance between
the selected text span z and the verb phrase. Empirically, this
loss stabilizes the span extraction and improves the quality
of selected text spans, using r labels as indirect supervision
as in Shah, Schuster, and Barzilay (2019). By running the
extraction model on every (ei, ej , r) tuple, we distill the in-
put text into a set of text spans Z = {z1, z2, . . . , zm}.

3.3 Content Selection Policy Network P (C|Z)
P (C|Z) is a policy network, that takes a large set of text
spans Z as input, and outputs C, an ordered set of key text
spans. We model our content selection as a finite Markov
decision process (MDP). Where the state is represented as
st = (t, {c1, . . . , ct}, {z1, z2, ..., zm−t}) for step t, con-
tent selected so far {c1, . . . , ct} and remaining text spans
{z1, z2, ..., zm−t}. Our action space is all the remaining text
spans plus one special token, Z ∪ {STOP}. The number of
actions is |m− t|+ 1. We parameterize the policy πθ(a|st)
with a neural network to map the state s to a probability dis-
tribution over all available actions. At each step, the proba-
bility that the policy selects zi as a candidate is:

πθ(a=zi|st) =
exp(f(t, ẑi, ˆci∗))∑m−t+1

j=1 exp(f(t, ẑj , ˆcj∗))
(3)

where ci∗ = argmaxcj (cos(ẑi, ĉj)) is the selected con-
tent closest to zi, ẑi and ˆci∗ are the encoded dense vectors,
cos(u, v) = u·v

||u||·||v|| and f is a feed-forward neural net-
work that outputs a scalar score. The selection process be-
gins from Z. Our module iteratively samples actions from
πθ(a|st). On picking STOP, we end with the selected con-
tent C and a corresponding reward. Our rewards guide the
selection of informative, diverse and readable phrases:

• Re =
∑
c∈C cos(êic, êiy) + cos(êjc, ˆejy) is the cosine

similarity of the structures of the selected content C with
the structures present in the gold summary y (each gold
summary structure accounted with only one c), encourag-
ing the model to select relevant content.
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• Rd = 1[maxi,j(cos(ĉj , ĉi)) < δ] computes the similarity
between pairs within selected content C, encouraging the
selection of diverse spans.

• Rs =
∑
c 1[

M∑
q=1

cos(ĉ, ŷq) >
M∑
q=1

cos(ẑ′, ŷq)], where z′

is a text span randomly sampled from scientific abstract
corpus, predicts if c is closer to a human summary than
a random abstract sentence, encouraging the selection of
concise spans and ignoring numerical details.

• Rm is the Meteor (Denkowski and Lavie 2014) score be-
tween the final selection with the gold summary, a sig-
nal which can only be provided at the completion of the
episode.

• rp is a small penalty for each action step.

The final multi-objective reward is computed as

R = weRe+wdRd + wsRs + wmRm − |C|rp, (4)

where, we, wd, ws, wm and rp are hyper-parameters. Dur-
ing training, the network is updated with these rewards. Our
paradigm allows an exploration of different span combina-
tions while incorporating delayed feedback.

3.4 Text Fusion P (y|C)
The text fusion module, P (y|C), composes a complete sum-
mary using the text spans C selected by the policy network.

We propose to utilize the recently developed Blank Lan-
guage Model (BLM) (Shen et al. 2020), which fills in the
blanks by iteratively determining the word to place in a
blank or adding a new blank, until all blanks are filled. The
model is trained on the WikiText-103 dataset (Merity et al.
2016).

We extend this model with additional categorical blanks
between different text spans in C, according to their rela-
tion type. This ensures control over facts and relations cap-
tured from the scientific abstracts X to present a semanti-
cally valid and fluent summary (details see Appendix).

In the Transformer variant of the model, we train a
seq2seq P (y|C) using the limited parallel data.

4 Data
In this section, we describe the dataset collected for our
Nutri-bullet system.

4.1 Corpus Collection
Our Healthline6 and BreastCancer7 datasets consist of sci-
entific abstracts as inputs and human written summaries as
outputs.

Scientific Abstracts We collect 7750 scientific abstracts
from Pubmed and the ScienceDirect, each averaging 327
words. The studies in these abstracts are cited by domain ex-
perts when writing summaries in the Healthline and Breast-
Cancer datasets. A particular food and its associated ab-
stracts are fed as inputs to our Nutri-bullet systems. We
exploit the large scientific abstract corpus when gathering

6https://www.healthline.com/nutrition
7https://foodforbreastcancer.com/

entity, relation and sentiment annotations (see Table 3) to
overcome the challenge of limited parallel examples. Mod-
ules trained on these annotations can be applied to any food
health scientific abstract.

Summaries Domain experts curate summaries for a gen-
eral audience in the Healthline and BreastCancer datasets.
These summaries describe nutrition and health benefits of a
specific food (examples shown in Appendix). In the Health-
Line dataset, each food has multiple bullet summaries,
where each bullet typically talks about a different health
impact (hydration, anti-diabetic etc). In BreastCancer, each
food has a single summary, describing in great detail its im-
pact on breast and other cancers.

Parallel Instances The references in the human writ-
ten summaries form natural pairings with the scientific ab-
stracts. We harness this to collect 1894 parallel (abstracts,
summary) instances in HealthLine, and 141 parallel in-
stances in BreastCancer (see Table 2). Summaries in Health-
Line average 24.46 words, created using an average of 3 ar-
ticles. Summaries in BreastCancer have an average length of
155.71 words referencing an average of 18 articles. Unsur-
prisingly, BreastCancer is the more challenging of the two.

4.2 Entity, Relation and Sentiment Annotations
Despite having a small parallel data compared to Hermann
et al. (2015); Narayan, Cohen, and Lapata (2018), we con-
duct large-scale crowd-sourcing tasks to collect entity, re-
lation and sentiment annotations on Amazon Mechanical
Turk. The annotations (see Table 3) are designed to capture
the rich technical information ingrained in such domains,
alleviating the difficulty of multi-document summarization
and are broadly applicable to different systems (Koncel-
Kedziorski et al. 2019b).

Entity and Relation Annotations Workers identify food,
nutrition, condition and population entities by highlighting
the corresponding text spans.

Given the annotated entities in text, workers are asked to
enumerate all the valid relation tuples (ei, ej , r). Table 1 lists
possible combinations of ei, ej and r for each relation type,
along with some examples.

The technical information present in our domain can
make annotating challenging. To collect reliable annota-
tions, we set up several rounds of qualification tasks 8, offer
direct communication channels to answer annotators’ ques-
tions and take majority vote among 3 annotators for each
data point. As shown in Table 3, we collected 91K entities,
34K pairs of relations, and 7K sentiments9. The high value
of mean Cohen’s κ highlights high annotator agreement for
all the tasks, despite various challenges.

Food Health Sentiment Additionally, we also collect
food sentiment annotations for evaluating our system. Food
health sentiment (positive, negative, neutral) indicates the

8To set up the qualification, the authors first annotate tens of
examples which serve as gold answers. We leverage Mturk APIs to
grade the annotation by comparing with the gold answers.

9For BreastCancer, we use the entity tagger and relation clas-
sifier finetuned on scientific abstracts and HealthLine datasets to
extract the entities and relations.
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Relation Type ei ej r Example

Containing Food, Nutrition Nutrition Contain (apple, fiber, contain)

Causing Food, Nutrition,
Condition Condition Increase, Decrease,

Satisfy, Control
(bananas, metabolism, increase),
(orange juice, hydration, satisfy)

Table 1: Details of entity-entity relationships that we study and some tuple examples.

Data Train Dev Test
Input Scientific Abstracts 6110 750 866
Average words 327.7 323.3 332.3
HealthLine summaries 1522 179 193
Average words 24.7 23.3 23.9
Abstracts Per Instance 3.19 2.82 3.43
BreastCancer summaries 104 18 19
Average words 161.4 131.6 148.1
Abstracts Per Instance 18.90 17.21 17.67

Table 2: Statistics for scientific abstracts, HealthLine and
BreastCancer datasets.

Data Task # annotations mean κ
Scientific entity 83543 0.75
Abstracts relation 28088 0.79, 0.81

sentiment 5000 0.65

HealthLine entity 7860 0.86
relation 5974 0.73, 0.90

sentiment 2000 0.89

Table 3: Entity, relation and sentiment annotation statistics.
Each annotation is from three annotators. Mean κ is the
mean pairwise Cohen’s κ score.

kind of impact the food has on human health. The annota-
tion is performed at a sentence level, and modules trained
on this data are used to assess the contrastiveness in a food’s
summary bullets.

Annotation interfaces, instructions as well as more data
details can be found in Appendix.

5 Experimental Setup
Datasets We randomly split both HealthLine and Breast-
Cancer datasets into training, development and testing
sets(see Table 2).

Evaluation The subjective nature of summarization de-
mands human judgements to comprehensively evaluate
model performance. We have human annotators score our
models on faithfulness, relevance, fluency and informative-
ness. Given input scientific abstracts, faithfulness character-
izes if the output text is consistent with the input. Given
a reference summary, relevance indicates if the output text
shares similar information. Fluency represents if the output
text is grammatically correct and written in well-formed En-
glish. Informativeness characterizes the degree of health re-
lated knowledge conveyed by the summaries.10

10On the HealthLine datasets, each food article contains multiple
bullet summaries. We group these bullet summaries per food for
annotator comparison. For BreastCancer, a single summary output

Annotators rate faithfulness, relevance and fluency on a
1-4 scale likert score, which is commonly used as a stan-
dard psychometric scale to measure responses in social sci-
ence and attitude research projects (Croasmun and Ostrom
2011; Li 2013; Sullivan and Artino Jr 2013). For rating in-
formativeness, we perform a one-vs-one evaluation between
our model and the strong Transformer baseline (Hoang et al.
2019). We have 3 annotators score every data point and take
an average across the scores.

We further evaluate our systems using the following auto-
matic metrics. Meteor is an automatic metric used to com-
pare the model output with the gold reference. KG(G) com-
putes the number of entity-entity pairs with a relation in the
gold reference, that are present in the output.11 This cap-
tures relevance in context of the reference. KG(I), similarly,
computes the number of entity-entity pairs in the output that
are present in the input scientific abstracts. This measures
faithfulness with respect to the input documents. Diversity
calculates the proportion of unique trigrams in the outputs
(Li et al. 2016; Rao and Daumé III 2019). Contrastiveness
calculates the proportion of article summaries belonging to
the same food that contain both positive and negative/neutral
sentiment about a food’s health impact.

Baselines We compare our method against several state-
of-the-art methods.
• Copy-gen: See, Liu, and Manning (2017) is a top perform-

ing technique for summarization, which can copy words
from the input or generate new words.

• Transformer: Hoang et al. (2019) is a system that utilizes
a pretrained Transformer for summarization.

• GraphWriter: Koncel-Kedziorski et al. (2019b) is a graph
transformer based model, which generates text using a
seed title and a knowledge graph. This model utilizes all
the extraction capabilities used by our P (Z|X) module.

In addition, we study variants of our model (1) replacing
BLM with a transformer text fusing model – Ours (Trans-
former), (2) replacing the policy gradient selector with a
fully supervised selector trained on knowledge structure in-
formation (Select w/ Sup.), and (3) different reward combi-
nations. Further, we compare our system with a BERT-based
Extractive Summarization system.

Implementation Details We adapt the implementation of
span extraction from Bao et al. (2018). Our policy network

is a food’s complete summary.
11We run entity tagging plus relation classification on top of the

model output and gold summaries. We match the gold (egi , e
g
j , r

g)
tuples using word embedding based cosine similarity with the cor-
responding entities in the output structures (eoi , e

o
j , r

o). If the co-
sine score exceeds a threshold of 0.7, a match is found.
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BreastCancer HealthLine 
Faithfulness Relevance Fluency Faithfulness Relevance Fluency

1 2 3 4

Ours (BLM)

Ours (Transformer)

Transformer

Copy-Gen

GraphWriter

0

Figure 4: Human evaluation Gantt charts showing ratings on faithfulness, relevance and fluency for both BreastCancer and
HealthLine datasets, where Ours (BLM) – extract-compose model strongly outperforms all others. Each example is rated by
three judges and the mean is reported.

BreastCancer HealthLine

Better 94 % 75 %
Worse 6 % 25 %

Table 4: Human evaluation on informativeness of Ours
(BLM) when comparing to Transformer.

is a three layer feedforward neural network. We set we, wd
andws to 1 andwm to 0.75. rp is 0.02 and δ is 0.99. We use a
large, 6 layer BLM (Shen et al. 2020) for fusion. Additional
experimentation details can be found in the Appendix .

We train a Neural CRF tagger (Yang and Zhang 2018)
for the food, condition and nutrition entity tagging. We use
BERT (Devlin et al. 2018) text classifiers to predict the rela-
tion between two entities, and to predict food sentiments of
a summary, trained using annotations from Table 3.

6 Results
In this section, we describe the performance of Nutri-bullet
systems (baselines and models) on the HealthLine and
BreastCancer datasets. We also report ablation studies, high-
lighting the importance of our policy network’s ability to ex-
plore different span combinations, while incorporating long
term rewards from distant supervision.

Human Evaluation Figure 4 and Table 4 report the hu-
man evaluation results of our model and baselines on the test
set of both datasets.

Our method outperforms all other models by a large mar-
gin on faithfulness, owing to the extraction and controlled
text generation process. Our method is also rated the high-
est on relevance (3.11 & 3.19), demonstrating its ability to
select the important and relevant content consistently, even
with little supervision. Our model produces fluent text.

On the contrary, despite being fluent, transformer mod-
els fail to generate faithful content. They achieve decent av-
eraged relevance scores (≈2.9) on the HealthLine dataset.
However, annotators rate them a score 1 far more often,12

due to hallucinated content and factually incorrect outputs.
Copy-gen and GraphWriter struggles to score high on

either of our metrics, showing the challenges of learn-
ing meaningful summaries in such a low-resource and

12Annotators rate transformer with score 1 6 times and
ours(transformer) 3 times more often than BLM model.

knowledge-rich domain.
Finally, we evaluate if our output text can benefit the

reader and provide useful nutritional information about the
food being described. In our human evaluation of informa-
tiveness, we outperform 94%-6% and 75%-25% against the
Transformer baseline on BreastCancer and HealthLine re-
spectively.

Automatic Evaluation Table 6 presents the automatic
evaluation results on BreastCancer and HealthLine datasets.

High KG(I) (52% & 40%) and KG(G) (96% & 88%)
scores for our method highlight that our produced text is
faithful and relevant, consistent with human evaluation. Ad-
ditionally, high diversity (91% & 90%) and contrastiveness
(94% & 83%) scores indicate that our model is also able to
present distinct (across sentiment and content) information
for the same food.

In contrast, the sequence-to-sequence based methods tend
to get a higher Meteor score with a lower diversity, sug-
gesting that they repeatedly generate similar outputs, regard-
less of the input text. Low KG scores show that they fail to
capture the relevant or faithful text, which is crucial in this
domain. Among these, our transformer variation performs
strong, especially on the BreastCancer dataset. This was also
observed in Liu and Lapata (2019), where abstractive sum-
marization fed with only a subset of the input sentences out-
performed vanilla abstractive summarization.

Case Study Table 5 shows examples of various system
outputs on HealthLine. The food name and titles of corre-
sponding scientific abstracts are also presented. We observe
that Transformer, GraphWriter and Copy-gen fail to gener-
ate meaningful summaries that are faithful to the original
input text. With carefully selected knowledge, our (trans-
former) and our (BLM) both produce relevant and useful in-
formation. Ours (transformer) generates concise and easier
language. Ours (BLM) composes faithful text with rich de-
tails, for example, it captures ”anti-aging properties”, which
is relevant to ”free radicals” in the gold summary. Detailed
analysis shows that 91% of all produced tokens by our model
are from the extracted segments – critical for faithful sum-
marization. The words generated in between allow cohe-
sive fusion. Examples from the BreastCancer dataset can be
found in the Appendix. Additional model outputs with hu-
man evaluation scores can be found in Appendix.
P (C|Z) Variants To further understand our model, we

implement an alternative content selection method, using
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Food banana
Pubmed
Titles

(1) High content of dopamine a strong antioxidant, in Cavendish banana; (2) Flavonoid intake and risk of CVD: a
systematic review and meta-analysis of prospective cohort studies; (3) Antioxidants in health, disease and aging; (4)
Banana(Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human
health.

Gold Bananas are high in several antioxidants, which may help reduce damage from free radicals and lower your risk of some
diseases.

Copy-gen Seaweed contain several compounds that can reduce feelings of fullness and prevent fullness hormones, that are needed
to health health benefits.

GraphWriter The type of insoluble fiber found in banana banana may help reduce blood sugar levels and help lower blood pressure.
Transformer The antioxidants in walnuts may help lower blood pressure in people with type 2 diabetes.
Ours (Trans.) Bananas are a rich source of antioxidants, which may help reduce the risk of many chronic diseases.
Ours (BLM) Bananas are used to help overcome or prevent a substantial number of illnesses , as depression and bananas containing

antioxidants may lower the incidence of disease , such as certain cancers , cardiovascular and neurodegenerative diseases
, DNA damage , or even have anti-aging properties .

Table 5: Example outputs for a HealthLine input.

BreastCancer HealthLine

Model Me KG(G) KG(I) Di Co Me KG(G) KG(I) Di Co

Copy-gen 14.0 21 23 70 0† 7.4 21 51 82 43
GraphWriter 10.1 0 † 0† 16 0† 7.6 3 69 31 25
Transformer 13.0 31 11 76 66 10.2 21 67 53 28

Ours (Tranformer) 15.0 49 13 81 50 10.3 23 64 55 28
Ours (BLM) 13.8 52 96 91 94 8.7 40 88 90 83

Table 6: Meteor score (Me), KG in gold(G), KG in input(I), Diversity (Di) and Contrastiveness (Co) in our models and various
baselines, on both BreastCancer and HealthLine datasets. †denotes cases which model generates meaningless results due to
small training size. The best results are in bold and Ours(BLM) – extract-compose is the most dominant.

a supervised classification module (implementation details
described in Appendix . Table 7 reports the results. Being
an extract-compose variant, the supervised model (first row)
produces faithful summaries (KG(I)). However, our Policy
Network’s joint selection and ability to explore span combi-
nations with guidance from gold structure rewards and the
Meteor score, lead to an improved performance on KG(G),
Diversity and Meteor. Additionally, on human evaluated rel-
evance, the Policy Network approach scores a higher 3.19
while the supervised extraction variant scores 2.5. We also
observe the importance of Rm for KG(I) and Meteor, and
Rd for Diversity.

Model Me KG(G) KG(I) Di Co

Select w/ Sup. 7.6 28 84 75 88
Policy (w/o Rm, Rd) 8.4 36 83 70 88
Policy (w/o Rm) 8.2 33 89 91 88
Policy (fullR) 8.7 40 88 90 83

Table 7: Automatic evaluation of extract-compose model’s
variants on HealthLine. The best results are in bold.

Comparison with Extractive Summarization To under-
stand the benefits of fine-span extraction followed by fusion,
we compare our model with an extractive summarization
system (implementation details in Appendix . Our model
achieves 40% KG(G), while the extractive summarization

system achieves 26%. Our extract-compose approach per-
forms strongly since: (1) We extract knowledge pieces more
precisely by selecting key spans instead of complex com-
plete sentences from scientific abstracts; (2) RL model’s
content selection jointly through multi-steps, and (3) The
Text Fusion module consolidates knowledge pieces, which
may otherwise remain incomplete due to linguistic phenom-
ena, such as coreference and discourse.

Even unsupervised methods like TextRank (Mihalcea and
Tarau 2004) are not particularly applicable when we need
to select key spans amongst multiple candidates. Instead
our model is able to capture relevant, readable and coherent
pieces of text by utilizing guidance from distant supervision
and the use of a domain specific language model for fusion.

7 Conclusion
High impact datasets, content selection, faithful decod-
ing and evaluation are open challenges in building multi-
document health summarization systems. First, we propose
two new datasets for Nutri-bullets. Next, we tackle this prob-
lem by exploiting annotations on the source side and for-
mulating an extraction and composition method. Compre-
hensive human evaluation demonstrates the efficacy of our
method in producing faithful, informative and relevant sum-
maries.
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