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Abstract

Recently multimodal named entity recognition (MNER) has
utilized images to improve the accuracy of NER in tweets.
However, most of the multimodal methods use attention
mechanisms to extract visual clues regardless of whether the
text and image are relevant. Practically, the irrelevant text-
image pairs account for a large proportion in tweets. The vi-
sual clues that are unrelated to the texts will exert uncertain
or even negative effects on multimodal model learning. In this
paper, we introduce a method of text-image relation propaga-
tion into the multimodal BERT model. We integrate soft or
hard gates to select visual clues and propose a multitask al-
gorithm to train on the MNER datasets. In the experiments,
we deeply analyze the changes in visual attention before and
after the use of text-image relation propagation. Our model
achieves state-of-the-art performance on the MNER datasets.

Introduction
Social media platforms such as Twitter have become part
of the everyday lives of many people. They are important
sources for various information extraction applications such
as open event extraction (Wang, Deyu, and He 2019) and
social knowledge graph construction (Hosseini 2019). As a
key component of these applications, named entity recogni-
tion (NER) aims to detect named entities (NEs) and classify
them into predefined types, such as person (PER), location
(LOC) and organization (ORG). Recent works on tweets
based on multimodal learning have been increasing (Moon,
Neves, and Carvalho 2018; Lu et al. 2018; Zhang et al. 2018;
Arshad et al. 2019; Yu et al. 2020). These researchers inves-
tigated to enhance linguistic representations with the aid of
visual clues in tweets. Most of the MNER methods used at-
tention weights to extract visual clues related to the NEs (Lu
et al. 2018; Zhang et al. 2018; Arshad et al. 2019). For ex-
ample, Fig. 1(a) shows a successful visual attention exam-
ple in (Lu et al. 2018). In fact, texts and images in tweets
could also be irrelevant. Vempala and Preoţiuc-Pietro (2019)
categorized text-image relations according to whether the
“Image adds to tweet meaning”. The “Image does not add
to tweet meaning” type accounts for approximately 56%
of instances in Vempala’s text-image relation classification
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(a) [PER Radiohead] offers old and new at first concert in
four years.

(b) Nice image of [PER Kevin Love] and [PER Kyle Korver]
during 1st half #NBAFinals #Cavsin9 # [LOC Cleveland].

Figure 1: Visual attention examples of MNER from (Lu et al.
2018). The left column is a tweet’s image and the right col-
umn is its corresponding attention visualization. (a) Success-
ful case, (b) failure case.

(TRC) dataset. In addition, we trained a classifier of whether
the “Image adds to tweet meaning” on a large randomly col-
lected corpus, Twitter100k (Hu et al. 2017), and the pro-
portion of classified negatives was approximately 60%. The
attention-based models would also produce visual attention
although the text and image are irrelevant, and such visual
attention might exert negative effects on the text inference.
Fig. 1(b) shows a failure visual attention example. The vi-
sual attention focuses on the wall and ground, resulting in
tagging “[ORG] Cleveland” with the wrong label “LOC”.

In this paper, we consider inferring the text-image rela-
tion to address the problem of inappropriate visual attention
clues in multimodal models. The contributions of this paper
can be summarized as follows:
• We propose a novel text-image relation propagation-

based multimodal BERT model. We investigate the
soft and hard ways of propagating text-image relations
through the model by training. A training procedure for
the multiple tasks of text-image relation classification and
downstream NER is also presented.
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• We provide insights into the visual attention by numerical
distributions and heat maps. Text-image relation propaga-
tion can not only reduce the interference from irrelevant
images but also leverage more visual information for rel-
evant text-image pairs.

• The experimental results show that the failure cases in the
related works are correctly recognized by our model, and
the state-of-the-art performance is achieved in this paper.

Related Work
Multimodal NER Moon et al. (2018) proposed a modality-
attention module at the input of an NER network. The mod-
ule computed a weighted modal combination of word em-
beddings, character embeddings, and visual features. Lu et
al. (2018) presented a visual attention model to find the im-
age regions related to the content of the text. The atten-
tion weights of the image regions were computed by a lin-
ear projection of the sum of the text query vector and re-
gional visual representations. The extracted visual context
features were incorporated into the word-level outputs of the
biLSTM model. Zhang et al. (2018) designed an adaptive
co-attention network (ACN) layer, which was between the
LSTM and CRF layers. The ACN contained a gated multi-
modal fusion module to learn a fusion vector of the visual
and linguistic features. The author designed a filtration gate
to determine whether the fusion feature was helpful in im-
proving the tagging accuracy of each token. The output score
of the filtration gate was computed by a sigmoid activation
function. Arshad et al. (2019) also presented a gated multi-
modal fusion representation for each token. The gated fusion
was a weighted sum of the visual attention feature and token
alignment feature. The visual attention feature was calcu-
lated by the weighted sum of VGG-19 (Simonyan and Zis-
serman 2014) visual features and the weights were the addi-
tive attention scores between a word query and image fea-
tures. Overall, the problem of the attention-guided models
is that the extracted visual contextual cues do not match the
text for irrelevant text-image pairs. The authors of (Lu et al.
2018; Arshad et al. 2019) showed failed examples in which
unrelated images provided misleading visual attention and
yielded prediction errors.
Pretrained multimodal BERT The pretrained model
BERT has achieved great success in natural language pro-
cessing (NLP). The latest presented visual-linguistic mod-
els based on the BERT architecture include VL-BERT (Su
et al. 2019), ViLBERT (Lu et al. 2019), VisualBERT (Li
et al. 2019), UNITER (Chen et al. 2020), LXMERT (Tan
and Bansal 2019), and Unicoder-VL (Li et al. 2020). We
summarize and compare the existing visual-linguistic BERT
models in three aspects as follows: 1) Architecture. The
structures of Unicoder-VL, VisualBERT, VL-BERT, and
UNITER were the same as that of vanilla BERT. The im-
age and text tokens were combined into a sequence and
fed into BERT to learn contextual embeddings. LXMERT
and ViLBERT separated visual and language processing into
two streams that interacted through cross-modality or co-
attentional transformer layers respectively. 2) Visual rep-
resentations. The image features could be represented as

region-of-interest (RoI) or block regions. All the above pre-
trained models used Fast R-CNN (Girshick 2015) to detect
objects and pool RoI features. The purpose of RoI detection
is to reduce the complexity of visual information and per-
form the task of masked region classification with linguistic
clues (Su et al. 2019; Li et al. 2020). However, for the ir-
relevant text-image pairs, the non-useful and salient visual
features could increase the interference with the linguistic
features. Moreover, object recognition categories are lim-
ited and many NEs have no corresponding object class, such
as company trademark and scenic location. 3) Pretraining
tasks. The models were trained on image caption datasets
such as the COCO caption dataset (Chen et al. 2015) or
Conceptual Captions (Sharma et al. 2018). The pretraining
tasks mainly include masked language modeling (MLM),
masked region classification (MRC) (Chen et al. 2020; Tan
and Bansal 2019; Li et al. 2020; Su et al. 2019), and image-
text matching (ITM) (Chen et al. 2020; Li et al. 2020; Lu
et al. 2019). The ITM task is a binary classification, which
defines the pairs in the caption dataset as positives and the
pairs generated by replacing the image or text in a paired
example with other randomly selected samples as negatives.
It assumed that the text-image pairs in the caption datasets
were highly related; however, this assumption could not be
established in the text-image pairs of tweets.

Visual features are always directly concatenated with lin-
guistic features (Yu and Jiang 2019) or extracted by atten-
tion weights in the latest multimodal models, regardless of
whether the images contribute to the semantics of the texts,
resulting in failed MNER examples shown in Table 7. There-
fore, in this work, we explore a multimodal variant of BERT
to perform MNER for tweets with different text-image rela-
tions.

The Proposed Approach
In this section, we introduce a text-image Relation
propagation-based BERT model (RpBERT) for multimodal
NER, which is shown in Fig. 2. We illustrate the RpBERT
architecture and then describe its training procedure in de-
tail.

Model Design
Our RpBERT extends vanilla BERT to a multitask frame-
work of text-image relation classification and visual-
linguistic learning for MNER. First, similar to most visual-
linguistic BERTs, we adapt vanilla BERT to multimodal in-
puts. The input sequence of RpBERT is designed as follows:

[CLS] w1 . . . wn︸ ︷︷ ︸
T

[SEP] v1 . . . vm︸ ︷︷ ︸
V

, (1)

where [CLS] stands for text-image relation classification,
[SEP] stands for the separation between text and image
features, T={w1, . . . , wn} denotes a sequence of linguis-
tic features, and V={v1, . . . , vm} denotes a sequence of vi-
sual features. The word token sequence is generated by the
BERT tokenizer, which breaks an unknown word into mul-
tiple word-piece tokens. Unlike the latest visual-linguistic
BERT models (Su et al. 2019; Lu et al. 2019; Li et al.
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Figure 2: The RpBERT architecture overview. Two RpBERTs share the same structure and parameters.

2020), we represent visual features as block regions instead
of RoIs. The visual features are extracted from the image
by ResNet (He et al. 2016). The output size of the last con-
volutional layer in ResNet is 7 × 7 × dv , where 7 × 7 de-
notes 49 block regions in an image. The extracted features of
block regions {fi,j}7i,j=1 are arranged into an image block
embedding sequence {b1 = f1,1W

v, . . . , b49 = f7,7W
v},

where fi,j ∈ R1×dv and W v ∈ Rdv×dBERT to match the
embedding size of BERT, and dv = 2048 when working
with ResNet-152. Following the practice in BERT, the in-
put embeddings of tokens are the sum of word token em-
beddings (or image block embeddings), segment embed-
dings, and position embeddings. The segment embeddings
are learned from two types, where A denotes text tokens and
B denotes image blocks. The position embeddings of word
tokens are learned from the word order in the sentence, but
all positions are the same for visual tokens.

The output of the token [CLS] is fed to a fully connected
(FC) layer as a binary classifier for Task#1 of text-image
relation classification. Additionally, we use the probability
gate G shown in Fig. 2 to yield probabilities [π0, π1]. The
text-image relevant score r is defined as the probability of
being positive,

r = π1. (2)

We use the relevant score r to construct a visual mask matrix
R in Fig. 2,

R =
(
xi,j = r

)
49×dBERT

. (3)

The text-image relation is propagated to RpBERT via R�V,
where � is the element-wise multiplication. For example,
if π1 = 0, then all visual features are discarded. Finally,
eRpBERT
k , the outputs of the tokens T with visual clues, are

fed to the NER model for Task#2 training.

Relation Propagation
We investigate two kinds of relation propagation, soft and
hard, by different probability gates G:

• Soft relation propagation: In soft relation propagation,
the output of G can be viewed as a continuous distri-
bution. The visual features are filtered according to the
strength of the text-image relation. The gate G is defined
as a softmax function:

Gs = softmax(x). (4)

• Hard relation propagation: In hard relation propagation,
the output of G can be viewed as a categorical distribu-
tion. The visual features are either selected or discarded
based on 0 or 1. The gate G is defined as follows:

Gh1 = [softmax(x) > 0.5], (5)

where [·] is the Iverson bracket indicator function, which
takes a value of 1 when its argument is true and 0 oth-
erwise. As Gh1 is not differentiable, an empirical way
is to use a straight-through estimator (Bengio, Léonard,
and Courville 2013) for propagating gradients back
through the network. Besides, Jang et al. (2017) proposed
Gumbel-Softmax to create a continuous approximation to
the categorical distribution. Inspired by this, we define the
gate G as Gumbel-Softmax in Eq. (6) for hard relation
propagation.

Gh2 = softmax((x+ g)//τ), (6)

where g is a noise sampled from Gumbel distribution
and τ is a temperature parameter. As the temperature ap-
proaches 0, samples from the Gumbel-Softmax distribu-
tion become one-hot and the Gumbel-Softmax distribu-
tion becomes identical to the categorical distribution. In
the training stage, the temperature τ is annealed using the
schedule of 1 to 0.1.

In the experimental results, we compare the performances of
Gs, Gh1, and Gh2 in Table 4.

Multitask Training for MNER
In this section, we present how to train RpBERT for MNER.
The training procedure involves multitask leaning of text-
image relation classification and MNER, represented by
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solid red arrows in Fig. 2. The two tasks are described in
detail as follows:
Task#1 Text-image relation classification (TRC): We em-
ploy the “Image Task” splits of the TRC dataset (Vempala
and Preoţiuc-Pietro 2019) for text-image relation classifica-
tion. This classification attempts to identify whether the im-
age’s content contributes additional information beyond the
text. The types of text-image relations and statistics of the
TRC dataset are shown in Table 1.

Let D1 = {a(i)}Ni=1 = {< text(i), image(i) >}Ni=1 be
a set of text-image pairs for TRC training. The loss L1 of
binary relation classification is calculated by cross entropy:

L1 = −
N∑
i=1

log(p(a(i))), (7)

where p(x) is the probability for correct classification and is
calculated by softmax.
Task#2 MNER via relation propagation: In this stage, we
use the mask matrix R to control the additive visual clues.
The input sequence of RpBERT is [CLS] T [SEP] R�V.
We denote the output of T as eRpBERT

k . To perform NER,
we use biLSTM-CRF (Lample et al. 2016) as a baseline
NER model. The biLSTM-CRF model consists of a bidirec-
tional LSTM and conditional random fields (CRF) (Lafferty,
McCallum, and Pereira 2001). The input ek of biLSTM-
CRF is a concatenation of word and character embed-
dings (Lample et al. 2016). CRF uses the biLSTM hidden
vectors of each token to tag the sequence with entity labels.
To evaluate the RpBERT model, we concatenate eRpBERT

k

as the input of biLSTM, i.e., [ek; e
RpBERT
k ]. For out-of-

vocabulary (OOV) words, we average the outputs of BERT-
tokenized subwords not only to generate an approximate
vector but also to align the broken words with the input em-
beddings of biLSTM-CRF.

In biLSTM-CRF, named entity tagging is trained on a
standard CRF model. We feed the hidden vectors H =
{ht = [

−→
h LSTM

t ;
←−
h LSTM

t ]}nt=1 of biLSTM to the CRF
model. For a sequence of tags y = {y1, . . . , yn}, the proba-
bility of the label sequence y is defined as follows (Lample
et al. 2016):

p(y|x) = es(x,y)∑
y′∈Y es(x,y′) , (8)

where Y is all possible tag sequences for the sentence x
and s(x, y) are feature functions modeling transitions and
emissions. Details can be referred in (Lample et al. 2016).
The objective of Task#2 is to minimize the negative log-
likelihood over the training data D2 = {(x(i), y(i))}Mi=1:

L2 = −
M∑
i=1

log(p(y(i)|x(i))). (9)

Combining Task#1 and Task#2, the complete training pro-
cedure of RpBERT for MNER is illustrated in Algorithm 1.
θRpBERT , θResNet, θFCs, θbiLSTM , and θCRF represent
the parameters of RpBERT, ResNet, FCs, biLSTM, and

Algorithm 1 Multitask training procedure of RpBERT for
MNER.
Input: The TRC dataset and MNER dataset.
Output: θRpBERT , θResNet, θFCs, θbiLSTM , and θCRF .

1: for all epochs do
2: for all batches in the TRC dataset do
3: Forward text-image pairs through RpBERT;
4: Compute loss L1 by Eq. (7);
5: Update θFCs and finetune θRpBERT and

θResNet using ∇L1;
6: end for
7: for all batches in the MNER dataset do
8: Forward text-image pairs through RpBERT;
9: Compute the visual mask matrix R;

10: Forward text-image pairs with relation propaga-
tion through RpBERT and biLSTM-CRF;

11: Compute loss L2 by Eq. (9);
12: Update θbiLSTM and θCRF and finetune

θRpBERT and θResNet using∇L2;
13: end for
14: end for

CRF, respectively. In each epoch, the procedure first per-
forms Task#1 to train the text-image relation on the TRC
dataset and then performs Task#2 to train the model on
MNER dataset. In the test stage, we execute lines 8-10 of
Algorithm 1 and decode the valid sequence of labels using
Viterbi algorithm (Lafferty, McCallum, and Pereira 2001).

Experiments
Datasets
In the experiments, we use three datasets to evaluate the per-
formance. One is the TRC dataset, and the other two are
MNER datasets of Fudan University and Snap Research.
The detailed descriptions are as follows:
• TRC dataset of Bloomberg LP (Vempala and Preoţiuc-

Pietro 2019)
In this dataset, the authors annotated tweets into four
types of text-image relation, as shown in Table 1. “Im-
age adds to tweet meaning” is centered on the role of the
image to the semantics of the tweet while “Text is pre-
sented in image” focuses on the text’s role. In the Rp-
BERT model, we treat the text-image relation for the im-
age’s role as binary classification task between R1 ∪ R2

andR3∪R4. We follow the same split of 8:2 for train/test
sets as in (Vempala and Preoţiuc-Pietro 2019). We use this
dataset to perform learning Task#1 of RpBERT.

R1 R2 R3 R4

Image adds to tweet meaning
√ √

× ×
Text is presented in image

√
×

√
×

Percentage (%) 18.5 25.6 21.9 33.8

Table 1: Four relation types in the TRC dataset.

• MNER dataset of Fudan University (Zhang et al.
2018)
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Hyperparameter Value
LSTM hidden state size 256

+RpBERT 1024
LSTM layer 2
mini-batch size 8
char embedding dimension 25
optimizer Adam
learning rate 1e-4
learning rate for finetuning RpBERT and ResNet 1e-6
dropout rate 0.5

Table 2: Hyperparameters of the RpBERT and biLSTM-
CRF models.

The authors sampled the tweets with images collected
through Twitter’s API. In this dataset, the NE types are
Person, Location, Organization, and Misc. The authors la-
beled 8,257 tweet texts using the BIO2 tagging scheme
and used a 4,000/1,000/3,257 train/dev/test split.

• MNER dataset of Snap Research (Lu et al. 2018)
The authors collected the data from Twitter and Snapchat,
but Snapchat data are not available for public use. The NE
types are Person, Location, Organization, and Misc. Each
data instance contains one sentence and one image. The
authors labeled 6,882 tweet texts using the BIO tagging
scheme and used a 4,817/1,032/1,033 train/dev/test split.

Settings
We use the 300-dimensional fastText Crawl (Mikolov et al.
2018) word vectors in biLSTM-CRF. All images are re-
shaped to a size of 224 × 224 to match the input size of
ResNet. We use ResNet-152 to extract visual features and
finetune it with a learning rate of 1e-6. The FC layers in our
model are a linear neural network followed by ReLU ac-
tivation. The architecture of RpBERT is the same as that of
BERT-Base, and we load the pretrained weights from BERT-
base-uncased model to initialize our RpBERT model. We
train the model using Adam (Kingma and Ba 2014) opti-
mizer with default settings. Table 2 shows the hyperparam-
eter values in the RpBERT and biLSTM-CRF models. We
use F1 score as evaluation metric for TRC and MNER.

Result of TRC
Table 3 shows the performance of RpBERT in text-image re-
lation classification on the test set of the TRC data. In terms
of the network structure, Lu et al. (2018) represented the
multimodal feature as a concatenation of linguistic features
from LSTM and visual features from InceptionNet (Szegedy
et al. 2015). The result shows that the BERT-based visual-
linguistic model significantly outperforms that of Lu et
al. (2018), and F1 score of RpBERT on the test set of the
TRC data increases by 7.1% compared to Lu et al. (2018).

Results of MNER
Table 4 illustrates the improved performance by visual clues,
such as biLSTM-CRF vs. biLSTM-CRF with image and
BERT vs. RpBERT. The inputs of “biLSTM-CRF” and

Lu et al. (2018) RpBERT
F1 score 81.0 (+7.1) 88.1

Table 3: Results of the text-image relation classification in
F1 score (%).

Fudan Univ. Snap Res.
biLSTM-CRF (+0.0) 69.9 (+0.0) 80.1
biLSTM-CRF w/ image at t = 0 (+0.1) 70.0 (+0.5) 80.6
Zhang et al. (2018) (+0.8) 70.7 -
Lu et al. (2018) - (+0.6) 80.7
biLSTM-CRF + BERT (+0.0) 72.0 (+0.0) 85.2
biLSTM-CRF + RpBERTGh1 (+1.8) 73.8 (+1.2) 86.4
biLSTM-CRF + RpBERTGh2 (+2.2) 74.2 (+1.4) 86.6
biLSTM-CRF + RpBERTGs (+2.4) 74.4 (+2.2) 87.4

Table 4: Comparison of the improved performance by visual
clues in F1 score (%).

“biLSTM-CRF + BERT” are text only, while those of other
models are text-image pairs. “biLSTM-CRF w/ image at
t = 0” means that the image feature is placed at the be-
ginning of LSTM before the word sequence, similar to the
model in (Vinyals et al. 2015). “biLSTM-CRF + RpBERT”
means that the contextual embeddings eRpBERT

k with vi-
sual clues are concatenated as the input of biLSTM-CRF, as
clarified in the section of “Multitask Training for MNER”.
The results show that the best “+ RpBERTGs

” achieves
increases of 4.5% and 7.3% compared to “biLSTM-CRF”
on the Fudan Univ. and Snap Res. datasets, respectively.
In terms of the role of visual features, the increase of “+
RpBERTGs” achieves approximately 2.3% compared to “+
BERT”, which is larger than those of the biLSTM-CRF
based multimodal models such as Zhang et al. (2018) and
Lu et al. (2018) compared to biLSTM-CRF. This indicates
that the RpBERT model can better leverage visual features
to enhance the context of tweets.

In Table 5, we compare performance with the state-of-the-
art method (Yu et al. 2020) and visual-linguistic pretrained
models which codes are available, such as VL-BERT (Su
et al. 2019), ViLBERT (Lu et al. 2019), and UNITER (Chen
et al. 2020). Similar to eRpBERT

k in RpBERT, we take
out the contextual embeddings of word sequence in visual-
linguistic models and concatenate them with the token em-
beddings ek as the input embedding of biLSTM-CRF. For
example, “biLSTM-CRF + VL-BERT” means that the out-
put of word sequence in VL-BERT is concatenated as
the input of biLSTM-CRF, i.e.,

[
ek; e

V L-BERT
k

]
. The re-

sults show that RpBERTGs outperforms all pretrained mod-
els. Additionally, we test RpBERT using the structure of
BERT-Large, which has 24 layers and 16 attention heads.
“biLSTM-CRF + RpBERT-LargeGs

” achieves state-of-the-
art results on the MNER datasets and outperforms the cur-
rent best results (Yu et al. 2020) by 1.5% on the Fudan Univ.
dataset and 2.5% on the Snap Res. dataset.
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Fudan Univ. Snap Res.
Image adds Image doesn’t add Overall Image adds Image doesn’t add Overall

biLSTM-CRF + RpBERTGs 74.6 74.1 74.4 87.7 86.9 87.4
- w/o Rp (-0.5) 74.1 (-3.1) 71.0 (-1.8) 72.6 (-0.7) 87.0 (-2.3) 84.6 (-1.2) 86.2

Table 6: Performance comparison in F1 score (%) when the relation propagation (Rp) is ablated.

Fudan Univ. Snap Res.
Arshad et al. (2019) 72.9 -
Yu et al. (2020) 73.4 85.3
biLSTM-CRF + VL-BERT 72.4 86.0
biLSTM-CRF + ViLBERT 72.0 85.7
biLSTM-CRF + UNITER 72.7 86.1
biLSTM-CRF + BERT-Large 72.4 86.3
biLSTM-CRF + RpBERTGs 74.4 87.4
biLSTM-CRF + RpBERT-LargeGs 74.9 87.8

Table 5: Performance comparison with other models in F1
score (%).

Ablation Study
In this section, we report the results when ablating the re-
lation propagation in RpBERT, or equivalently performing
only Task#2 in the training of RpBERT. Table 6 shows that
the overall performance without relation propagation (“w/o
Rp”) decreases by -1.8% and -1.2% on the Fudan Univ. and
Snap Res. datasets, respectively. In addition, we divide the
test data into two sets, “Image adds” and “Image doesn’t
add”, by the text-image relation classification, and com-
pare the impact of the ablation on the data of different re-
lation types. The performances on all relation types are im-
proved with relation propagation. More importantly, regard-
ing the “Image doesn’t add” type, “w/o Rp” lowers the F1
scores by a large margin, -3.1% on the Fudan Univ. dataset
and -2.3% on the Snap Res. dataset. This justifies that the
text-unrelated visual features exert large negative effects on
learning visual-linguistic representations.

In Fig. 3, we illustrate the comparison of RpBERT and
RpBERT w/o Rp in terms of the numerical distribution be-
tween the relevant score r and STV , where STV is the aver-
age sum of visual attentions and is defined as follows:

STV =
1

LH

L∑
l=1

H∑
h=1

n∑
i=1

m∑
j=1

Att(l,h)(wi, vj), (10)

where Att(l,h)(wi, vj) is the attention between the ith word
and jth image block on the hth head and lth layer in Rp-
BERT. The samples are from the test set of the Snap Res.
dataset. In Fig. 3(a), we find that the distribution of STV of
RpBERT w/o Rp is close to a horizontal line and is unrelated
to the relevant score r. In Fig. 3(b), most STV values of Rp-
BERT decrease on irrelevant text-image pairs (r < 0.5) and
increase on relevant text-image pairs (r > 0.5) compared to
those of RpBERT w/o Rp. Quantitatively, the mean of STV

decreases by 20% from 0.041 to 0.034 on irrelevant text-
image pairs while it increases from 0.042 to 0.102 on rele-
vant text-image pairs. In general, after using relation prop-
agation, the trend is towards leveraging more visual cues in
stronger text-image relations.

(a) RpBERT w/o Rp (b) RpBERTGs

Figure 3: The numerical distribution between r and STV .

Case Study via Attention Visualization
We illustrate five failure examples mentioned in (Lu et al.
2018; Arshad et al. 2019; Yu et al. 2020) in Table 7. The
common reason for these failed examples is inappropriate
visual attention features. The table shows the relevant score
r and overall image attentions of RpBERT and RpBERT
w/o Rp. The visual attention of an image block j across all
words, heads and layers is defined as follows:

avj =
1

LH

L∑
l=1

H∑
h=1

n∑
i=1

Att(l,h)(wi, vj). (11)

We visualize the overall image attentions {avj}49j=1 by heat
maps. The NER results of “+ RpBERT w/o Rp”, “+
RpBERTGs

”, and the previous works are also presented for
comparison.

Examples 1 and 2 are from the Snap Res. dataset, and Ex-
amples 3, 4, and 5 are from the Fudan Univ. dataset. The
NER results of all examples obtained by RpBERT are cor-
rect. In Example 1, RpBERT performs correct and the vi-
sual attentions have no negative effects on the NER results.
In Example 2, the visual attentions focus on the ground and
result in tagging “Cleveland” with the wrong label “LOC”.
In Example 3, “Reddit” is misidentified as “ORG” by the
visual attentions. In Example 5, “Siri” is wrongly identi-
fied as “PER” because of the visual attentions to the human
face. In Examples 2, 3, and 5, the text-image pairs are rec-
ognized as irrelevant since the values of r are small. With
text-image relation propagation, much less visual features
are weighted to the linguistic features in RpBERT and the
NER results are correct. In Example 4, the text and image
are related, i.e., r = 0.74. The persons are significantly con-
cerned in (Arshad et al. 2019), resulting in the wrong la-
bel “PER” for “Mount Sherman”. RpBERT w/o Rp extends
some visual attention to the mountain scene, while RpBERT
increases much more visual attention to the scenery, such as
sky and mountain, and thus strengthens the understanding
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1 2 3 4 5

Image

{av
j }49j=1 of

RpBERT w/o Rp

{av
j }49j=1 of

RpBERTGs

r 0.14 0.13 0.24 0.74 0.20

+ RpBERT w/o Rp

Looking forward
to editing some
[ORG SBU] base-
ball shots from
Saturday.

Nice image of
[PER Kevin Love]
and [PER Kyle
Korver] during 1 st
half # NBAFinals
# Cavsin9 # [LOC
Cleveland]

[ORG Reddit]
needs to stop pre-
tending racism is
valuable debate.

[MISC PSD]
Lesher teachers
take school spirit to
top of 14ner [LOC
Mount Sherman].

Ask [PER Siri]
what 0 divided by
0 is and watch her
put you in your
place.

+ RpBERTGs

Looking forward
to editing some
[ORG SBU] base-
ball shots from
Saturday.

Nice image of
[PER Kevin Love]
and [PER Kyle
Korver] during 1 st
half # NBAFinals
# Cavsin9 # [ORG
Cleveland]

[MISC Reddit]
needs to stop pre-
tending racism is
valuable debate.

[ORG PSD
Lesher] teachers
take school spirit to
top of 14ner [LOC
Mount Sherman].

Ask [MISC Siri]
what 0 divided by 0
is and watch her put
you in your place.

Previous work

Looking forward to
editing some SBU
baseball shots from
Saturday. (Lu et al.
2018)

Nice image of
[PER Kevin Love]
and [PER Kyle
Korver] during 1 st
half # NBAFinals
# Cavsin9 # [LOC
Cleveland]. (Lu
et al. 2018)

[ORG Reddit]
needs to stop pre-
tending racism is
valuable debate.
(Arshad et al.
2019)

[ORG PSD
Lesher] teachers
take school spirit to
top of 14ner [PER
Mount Sherman].
(Arshad et al.
2019)

Ask [PER Siri]
what 0 divided by
0 is and watch her
put you in your
place. (Yu et al.
2020)

Low High

Table 7: Five failed examples in the previous works tested by “+ RpBERTGs
” and “+ RpBERT w/o Rp”. Blue and black labels

are correct and red ones are wrong.

of the whole picture and yields the correct labels of “PSD
Lesher” and “Mount Sherman”.

Conclusion
This paper concerns the visual attention problem raised by
the text-unrelated images in tweets for multimodal learning.
We propose a relation propagation-based multimodal model
based on text-image relation inference. The model is trained
by the multiple tasks of text-image relation classification and
downstream NER. In experiments, the ablation study quan-
titatively evaluates the role of text-image relation propaga-

tion. The heat map visualization and numerical distribution
regarding the visual attention justify that RpBERT can better
leverage visual information adaptively according to the rela-
tion between text and image. The failed cases mentioned in
other papers are effectively resolved by the RpBERT model.
Our model achieves the best F1 scores in both TRC and
MNER, i.e., 88.1% on the TRC dataset, 74.9% on the Fu-
dan Univ. dataset, and 87.8% on the Snap Res. dataset.
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