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Abstract
It is important for task-oriented dialogue systems to discover
the dialogue structure (i.e. the general dialogue flow) from di-
alogue corpora automatically. Previous work models dialogue
structure by extracting latent states for each utterance first
and then calculating the transition probabilities among states.
These two-stage methods ignore the contextual information
when calculating the probabilities, which makes the tran-
sitions between the states ambiguous. This paper proposes
a conversational graph (CG) to represent deterministic dia-
logue structure where nodes and edges represent the utterance
and context information respectively. An unsupervised Edge-
Enhanced Graph Auto-Encoder (EGAE) architecture is de-
signed to model local-contextual and global-structural infor-
mation for conversational graph learning. Furthermore, a self-
supervised objective is introduced with the response selection
task to guide the unsupervised learning of the dialogue struc-
ture. Experimental results on several public datasets demon-
strate that the novel model outperforms several alternatives
in aggregating utterances with similar semantics. The effec-
tiveness of the learned dialogue structured is also verified by
more than 5% joint accuracy improvement in the downstream
task of low resource dialogue state tracking.

Introduction
Task-oriented dialogue usually follows a typical dialogue
flow, which can be summarized as a dialogue structure. It
not only describes internal logical structures of specific di-
alogue scenarios, but also facilitates several downstream di-
alogue tasks such as dialogue state tracking (Black et al.
2010; Dai et al. 2020), dialogue summarization (Murray, Re-
nals, and Carletta 2005; Liu, Seneff, and Zue 2010) and dia-
logue generation (Chen, Xu, and Xu 2019). Conventional di-
alogue systems usually rely on hand-crafted dialogue struc-
ture which is time-consuming and unable to be quickly
adapted to new scenarios. It is crucial to discover dialogue
structure from existing dialogue corpus automatically.

Recent studies follow an unsupervised manner to dis-
cover the dialogue structure from dialogue corpus with-
out labelling efforts. Generally, these methods model dia-
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Figure 1: An example of dialogue structures generated by
VRNN (Shi, Zhao, and Yu 2019) (a) and our model (b). The
solid and dash lines represent different sessions.

logue structure by extracting latent states for each utterance
first and then calculating the transition probabilities among
states. Zhai and Williams (2014) generated topics from con-
versations and applied Hidden Markov Model (HMM) to
model typical dialogue flows upon states composed of top-
ics. Compared with their statistical methods, Shi, Zhao,
and Yu (2019) utilized variational recurrent neural network
(VRNN) to capture high non-linear dynamics in dialogue
and learn discrete variables for each utterance. These two-
stage methods focus more on dialogue state representation
while ignoring the fact that modeling the transitions using
probability without considering the context leads to dialogue
transition ambiguous. Figure 1 gives an example of the dia-
logue structure learned by Shi, Zhao, and Yu (2019).

The green and blue boxes represent different sessions. Af-
ter the user replies “I would like Italian food”, the transition
to next state depends on the calculated probability in VRNN
(dashed lines). The transition to “Which area would you like
to reserve” is incorrect for the dash session, and the tran-
sition to “Do you have any requirements for price?” is in-
correct for the solid session. In fact, the dialogue structure
should have capability to decide the next transition determi-
nately in the specific context. It’s clear that the two-stage
method can’t obtain a deterministic transition in a specific
context.

In this paper, we propose joint-learning of state and
transition considering the context information to address
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the aforementioned problem, where a novel conversational
graph (CG) is used to encode the utterance and context si-
multaneously as the dialogue structure. The nodes in the
CG correspond to the utterances with similar semantics.
The edges incorporate the context information to represent
the transition relationship which intuitively makes dialogue
transition deterministic in a specific context.

While useful to learn a CG with edges containing con-
text information as deterministic dialogue structure, it’s non-
trivial to learn CG merely from dialogue corpus. Moti-
vated by the cognitive process of human (Dai et al. 2019;
Koehn 2017) conversations, the human usually first un-
derstand the utterances and then summarize the high-level
task-related concept from the context. Afterwards, the con-
nections among concepts are established from the context
in these sessions. The two processes are often used to
jointly construct dialogue structure subconsciously by hu-
mans, which is deterministic based on different contexts.

Therefore, we naturally tackle the challenge by decom-
posing conversational graph (CG) learning as two mod-
ules inspired by human cognition: Semantic Understand-
ing Module (SUM) and Structure Induction Module (SIM).
SUM imitates the perception system in the human brain
to capture local-contextual information. SIM is analogous
to the induction system in the brain, which incorporates
specific local-contextual information and global-structural
information to induce the conversational graph. In SIM,
we intuitively extend Graph Auto-Encoder (GAE) (Kipf
and Welling 2016) to a novel Edge-Enhanced Graph Auto-
Encoder (EGAE) to unsupervisedly learn conversational
graph. Specifically, we initialize CG from the dialogue cor-
pus as prior structural information. EGAE then performs
nodes and edges feature aggregation from neighbours by
message passing. Moreover we also design a self-supervised
objective with the response selection task to guide the un-
supervised conversational graph learning. Jointly, SIM and
SUM learn the utterance and relationship representations to
refine the context-aware conversational graph. As a result,
our method obtains a deterministic dialogue structure with
CG by learning utterance and relationship information si-
multaneously.

The main contributions of this paper are three-folds:

• We model the deterministic dialogue structure as a con-
versational graph with context information. Furthermore,
we jointly learn utterances and relationships simultane-
ously by SUM and SIM, which is motivated by the cogni-
tive process of human.

• To the best of our knowledge, this work is the first at-
tempt to apply an Edge-Enhanced Graph Auto-Encoder
(EGAE) architecture to consider local-contextual and
global-structural information with end-to-end unsuper-
vised learning. Morever, we introduce the response selec-
tion self-supervised task to guide the unsupervised dia-
logue structure learning.

• Experimental results show that our model outperforms
baselines on several task-oriented dialogue datasets. Fur-
thermore, we observe more than 5% improvements in
the downstream low-resource dialogue state tracking task,

which verifies the effectiveness of the learned structure.

Related Work

Unsupervised Dialogue Structure Learning

The challenge of achieving both task completion and
human-like response generation for task-oriented dialogue
systems is gaining research interest. Previous work tried
model end-to-end model with internal (Qiu et al. 2020) or
external knowledge (Chen et al. 2020) for high-quality dia-
logue generation. There are also some previous studies on
discovering the latent structure of the conversation. Most
of the previous methods utilized the Hidden Markov Model
(HMM) to capture the temporal dependencies within human
dialogues. Zhai and Williams (2014) decoupled the states
and topics and applied hidden markov model (HMM) to
model typical dialogue flows upon states which correspond
to a mixture of topics. Compared with their statistical meth-
ods, Gunasekara et al. (2018) quantized the dialogue space
into clusters and created a language model across the clus-
ters, thus allowing for an accurate choice of the next ut-
terance in the conversation. The idea of clustering utter-
ance to create a quantized representation is similar to our
method, but we choose the deep learning to capture the se-
mantics representation of utterance and context beyond sur-
face forms of the conversation. Shi, Zhao, and Yu (2019)
adopted the variational recurrent neural network (VRNN) to
perform variational inference in the model. The VRNN re-
tains the flexibility to model highly non-linear dynamics in
dialogues. Different from modeling the dialogue structure as
a transition probability, we design a conversational graph to
generate a deterministic dialogue structure by modeling the
utterance and context simultaneously.

Graph Auto-Encoder

Recent works have shown that results can often be signif-
icantly improved by modeling graph-structured data with
end-to-end learning techniques and specifically with graph
auto-encoders (Kipf and Welling 2016; Tian et al. 2014;
Berg, Kipf, and Welling 2017). Different from Auto-
Encoder (Zhao, Xie, and Eskenazi 2019; Wei et al. 2020)
used in NLP tasks, Graph Auto-Encoder (GAE) are used to
learn meaningful latent embeddings on a social recommen-
dation link prediction task (Berg, Kipf, and Welling 2017)
or anomaly detection tasks (Li et al. 2019). Berg, Kipf, and
Welling (2017) considered matrix completion for recom-
mendation systems as link prediction on graphs. The model
incorporated complementary feature information into the
graph to reconstruct the rating links through a bilinear de-
coder. Gong and Cheng (2019) exploited multi-dimensional
edge features and adapted features across the neural net-
work layers. Similarly, we apply GAE to the unsupervised
dialogue structure learning with edges containing multi-
dimensional context information. It is the first attempt to ap-
ply GAE to dialogue task.
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Figure 2: Model Architecture. The model is composed of two modules: Semantics Understanding Module (SUM) and Structure
Induction Module (SIM). SUM captures the semantic information from dialogue sessions and builds a session-specific sub-
graph. SIM incorporates the sub-graph into the conversational graph and adopts an Edge-Enhanced Graph Auto-Encoder for
utterance and relationship learning with end-to-end unsupervised learning.

Model
Problem Formulation

Given a dialogue corpus D where each conver-
sation session consists of T turns of dialogue
{(u1, s1), (u2, s2), · · · , (uT , sT )}, unsupervised dia-
logue structure learning extracts the conversational graph
with edges containing context information (i.e. the gen-
eral dialogue flow) from the whole conversation corpus.
Here u and s mean user utterance and system response,
respectively.

We define a conversational graph (CG) to encode ut-
terance and context simultaneously as dialogue structure.
The nodes represent utterances with similar semantics. The
edges correspond to the transition with context information.
There are Nu and Ns nodes for users and systems, and Ne

edges among these nodes. Note that the number of nodes and
edges is predefined. We construct CG with a bipartite matrix
M ∈ RNu×Ns , where Mij represents the relationship of
two nodes. We define Xu ∈ RNu×F , Xs ∈ RNs×F as node
features at user side and system side, respectively. Besides,
the edge features Xe ∈ RNe×F correspond to all possible
dialogue context. Motivated by the cognitive process of hu-
man, we decompose conversational graph learning into two
modules:

(1) Semantics Understanding Module imitates the per-
ception system in the human brain. It’s responsible for cap-
turing the implicit structure information from each session.
The module extracts the semantics information and relation-
ship between the adjacent utterances. The extracted informa-
tion is used to construct a session-specific sub-graph where
nodes correspond to the utterance semantics representation,
and edges correspond to the context representations.

(2) Structure Induction Module is analogous to logi-
cal reasoning system in the brain, which exploits the global
structure information for improving semantic understanding
capability. The module aims to incorporate context informa-
tion into the whole conversational graph with unsupervised
Edge-Enhanced Graph Auto-Encoder (EGAE). In order to
guide the unsupervised structure induction, we also intro-
duce the response selection self-supervised task.

Jointly, the two modules learn the representations of ut-
terances and relationships with an unsupervised manner,
which will be used to refine the context-aware conversa-
tional graph.

Semantics Understanding Module
Recently the pre-trained BERT language model (Devlin
et al. 2019) shows powerful ability in universal contextual
semantics representation. Thus we employ BERT to encode
utterances shown in the Figure 2.

For each utterance, the inputs of BERT consist of token
embedding, position embedding and role embedding. BERT
encodes each utterance into deep contextual representations.
Since BERT leverages a special token [CLS] as the whole
representation for an utterance, we use a non-linear trans-
formation for [CLS] to obtain the corresponding utterance
encoding as follows:

[hui
,hsi ] = f(BERT(ui, si)) (1)

where f means the non-linear transformation, ui and si
mean the i-th user utterance or system utterance, respec-
tively.

For each session j, we consider all utterances as a session-
specific sub-graph Gj where the nodes correspond to utter-
ances and the edges correspond to relationships among utter-
ances. Specifically, we establish edges for each two adjacent
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utterances and then calculate the relationships between them
to obtain the edge features as follows:

eui,si = We[hui
;hsi ] (2)

esi,ui+1
= We[hsi ;hui+1

] (3)

where the We is parameters. Gj can capture the relation-
ships between adjacent utterances and provide the implicit
structure information to the SIM.

Structure Induction Module
SIM is responsible for incorporating specific local-
contextual information and global-structural information to
induce the context-aware conversational graph. The mod-
ule extends GAE into Edge-enhanced GAE to unsuper-
vised latent nodes and edges representation through differ-
ential message passing in the context-aware conversational
graph. Since it is quite challenging to learn semantic tran-
sitions merely from dialogue corpus, we initialize conversa-
tional graph as powerful guidance by aggregating utterances
with similar semantics as nodes and establishing edges be-
tween nodes containing adjacent utterance in a session. Then
EGAE model common structure information with edge in-
formation from dialogue corpus with end-to-end unsuper-
vised learning. Different from the previous sequential ap-
proaches, the module integrates context into conversational
graph considering the local sequential and global structural
information. Finally, these latent nodes and edges represen-
tations are used to reconstruct the context-aware conversa-
tional graph through a score function.

Graph Initialization Given a dialogue corpus D, we con-
struct initialized CG with three steps shown in the Algo-
rithm 1: (1) Encoding utterances in the corpus using BERT
and splitting them as two parts: user set and system set; (2)
Clustering two sets as user/system nodes in the graph using
K-Means algorithm respectively; (3) Establishing the edges
between nodes if two nodes contain adjacent utterances; (4)
Clustering the edges using the K-Means algorithm.

We construct the conversational graph M and label the
whole corpus.

Edge-Enhanced Graph Auto-Encoder Graph Auto-
Encoder (GAE) (Kipf and Welling 2016) are verified effec-
tively in many tasks, and we are the first to apply it in the dia-
logue structure learning. Different from GAE, our EGAE not
only updates the node features but also explicitly adjusts the
edge features. The latent node and edge features are used to
reconstruct the context-aware conversational graph through
a score function, which helps capture adequate context in-
formation into the conversational graph.

The context-aware conversational graph M̂ is calculated
based on the session-specific sub-graph Gj obtained from
SUM and the initialized conversational graph M . We apply
a non-linear layer to fuse the node features of two graphs.
Note that we use the edge features in the Gj .

The node and edge features are A0 and E0 in the M̂ ,
respectively. After passing through the l Edge-Enhanced
Graph Auto-Encoder layers, Al is filtered to produce new

Algorithm 1: Conversational Graph Initialization
Input: number of user nodes Nu, number of system

nodes Ns, number of edges Ne, dialogue
corpus D

Output: features of user nodes Uf , features of
system nodes Sf , conversational graph Mij

Split D into the user/system utterances sets ;
Use K-Means algorithm to cluster user/system
utterances into Nu and Ns clusters, respectively ;

Calculate the centroid vectors of user/system clusters
Uf /Sf ;

for each session in D do
for each adjacent utterances in session do

Feed BERT with the concatenated adjacent
utterances ;

Insert the [CLS] embedding into the feature
list of the edge between corresponding
clusters of adjacent utterances ;

end
end
for each edge in all edges do

average the corresponding feature list to obtain
the edge representations ;

end
Use K-Means algorithm to cluster all edges into Ne

clusters ;

node features Al+1 ∈ RN×F . At the same time, edge fea-
tures are adapted to El+1, which will be fed to the next layer.
The procedure of adapting node and edge features in the
layer l is defined as follows:

Al+1 = σ
[
αl+1

(
Al,El

)
gl+1

(
Al
)]

(4)

gl+1
(
Al
)
= AlW l (5)

αl+1
ij = softmax(f l

(
Al

i,A
l
j

)
El

ij) (6)

El+1 = αl+1 (7)

where g uses a linear transformation to map the node fea-
tures from the input space to the output space. αl+1 repre-
sents the attention coefficients which depends on node fea-
tures Al

i, A
l
j and edge feature El

ij . Because the edge fea-
ture is multi-dimensional, we use separate attention on edge
features and combine them by the concatenation operation.
For the sake of simplicity, a linear function f l is regarded as
score function.

Furthermore, we employ a score function in decoder to
reconstruct conversational graph. Specifically, the decoder
produces a probability distribution over all possible dialogue
context classes through a linear transformation operation
followed by the application of a softmax function:

p
(
M̂ij |A,E

)
= softmax(f l

(
Al

i;E
l
ij ;A

l
j

)
(8)
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Dataset CamRest676 DSTC2 SGD
Homes Buses Flights

No. of dialogues 676 1612 1273 3135 3644
No. of slot 6 8 2 6 10

No. of system nodes 15 121 26 66 638
No. of user nodes 77 194 95 154 297

No. of edges 9 13 10 10 15

Table 1: Data statistics of DSTC2, CamRest676 and three different domain conversations in the SGD dataset

Optimization
The EGAE reconstruction loss is calculated as follows:

Lreconstruction = −
∑
i,j

R∑
r=1

I[r =Mij ] log p(M̂ij |A,E)[r]

(9)

Response Selection Response selection helps distinguish
whether the response is relevant and consistent with the di-
alogue context. Meanwhile, as a high quality conversation-
related supervised task, it can be regarded as an indicator for
extracting high-level semantic information, helping to guide
the unsupervised conversational graph learning. Specifically,
we randomly sample 19 negative responses candidates for
each response from the same set. The goal of the self-
supervised task is to learn a scoring model to select a right
and proper answer from the candidate answer set. Mathe-
matically:

p(r = j) =
ef(h

l
i;e

l
i−1,i)hj∑K

k=1 e
f(hil;el

i−1,i)hk
(10)

hl
i corresponds to the representation of last turn utterance

and eli−1,i indicates the last transition representation in the
dialogue history. f is non-linear transformation function.
The cross-entropy loss as the response selection loss is as
follows:

Lselection = −
K∑

k=1

I[rselection = k] log p(rselection = k)

(11)
During the training, we optimize our model jointly with

Lreconstruction and Lselection as follows:

L = Lreconstruction + Lselection (12)

Experiments
Setup
Dataset We conduct the main experiments on the three
public dialogue corpus: DSTC2 (Henderson, Thomson, and
Williams 2014), CamRest676 (Rojas-Barahona et al. 2017)
and SGD (Rastogi et al. 2019). CamRest676 contains a to-
tal of 676 dialogues in this dataset about finding restau-
rants in Cambridge, UK. Different from the CamRest676,
DSTC2 dataset is noisier and more challenging since the
bots made mistakes due to speech recognition errors or mis-
interpretations, which is extracted from real human-bot di-
alogues. SGD is the largest public task-oriented dialogue

corpus, which contains approximately one-third single do-
main dialogue over 16 domains. We split the single-domain
dataset by domain and select home, bus and flight for train-
ing. The statistical result is shown in Table 1. Note that the
nodes and edges of our conversational graph are predefined
based on Table 1, which are equal to the dialogue acts and
states annotations in the dataset.

For further verifying the effectiveness of our method,
We choose the low-resource dialogue state tracking as our
downstream dialogue task, and conduct experiments on
WOZ 2.0 dataset (Wen et al. 2017). WOZ 2.0 dataset is a sin-
gle “restaurant reservation” domain, in which belief trackers
estimate three slots (area, food, and price range). Specifi-
cally, we sample 10% data from the original training set to
construct the low-resource training set. The validation set
and the test set are not changed.

Baseline We compare our model with the following base-
line systems:

• VRNN (Shi, Zhao, and Yu 2019) learns a finite state
machine of the dialog procedure through a variational au-
toencoder (VAE) based approach. We replace word2vec
with BERT to make comparative experiment fair.

• BERT & K-Means employs BERT to obtain the ut-
terance embedding and then clusters them by K-Means
(Alsabti, Ranka, and Singh 1997).

Model Configurations Our model is implemented with
PyTorch 1 (Paszke et al. 2019). We employ the pre-trained
BERT model in the SUM module that has 12 layers of 784
hidden units and 12 self-attention heads 2. The learning rate
is 1e-5. In the SIM module, The number of layers and hid-
den size in EGAE are set to 2 and 768 for the graph convolu-
tion encoder, respectively. Adam optimizer (Kingma and Ba
2015) is employed for optimization with learning rate and
warmup proportion set to 1e-3 and 0.1. The batch size is set
to 64.

Evaluation Metrics The evaluation of unsupervised
methods has been a challenge. We first use cluster evaluation
metrics to evaluate the learned dialogue structure. Then we
apply the utterance representation learned from our model

1https://pytorch.org/
2It is published as bert-base-uncased model in a Py-

Torch version of BERT: https://github.com/huggingface/pytorch-
transformers
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Model
CamRest676 DSTC2

Internal Metrics External Metrics Internal Metrics External Metrics
CH ↑ DB ↓ FM ↑ CH ↑ DB ↓ FM ↑

VRNN (Shi, Zhao, and Yu 2019) 6.47 4.41 \ \ \ \
BERT&K-Means 60.50 2.45 0.14 85.46 2.13 0.08
Our Model 639.39 1.64 0.28 668.65 1.72 0.12

Table 2: Experimental results on CamRest676 and DSTC2 datasets. Our model outperforms VRNN (Shi, Zhao, and Yu 2019)
and BERT&K-Means baseline systems in both internal and external clustering metrics. “CH”, “DB” and “FM” means Calinski-
Harabasz Index (Caliński and Harabasz 1974), Davies-Bouldin Index (Davies and Bouldin 1979) and Fowlkes-Mallows scores
(Fowlkes and Mallows 1983), respectively. “↑/↓” means the higher/lower the score, the better the clustering performance.

Domain Homes Buses Flights
Models CH↑ DB↓ FM↑ CH↑ DB↓ FM↑ CH↑ DB↓ FM↑

BERT&K-Means 98.828 2.182 0.372 72.344 2.073 0.023 53.53 2.02 0.14
Our Model 353.606 1.303 0.386 427.678 1.438 0.222 175.18 1.45 0.156

Table 3: Experimental results on home, bus and flight domain in the SGD (Rastogi et al. 2019) datasets. The three domains have
different nodes of user and system. Our model outperforms VRNN (Shi, Zhao, and Yu 2019) and BERT&K-Means baseline
systems in both internal and external clustering metrics in all domains.

to the low-resource dialogue state tracking task on the WoZ
2.0 dataset.

Clustering evaluation metrics are divided into two types:
(1) Internal metrics evaluate the quality of model without
any ground-truth, containing Calinski-Harabasz Index (CH)
(Caliński and Harabasz 1974) and Davies-Bouldin Index
(DB) (Davies and Bouldin 1979), respectively. (2) How-
ever, good scores on an internal criterion do not necessar-
ily translate into good effectiveness in an application. We
select Fowlkes-Mallows index (FM) (Fowlkes and Mallows
1983) as the external metric which can be used when the
ground truth class assignments of the samples are known.
Therefore, We construct the ground-truth dialogue struc-
ture based on the slot/act annotations of the dataset during
test. Specifically, The dialogue acts and turn labels for each
turn in the datasets are used to produce node labels such as
inform(price range) and state labels are regarded as edge
labels. Note that in the CamRest676 we calculate the dif-
ferences between the states of adjacent turns as node labels
because there are no turn labels.

For the downstream low-resource dialogue state tracking
task, we employ the joint accuracy as the evaluation metric,
which is the accuracy of the dialogue state of each turn and
a dialogue state is evaluated correctly only if all the values
of slots are correctly predicted.

Main Results
Cluster Performance As shown in the Table 2, BERT
with K-Means algorithm has significant improvement com-
pared to VRNN model. This result is consistent with the fact
that BERT has a sufficient utterance representation capabil-
ity compared to recurrent neural network (Bengio, Simard,
and Frasconi 1994) (RNN). Since there is no ground-truth
constructed in Shi, Zhao, and Yu (2019), we do not com-
pare our model with VRNN in the external metrics. Besides,
compared to the BERT with K-Means algorithm, the experi-
mental results of our model improve significantly in all met-

Model Joint Acc. (%) Loss
SUMBT (Lee, Lee, and Kim 2019) 45.52 3.75

SUMBT + Our Model 51.88 (+6.36) 3.33 (-0.42)
SUMBT + single-sentence LM 39.01 4.43

SUMBT + response-selection LM 41.01 4.08

(w/o init-CG) 50.83 3.36
(w/o self-supervised task) 47.79 3.61

Table 4: Ablation study about low-resource (10% training
set) dialogue state tracking on WOZ 2.0 dataset.

rics. The improvement in the internal metrics proves that our
model can aggregate the semantic-close utterance and re-
lationships better. In other words, our model is capable of
concentrating more on the high-level concept for each utter-
ance. Moreover, we also observe that the results are better
on the CamRest676 dataset than DSTC2, and the reason is
that DSTC2 is noisier due to some mistakes made by the
bot. Therefore it is also a challenge to filter noisy data in the
dataset, especially human-human dialogue. We will explore
it in the future work.

In addition to DSTC2 and CamRest676 dataset, we also
select three different domains in the SGD, which have dif-
ferent number of nodes and edges. Table 3 shows the re-
sults. Our model outperforms BERT with K-Means algo-
rithm significantly in all clustering evaluation metrics and
all domains, which proves that our utterance representations
are more effective due to the elaborate mechanism of mod-
eling the dialogue structure. Meanwhile, we can observe a
common phenomenon that performance on both baseline
and our model in FM decreases as the number of nodes in-
creases. However, our model is more stable than baseline,
which demonstrates the strong generalization capability of
our model and BERT with K-Means model has certain limi-
tation to differentiate complex scenarios.
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Application on Downstream Tasks One of the most im-
portant goals for such a structure discovery model is to uti-
lize it to facilitate downstream tasks. Therefore, we conduct
experiments to incorporate the structure-augmented utter-
ance encoding into the downstream low-resource dialogue
state tracking task. SUMBT (Lee, Lee, and Kim 2019) is a
fair and robust baseline compared to our model because it
exploits the multi-turn dialogue context and the pre-trained
BERT language model. Specifically, we train our model on
the full WOZ 2.0 training set and incorporate the utter-
ance representations of our CG into SUMBT (SUMBT+Our
Model). The two models subsequently are trained on the di-
alogue state tracking task with only 10% training data of
WOZ 2.0. To show the advantage of the learning represen-
tation in the downstream task, we also compare with other
existing methods that can also use the global information
from the corpus.
• single-sentence LM pretraines a domain-adaptive BERT

only with masked language model in single sentence.

• response-selection LM fine-tunes BERT on sentence se-
lection tasks, another way to capture the partial structure.
As shown in Table 4, the joint accuracy achieves +6.36

improvements and the loss on the test set decreases by 0.42
compared to SUMBT model. The results demonstrate that
our method can improve the performance of downstream
low-resource dialogue state tracking task in term of both
generalization ability and final task accuracy. It indicates
that the utterance representations obtained with our unsuper-
vised dialogue structure learning method summarizes local-
contextual and global-structural information, which pro-
motes SUMBT model to follow the real-data distribution.

Ablation Study We design two ablation experiments: (1)
removing the initialization procedure and only reconstruct-
ing the session-specific sub-graph. (2) reserving the initial-
ization procedure and removing the self-supervised response
selection task. The learned structure-augmented utterance
embedding are fed to the downstream low-resource dialogue
state tracking task. As shown in the Table 4, the joint accu-
racy decreases by 1.03 and 4.09 respectively, which demon-
strates that unsupervised EGAE and response selection task
are beneficial to dialogue structure learning. They promote a
higher quality of dialogue structure together, which further
boost the performance of downstream task. Besides, joint
accuracy decreases by 4.09 after removing the response se-
lection task, which proves that introducing a high quality
dialogue-related self-supervised task is useful for guiding
the unsupervised dialogue structure learning. Removing the
initialization procedure of CG leads to about 1.03 decreases,
which demonstrates that the global-structural information is
beneficial for dialogue structure learning.

Case Study
To empirically analyze the quality of the generated dia-
logue structure, we construct and visualize the conversa-
tional graph. The procedure is similar to the initialization
of conversational graph other than the utterance and rela-
tionship representation is learned from our model instead of

 I want moderately priced
restaurant in east part of town.

What is phone number?

[restaurant] serves [food type]
food. It is located at [area] and its
phone number is [phone number].

What type of food would you like?

I don't care.

inform (price range,area)  
ask (phone number)

Here are several restaurants that
serve [prince range] food. Do you

have cuisine preference?

[name] is [type] restaurant in [area]
and is in [price range].

Yes please and address.

It is located in [area] of town.

Thank you goodbye.

inform (price range,area)  
ask (phone number)
request (food)

inform (prince range,area,food)
ask (phone number)

inform (price range,area,food)
offer (phone number)

offer (prince range)
request (food)

offer (prince range)
inform (food)

offer (prince range,area)
inform (food)

offer (prince range,area)
inform (food)
ask (address)

offer (prince range,area,address)
inform (food)

User

System

User

System

User

System

User

Figure 3: An example of dialogue structures generated by
our model.

from BERT. The node is visualized by the Top-1 frequent
sentence in each node sentence set. Since sentences in the
edges set are long, but the number of edge labels is lim-
ited, we apply Key Extractor to extract keywords from Top-
10 frequent sentences. Based on the extracted keywords, we
manually summarize the edge annotations. Figure 3 shows a
part dialogue structure of the bus domain in the SGD dataset.
As shown in Figure 3, there are two different dialogue flow
in the dialogue structure. Specifically, the node I don’t care
transits different nodes based on the different edges anno-
tations. If the context contains the information that user of-
fers price-range, area and food type information and asks
the phone number, the next node will transit to the [restau-
rant] serves [food type] they are located at [area] and their
phone number is [phone number]. In contrast, if the context
only refers to price-range and food type, the next node will
transit [name] is [type] restaurant in [area] and is in [price
range]. In summary, our model not only can yield a logical
flowchart in a completely unsupervised way but also transit
between the nodes determinately in the specific context.

Conclusion
We define dialogue structure as a conversational graph
(CG) to obtain a deterministic transition in a specific con-
text and devise the novel Edge-Enhanced Graph Auto-
Encoder (EGAE) for graph learning. The experimental re-
sults demonstrate that our model performs better in aggre-
gating semantic-close utterances than the baseline. In the
future work, we will explore a more effective way to model
complex transition relationships in the conversational graph.
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