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Abstract
Recent studies on machine reading comprehension have fo-
cused on text-level understanding but have not yet reached
the level of human understanding of the visual layout and
content of real-world documents. In this study, we introduce
a new visual machine reading comprehension dataset, named
VisualMRC, wherein given a question and a document im-
age, a machine reads and comprehends texts in the image to
answer the question in natural language. Compared with ex-
isting visual question answering (VQA) datasets that contain
texts in images, VisualMRC focuses more on developing nat-
ural language understanding and generation abilities. It con-
tains 30,000+ pairs of a question and an abstractive answer
for 10,000+ document images sourced from multiple domains
of webpages. We also introduce a new model that extends ex-
isting sequence-to-sequence models, pre-trained with large-
scale text corpora, to take into account the visual layout and
content of documents. Experiments with VisualMRC show
that this model outperformed the base sequence-to-sequence
models and a state-of-the-art VQA model. However, its per-
formance is still below that of humans on most automatic
evaluation metrics. The dataset will facilitate research aimed
at connecting vision and language understanding.

Introduction
Creating intelligent agents that can answer questions as well
as people can is a long-cherished goal of artificial intelli-
gence. To achieve this goal, machine reading comprehension
(MRC), a challenge to enable a machine to read and com-
prehend natural language texts so that it can answer ques-
tions, has received much attention (Rajpurkar et al. 2016;
Rajpurkar, Jia, and Liang 2018). The MRC capability can
be of value to users if it can be employed by automated as-
sistants such as customer-service chatbots on e-commerce
websites (Cui et al. 2017) or assistant systems for read-
ing professional literature (Hong et al. 2019). Here, most
real-world documents are provided in non-plain text formats
(e.g., HTML and PDF). However, current studies in MRC
almost exclusively focus on text-level understanding, while
neglecting the visual layout and content (text appearance,
tables, charts, etc.) of the documents. Visual question an-
swering (VQA) on images containing a few words (Singh
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Q: Who were the winners of the Ig Nobel prize for Biol-
ogy and Chemistry?
A: The winner of the Ig Nobel prize for biology was Dr
Johanna van Bronswijk, and the winner for Chemistry was
Mayu Yamamoto.

Figure 1: Example from our VisualMRC dataset. The dataset
provides regions-of-interest (ROIs) with semantic classes in
addition to QA pairs and document images. E.g., a bound-
ing box colored in brown indicates a list. The image was
sourced from https://en.wikinews.org/wiki/2007 Ig Nobel
Prize winners announced.

et al. 2019; Biten et al. 2019) has recently been studied as
a challenging task that lies at the intersection of vision and
language understanding. However, these learning tasks do
not focus on document understanding. They cannot be used
to develop the ability to make a machine visually read and
comprehend real-world documents.

To move towards more advanced vision and language un-
derstanding, we have created a new dataset1, called Visual
Machine Reading Comprehension (VisualMRC), wherein
given a question and a document image, a machine reads
and comprehends texts in an image to answer the question in
natural language. As shown in Figure 1, the task demands a
rich set of abilities as varied as understanding the document
layout and visual representations of the text and non-text ob-

1We will release further information about this dataset at https:
//github.com/nttmdlab-nlp/VisualMRC.
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jects and extracting relations between objects, in addition to
natural language understanding (NLU) and natural language
generation (NLG). Compared with DocVQA (Mathew et al.
2020), which is a concurrent work of VQA on document
images, our dataset differs in that it provides a number of
images sourced from various contemporary webpages and it
provides long abstractive answers that can be used for eval-
uating the NLU and NLG abilities on document images.

Our main contributions are as follows.

• We introduce a novel visual machine reading comprehen-
sion dataset (VisualMRC) containing QA pairs that re-
quire a machine to read and reason about texts in the doc-
ument image. Our dataset is currently the only one dataset
that focuses on generative QA on document images.

• We propose a new model that allows for transferring the
NLU and NLG abilities of sequence-to-sequence models,
pre-trained on text corpora, to the VisualMRC task.

• Our model outperformed existing state-of-the-art VQA
model (Hu et al. 2020) and sequence-to-sequence mod-
els that we used as the base models (Raffel et al. 2020;
Lewis et al. 2020) on the VisualMRC dataset.

Existing Vision and Language QA Datasets
VQA on images containing a few words. VQA, in which
a document in MRC takes the form of an image, has been
studied intensively (Antol et al. 2015; Goyal et al. 2017).
Recently, a number of VQA datasets with text in images,
annotated using optical character recognition (OCR), have
been released. The focus of most text-based VQA datasets
is to reason and answer questions about text in natural daily
scenes. VizWiz-VQA (Gurari et al. 2018) consists of ques-
tions originating from blind people who each took a picture
using a mobile phone. TextVQA (Singh et al. 2019), ST-
VQA (Biten et al. 2019), and EST-VQA (Wang et al. 2020)
are crowd-sourced datasets on everyday scenes. Moreover,
some datasets focus on different types of images. For in-
stance, OCR-VQA (Mishra et al. 2019) is a dataset contain-
ing images of book covers; FigureQA (Kahou et al. 2018)
and DVQA (Kafle et al. 2018) are datasets containing dia-
grams and charts. What is most different about our dataset in
comparison with the ones mentioned above is that its images
contain more words. Our work is focused more on develop-
ing the NLU ability on documents in which multiple pieces
of text and visual content are laid out.

VQA on document images. Similarly to VisualMRC,
DocVQA (Mathew et al. 2020) has proposed a dataset for
VQA that requires reading and reasoning about document
images. However, there are important differences in design
choices, as follows: (i) VisualMRC contains a number of
different images sourced from multiple domains, while the
images of DocVQA are from a single source, the UCSF In-
dustry Documents Library. (ii) VisualMRC consists of con-
temporary born-digital webpages, while most of the doc-
uments in DocVQA are from the 1960–2000 period, con-
taining handwritten or typewritten words. (iii) The images
of VisualMRC contain a minimum of three natural lan-
guage sentences, while there is no guarantee that natural

language sentences are included in the images of DocVQA.
(iv) VisualMRC provides long abstractive answers, while
DocVQA provides SQuAD-like extractive and short an-
swers from a single span of the text in the document image.

Natural Questions (Kwiatkowski et al. 2019) is an MRC
dataset that provides HTML documents, and we may be able
to use it as a VQA dataset by creating document images with
HTML rendering; however, even state-of-the-art models like
RikiNet (Liu et al. 2020) do not use visual information.

Multi-modal question answering. Multi-modal question
answering takes both textual and visual information as in-
put contexts, which is different from text-based VQA that
takes only an image as the input context. TQA (Kembhavi
et al. 2017) is comprised of middle-school science lessons
containing diagrams and text. RecipeQA (Yagcioglu et al.
2018) provides cooking recipes with images and text. The
motivation behind these studies is similar to ours, but the vi-
sual information in the text such as the document layout is
dropped from the text in these datasets. The focus of our re-
search is to enable machines to handle the same visual input
as humans do when they read real-world documents.

Moreover, some of these datasets are in the setting of
multiple-choice QA that allows for accurate evaluation.
However, in terms of application scenarios, it is highly cost
to collect answer candidates to answer open-domain ques-
tions. For this reason, we believe that generative settings are
important, even if they are difficult to evaluate.

The VisualMRC Task and Dataset
We first define the VisualMRC task and then describe the
data collection concerning the task’s input and output.

Task Overview
We present VisualMRC, a new vision and language task to
read and comprehend texts given as a document image.

First, the end-to-end task is simply defined as:

TASK 1 (End-to-end VisualMRC). Given a question q and a
document image I , a model generates an answer a.

The VisualMRC task is a generative MRC task such as Nar-
rativeQA (Kociský et al. 2018), in which the answer is not
limited to word spans in the context. The understanding of
the image can be decomposed into two sub-tasks:

SUBTASK 1 (Region-Of-Interest (ROI) detection). Given an
image I , a model detects a set of ROIs. Each ROI ri consists
of a bounding box bi and a semantic class label li.

SUBTASK 2 (OCR). Given a ROI ri, a model detects a set
of word objects within the region. Each word object consists
of a bounding box bi,j and a form wi,j .

Dataset Collection
We describe how we collected images, ROIs, OCR words,
and question-answer pairs. Our dataset provides ground-
truth ROIs annotated by humans and OCR words for each
ROI as the outputs of SUBTASKS 1 and 2. It also provides
relevant ROIs that are required to answer each question.
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Document image collection. First, we collected 5,599 full
screenshots of webpages in 35 domains licensed under cre-
ative commons from January to March 2020. Then, we asked
94 crowdworkers to determine if each page included any
content that is usable for creating QA pairs and to annotate
the content (as a document image I) with a bounding box.
They were allowed to annotate multiple pieces of content
in a screenshot but were not allowed to overlap the bound-
ing boxes. Finally, seven crowdworkers validated the anno-
tated content. In total, 10,197 images were collected. We de-
fined content that is suitable as a document image as follows.
(i) No handwritten text is allowed: only machine-printed
text. (ii) The content is preferred to contain both pictures
and texts, but this is not strictly required. (iii) The con-
tent must contain a minimum of three natural language sen-
tences, preferably no more than 2-3 paragraphs. (iv) The
content has to contain information at least two of the classes
described in the next subsection.

Ground-truth ROI annotation. 45 crowdworkers were
asked to indicate specific objects (ROI ri in SUBTASK 1) in
the given image I by annotating bounding boxes bi around
the objects and classifying them into nine classes li. Figure 2
shows a screenshot showing crowdworkers’ ROI annotation
by selecting a class among the nine classes for each ROI.

We defined the nine ROI classes as follows.

• Heading/Title (H/T) The title or caption of a page, chap-
ter, etc.

• Subtitle/Byline (S/B) The secondary or subordinate title
of a page or a line of text giving the author’s name.

• Paragraph/Body (P/B) The main text that would be read.

• Picture (Pic) The picture or image that contains no text
or data.

• Caption (Cap) The text placed next an image, data, etc.
that provides or explains information about an image or
data.

• List Typically bulleted lists, where each bullet is not a full
sentence.

• Data Tables, charts, graphs, infographic, or other figures
with data or information.

• Sub-Data (S-Data) The text placed inside of the Data re-
gion.

• Other Any other text that does not fit in the other cate-
gories.

OCR execution. We extracted words (bounding box bi,j
and formwi,j in SUBTASK 2) from each ROI except the data
regions (because we have sub-data regions for texts in a data
region) by using the Tesseract OCR system (Smith 2007).

QA pair collection. 495 crowdworkers created three
unique questions q, and their generative answers a for each
image I , where questions should ask about the written con-
tent and there should be only one answer to each question.

Figure 2: Screenshot of ROI annotation by crowdworkers.

TextVQA DocVQA VisualMRC

Image type daily
scenes

industry
documents webpages

Num. images 28,472 12,767 10,197
Num. questions 45,536 50,000 30,562
Uniq. num. questions 36,593 36,170 29,419
Perc. uniq. answers 51.74 64.29 91.82
Avg. len. questions 8.12 9.49 10.55
Avg. len. documents 12.17 182.75 151.46
Avg. len. answers 1.51 2.43 9.53

Table 1: Statistics of datasets. The percentages of unique
answers and average lengths of answers in TextVQA and
DocVQA were calculated with the majority answers in the
train and dev sets. The lengths of the questions and answers
were measured by tokenizing them with NLTK. The lengths
of the documents were counted in terms of OCR words.

Relevant ROI annotation. The crowdworker that cre-
ated a question-answer pair also chose the relevant ROIs
(required to answer the question) among the ground-truth
ROIs. 79 crowdworkers validated the created data.

Data split. We split the dataset into training, development,
and test sets, in terms of URL domain; the datasets contain
21,015, 2,839, and 6,708 questions, respectively.

Statistics and Analysis
We compared our dataset with the two representative VQA
datasets with text in images: TextVQA and DocVQA.

Questions. Table 1 shows that the percentage of unique
questions in VisualMRC (96.3%) is higher than in TextVQA
(80.7%) or DocVQA (72.3%). The average question length
in VisualMRC is 10.55 tokens, larger than in TextVQA
(8.12) or DocVQA (9.49). Figure 3a shows that the distribu-
tion of question lengths is more long-tailed than in TextVQA
and DocVQA. Figure 3d shows a word cloud that presents
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(a) Number of questions with a particular
question length.
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answer length.
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(c) Number of document images with a
particular number of OCR words.

(d) Word cloud for questions. (e) Word cloud for answers. (f) Word cloud for document images.

Figure 3: Statistics of tokens in question, answer, document images of VisualMRC, TextVQA, and DocVQA datasets. Stop
words were excluded from word clouds.
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Figure 4: Distribution of questions by their first three words.

the question space is diverse. Figure 4 shows the first
three words of the questions. Compared with TextVQA and
DocVQA, we can see that a variety of questions are included
in the VisualMRC dataset. Questions often start with “what”
(42.0%) and “what is the” (9.5%), while their percentages
are significantly lower than those in TextVQA (78.2% and
22.9%) and DocVQA (68.1% and 58.2%). Yes/no questions
(starting with ”is” (4.7%), ”are” (2.0%), ”can” (1.8%), ”do”
(1.1%), etc.) are also included in the dataset.

Answers. Table 1 shows that the percentage of ques-
tions having unique answers in VisualMRC (91.82%)
is significantly higher than those of TextVQA (51.74%)
and DocVQA (64.29%). The average answer length in
VisualMRC is 9.53 tokens, significantly larger than in
TextVQA (1.51) and DocVQA (2.43). Also, answers begin

# topic words
1 brain cells figure people different like called body see
2 city understand many area south north world island east park
3 get bus around road airport city station add listing train take
4 use software copyright free information content work may
5 water figure species bacteria plants food called different fish
6 first university music film years london wikipedia history
7 like new people world technology make even time future
8 health humanitarian disease medical medicine cancer
9 open data digital research community education cc

10 government people said thailand corruption countries

Table 2: Ten topics inferred from document images by LDA.
We treated the OCR words in an image as a document.

with “yes” in 10.04% and “no” in 2.67% of the whole an-
swers. These percentages are higher than those in TextVQA
(4.90% and 0.97%) and DocVQA (0.12% and 0.15%).

Document images. The average number of OCR words
in an image of VisualMRC (151.46) and DocVQA (182.75)
is significantly larger than TextVQA (12.17). We also ana-
lyzed topics of the documents by using Latent Dirichlet Al-
location (LDA) (Blei, Ng, and Jordan 2003), and found that
VisualMRC covers a broad range of topics, science, travel,
software, health, education, news, government, etc. (see Ta-
ble 2), while most of the documents in DocVQA relate to
food and nutrition (Mathew et al. 2020).

Moreover, unlike DocVQA and TextVQA, VisualMRC
provides ROI annotations in images. Figure 5 shows the
number of ROIs broken down into the nine semantic classes.
The paragraphs and titles tend to be related to the question.
Also, 44.8% of the document images contain picture regions
and/or data regions such as tables and charts.
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Figure 5: Total number of ground-truth and relevant ROIs in
document images broken down by semantic class.

Proposed Model
Our model consists of sub-modules for the ROI detection
and OCR (SUBTASKS 1 and 2) and a main module for visual
machine reading comprehension. In this section, we first ex-
plain the main module and then the sub-modules.

Our main module has a Transformer (Vaswani et al. 2017)
architecture (see Figure 6). Following the success of recent
pre-trained encoder-decoder models such as BART (Lewis
et al. 2020) and T5 (Raffel et al. 2020) in NLG tasks, we ex-
tended the models by learning the visual layout and content
of the documents in a way that does not cause the forgetting
of the pre-trained NLG ability.

The main module maps an input sequence to a sequence
of embeddings, which is passed to the encoder. We extended
the formalization of the input sequence and embeddings. We
also conducted saliency detection to find the tokens relevant
to the question.

Input Sequence
The input sequence is formed from the tokenization results
of the concatenation of a question and OCR words in ROIs,
which are the outputs of the SUBTASKS 1 and 2. To consider
the semantic roles of ROIs, we insert a special token [Lri]
corresponding to the semantic class label li of the i-th ROI
ri (such as [P/B]; see Figure 6) just before the sequence of
OCR tokens {wri,1, . . . , wri,M} in ri:

xtoken =

{
[S], q1, ..., qm,[SEP], [Lr1 ], w1,1, ..., w1,M ,

[Lr2 ], . . . , [LrN ], wrN ,1, ..., wrN ,M

}
,

where [S] is a ’question:’ (<s>), and [SEP] is a ’context:’
(</s>) in the case we use T5 (BART) as the base model.

Input Embeddings
The input embeddings of the ROI and OCR tokens, which
are passed to the encoder, consist of a segment zseg, a lo-
cation within the image zloc, and an appearance zapp in ad-
dition to a token ztoken and a position within the input se-
quence zpos. In total, the fused embedding zk ∈ RH at the
k-th position in the sequence, zk, is given as:

zk = LN(ztokenk + zposk + zsegk + zlock + zappk )

where LN(·) is a layer normalization (Ba, Kiros, and Hin-
ton 2016). Note that the zposk of T5 is set to a zero vec-
tor since T5 uses relative position embeddings in self-
attention (Shaw, Uszkoreit, and Vaswani 2018) instead of

the absolute position embeddings. Also note that the seg-
ment, location, and appearance embeddings are not used by
the decoder, and those of the special tokens [S] and [SEP]
and question tokens for the encoder are set to zero vectors.

We explain the three additional embeddings below.

Segment embeddings. To convey the semantics of the
document structure to the model more explicitly, we intro-
duce a learnable segment embedding vector zsegk ∈ RH for
each ROI class, indicating which ROI the k-th token in the
input sequence comes from.

Location embeddings. We introduce a location embed-
ding zlock ∈ RH that denotes the relative location of the k-th
token (corresponding to a ROI or an OCR token) within the
input image. We use a 4-dimensional location feature based
on the token’s relative bounding box coordinates:

xlock = [xmin
k /Wim, y

min
k /Him, x

max
k /Wim, y

max
k /Him],

where (xmin
k , ymin

k ) and (xmax
k , ymax

k ) are the coordinates
of the top-left and bottom-right corners of the k-th token’s
bounding box, and Wim and Him are the image width and
height, respectively (see Figure 6). xlock is passed to a 1-layer
FFN to obtain the locations embedding zlock .

Appearance embeddings. To consider the appearance of
the ROIs and OCR tokens, we incorporate their visual fea-
tures into the input embeddings. The image corresponding
to the bounding box of the k-th token is fed into a Faster
R-CNN (Ren et al. 2015) to obtain 2048-dimensional fc7
appearance features, zfc7k ∈ R2048. Then, the ReLU activa-
tion of the feature zfc7k is passed to a 1-layer FNN to obtain
the appearance embedding zappk .

Saliency Detection
To find the tokens relevant to the question, we calculate the
relevance of each token with the outputs of the encoder,

Pi,j = sigmoid(ws>hwi,j
+ bs),

where hwi,j is the encoder hidden state in the last layer cor-
responding to wi,j (the j-th OCR token in the i-th ROI).
ws ∈ RH , bs ∈ R are learnable weights.

Saliency loss. We introduce a saliency loss to better su-
pervise the determination of which tokens are required to
answer the question. However, a reference label for each to-
ken is not given. To deal with this problem, we make pseudo
reference labels s by aligning the OCR tokens and answers.
The reference label is set to 1 if the following two conditions
are met: (i) an OCR token exists in the answer, and (ii) an
OCR token belongs to the relevant ROIs; otherwise, it is set
to 0. The saliency loss is defined as:

Lsal = −
1

NM

N∑
i

M∑
j

(
si,j logPi,j+
(1− si,j) log(1− Pi,j)

)
Multi-task learning. Our main module is trained by min-
imizing the weighted sum of the two losses:
Lmulti = Lnll + γsalLsal, where γsal is a hyper-parameter
to balance the losses, and Lnll is the negative log-likelihood
loss in the sequence-to-sequence learning.
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Figure 6: Left: Our encoder-decoder model architecture. A saliency detector that finds important tokens relevant to the question
is trained at the same time the sequence-to-sequence task is being learned. A sequence of five embeddings is passed to the
encoder. Special tokens such as [P/B] corresponding to the semantic classes of ROIs are used for the token and segment
embeddings. Right: Example of ROIs and OCR tokens (e.g., w3,1 = “Figure” in ROI3) in the document image. Their relative
locations are used in the location embeddings, and their visual features are considered in the appearance embeddings.

Sub-modules for ROI Detection and OCR
Using a different Faster R-CNN than the one for appearance
embedding, up to 100 detected objects with the highest score
are selected for each document image. This sub-module is
trained independently of the main module. Also, a built-in
OCR system such as Tesseract (Smith 2007) without any
fine-tuning is used to extract OCR words from each ROI.

Experiments
We conducted the evaluation experiments with our Vi-
sualMRC dataset. We did not use DocVQA because it does
not provide ROI annotations in images and does not focus
on generating answers. We used BART (Lewis et al. 2020)
and T5 (Raffel et al. 2020) as our initial models of our pro-
posed model. We fine-tuned them with the dataset, calling
them LayoutBART and LayoutT5, respectively.

Experimental Setup
Evaluation settings. In the end-to-end evaluation set-
ting (corresponding to TASK 1), we conducted ROI detec-
tion with a Faster R-CNN (SUBTASK 1) and used Tesser-
act (Smith 2007) to extract OCR words from each ROI
(SUBTASK 2); while in the main evaluation setting, we used
the ground-truth ROIs (manually annotated bounding boxes
and semantic class labels) and the OCR words for the ROIs
provided in the VisualMRC dataset. Our model and the base-
lines were trained on the ground-truth ROIs for both the
evaluation settings. We evaluated our model in the main set-
ting unless otherwise stated. Note that the performance in
the end-to-end setting is important for application scenarios
in the real-world.

When making comparisons with human performance
under the main setting, we first randomly picked 3,000 QA
pairs (on 1,000 images) from the test set. Next, one reli-
able worker answered the questions about the images. Then,
another reliable worker validated the correctness of the an-
swers created by the first reliable worker. Finally, we com-

pared the original answers and the answers created and val-
idated by the reliable workers.

Baselines. We used a state-of-the-art model for text-based
VQA, M4C (Hu et al. 2020), that takes OCR tokens, ques-
tion, and ROI features as input and generates an answer
word-by-word sequentially. Note that the whole architecture
of M4C except the input embeddings (OCR, question, and
ROI) were not pre-trained. In addition, we used the fine-
tuned T5 and BART without visual information (T5-Text
and BART-Text). They correspond to our models without
the segment, location, and appearance embeddings and with-
out saliency detection. We used T5BASE and BARTBASE un-
less otherwise stated. We also used the ones that take a ques-
tion only as input (-Q) and that take visual features only as
input (-Visual).

Evaluation metrics. Following the previous generative
MRC and image captioning tasks, we used BLEU (B) (Pa-
pineni et al. 2002), METEOR (M) (Denkowski and Lavie
2014), ROUGE-L (R-L) (Lin 2004), and CIDEr (C) (Vedan-
tam, Zitnick, and Parikh 2015) to assess the quality of
the generated answers. These scores were calculated with
the coco-caption toolkit. We also used the F1 score of
BERTScore (Bs), which is highly correlated with human
judgment (Zhang et al. 2020).

Implementation Details
We implemented all the models in PyTorch and experi-
mented on eight NVIDIA Quadro RTX 8000 GPUs.

Main module. We implemented our main module based
on the BART (Lewis et al. 2020) and T5 (Raffel et al.
2020) of huggingface Transformers (Wolf et al. 2019). We
mainly used BARTBASE (six layers with 768 hidden size)
and T5BASE (12 layers with 768 hidden size) to initialize
our models. The following settings for the BASE version
are the same as those for the LARGE version of BART (12
layers with a hidden size of 1024) and T5 (24 layers with a
hidden size of 1024).
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Model OCR Q V B-1 B-2 B-3 B-4 M R-L C Bs
M4C-Q X 20.2 13.0 8.9 6.1 9.8 20.9 58.3 85.1
M4C-Visual X X 20.7 13.3 9.2 6.3 10.1 21.8 61.0 85.3
M4C-Text X X 26.7 17.4 11.8 8.8 11.6 26.9 88.3 85.9
M4C X X X 29.2 20.1 14.4 10.3 12.8 28.1 98.6 86.1
T5-Q X 31.2 25.9 22.6 20.0 18.5 29.6 155.0 87.5
T5-Text X X 53.0 48.2 44.5 41.5 31.7 53.0 318.6 90.5
BART-Q X 31.8 25.7 21.9 19.0 15.0 27.7 140.5 73.0
BART-Text X X 50.6 44.4 39.9 36.4 28.8 48.7 278.3 90.1
LayoutT5 X X X 56.0 50.8 46.7 43.4 34.6 54.6 335.9 90.8
LayoutT5 w/o Saliency Detection X X X 55.8 50.7 46.6 43.3 34.9 54.4 335.1 90.7
LayoutBART X X X 53.0 46.8 42.3 38.7 31.9 52.8 309.9 90.7
LayoutBART w/o Saliency Detection X X X 52.0 45.8 41.3 37.7 31.3 52.8 302.8 90.6
LayoutT5LARGE X X X 57.2 52.1 48.1 44.9 37.3 57.1 364.2 91.3
LayoutBARTLARGE X X X 57.2 51.2 46.7 43.0 36.1 57.0 346.0 91.5

Table 3: Main evaluation results for different methods that leverage OCR, Question (Q) and Visual (V).

The balancing parameter λsal was set to 1.0. During train-
ing, we used a batch size of 32, and trained for a maximum
of seven epochs. Our model was trained using the Adam op-
timizer (Kingma and Ba 2015) with a learning rate of 3e-5.
The best model in terms of ROUGE-L was selected using the
validation set. When an OCR word is tokenized into sub-
word tokens, the bounding box coordinates of a sub-word
token are the same as those of its whole word as in Lay-
outLM (Xu et al. 2020).

For the appearance embeddings, we used a Faster R-
CNN (Ren et al. 2015) with a ResNet-101 (He et al. 2016)
backbone pre-trained on Visual Genome (Krishna et al.
2017), where we used the code and model of M4C2 (Hu et al.
2020). Then, the fc7 weights of the Faster R-CNN were only
fine-tuned during the training of the main module with the
VisualMRC dataset. For the saliency detection, we used a
label smoothing technique (Szegedy et al. 2016) to smooth
positive labels to 0.9.

Sub-module for ROI detection. We trained another
Faster-RCNN with a ResNet-101 backbone with Vi-
sualMRC independently of the main module for three
epochs, with a batch size of 16 and the Adam optimizer. The
starting learning rate was 1e-3. Standard anchor scales of [8,
16, 32] and anchor ratios of [0.5, 1.0, 2.0] were used.

M4C. We implemented M4C and its variant based on the
above-mentioned authors’ code. To enrich the OCR token
representation of M4C, we replaced FastText (Bojanowski
et al. 2017) with BERTBASE of huggingface Transformers.
We used the ROIs of the VisualMRC dataset as the detected
objects to be handled in M4C.

Evaluation Results
Do our models outperform other models? Table 3 shows
that our models outperformed the baselines on all met-
rics. This indicates that the additional learning of the visual
layout and content of documents improves performance.
M4C, a non pre-trained VQA model, performed signifi-
cantly worse than BART and T5. This indicates that the

2https://github.com/ronghanghu/pythia

Model B-4 M R-L C Bs
M4C 10.2 12.7 28.0 97.6 86.1
T5-Text 38.6 29.8 50.2 297.6 90.0

w/o ROI det 37.5 28.8 48.6 284.3 89.5
BART-Text 34.6 27.5 47.3 265.6 90.0

w/o ROI det 33.2 27.2 46.7 258.6 89.7
LayoutT5 41.0 33.2 52.2 317.9 90.3

w/o ROI det 39.1 31.0 49.3 292.8 89.8
LayoutBART 36.4 30.5 50.5 293.9 90.4

w/o ROI det 33.8 29.6 48.6 277.3 90.0

Table 4: Performance in the end-to-end setting.

transfer of their pre-trained NLG ability to the VisualMRC
task is useful in generating answers. Mathew et al. (2020)
also reported that BERT (Devlin et al. 2019) outperformed
M4C in the DocVQA task. We also found significant perfor-
mance improvements on all metrics when the model param-
eters were increased from BASE to LARGE. Moreover, we
noticed that the models that disregarded the visual informa-
tion and OCR tokens performed worse than the full models.

Does multi-task learning with saliency detection im-
prove the performance? Table 3 shows that our models
(jointly trained with the saliency detector) outperformed the
other models that did not have the saliency detector, except
METEOR of LayoutT5. The improvements in LayoutT5
were smaller than those in LayoutBART because T5’s pre-
training includes an MRC task (Rajpurkar et al. 2016) that
is similar to saliency detection in terms of extracting of im-
portant pieces from a document.

Do our models also perform well in the end-to-end set-
ting? Table 4 shows that our models also outperformed the
baselines on all metrics in the end-to-end setting that is im-
portant for application scenarios in the real-world. The per-
formances in the end-to-end setting was not significantly de-
creased compared with those in the main setting. But there
is still room for improving ROI detection (the mean Aver-
age Precision was 7.86%). This was comparable to the per-
formance of a Faster R-CNN (5.1%) reported by Soto and
Yoo (2019) on a document layout analysis dataset (Tkaczyk,
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Model B-4 M R-L C Bs
T5-Text 41.5 31.7 53.0 318.6 90.5
+ lbl 42.9 32.5 53.2 321.0 90.5

+ seg 43.6 32.8 53.3 320.7 90.5
+ loc 44.1 33.5 53.7 325.2 90.5
+ app 43.3 34.9 54.4 335.1 90.7

BART-Text 36.4 28.8 48.7 278.3 90.1
+ lbl 37.6 30.3 50.7 293.7 90.3

+ seg 37.8 30.3 50.9 296.0 90.4
+ loc 38.1 30.3 51.4 296.3 90.5
+ app 37.7 31.3 52.8 302.8 90.6

Table 5: Performance in the case of inserting ROI class la-
bels (lbl) and adding other embeddings (seg, loc, and app).

B-4 M R-L C Bs
H/T 37.9/42.8 29.8/32.5 49.9/52.6 289.2/315.4 89.9/90.3
P/B 42.7/44.1 32.3/35.0 54.0/55.1 328.1/340.9 90.6/90.8
S/B 39.6/46.3 29.9/33.8 48.0/52.6 314.2/353.1 90.0/90.8
Pic 25.9/32.0 24.8/29.8 44.9/49.0 242.6/282.7 89.4/90.3
Cap 31.2/41.1 28.0/33.1 50.3/55.5 289.4/344.0 89.6/91.0
List 35.7/39.0 30.4/33.1 48.1/50.4 282.5/307.0 90.0/90.7
Data 31.8/32.7 26.1/29.3 42.2/46.4 248.5/287.0 88.9/89.6

S-Data 30.1/41.4 26.4/32.4 42.8/50.6 236.3/315.8 88.9/90.6
Other 34.1/41.5 28.1/32.5 48.4/51.7 260.6/290.0 89.8/90.5

Table 6: Performance of T5/LayoutT5 broken down by se-
mantic class.

Szostek, and Bolikowski 2014).
Furthermore, we compared the models that directly read

the images (w/o ROI detection). Table 4 shows that ROI de-
tection was effective. This is because our OCR system fails
to read tokens in the correct order when reading complicated
(multi-column) documents, and ROI detection enables our
model to utilize visual layout information.

Is modifying the input sequence and embeddings effec-
tive? Table 5 shows the results of modifying the input se-
quence and embeddings of the baselines (BART-Text and
T5-Text). First, inserting the region class labels (lbl) before
the OCR token sequence consistently improved almost all
the metrics except BERTscore of T5-Text. Second, adding
the segment (seg) and location (loc) embeddings also im-
proved performance. Third, using the appearance embed-
ding (app) improved the performance except in terms of
BLEU-4; this observation is in line with previous studies (Le
and Hoi 2020; Li et al. 2020b).

On which classes of ROI does our model work well? Ta-
ble 6 shows the performance broken down by semantic class
according to whether it is included in the relevant ROIs.
LayoutT5 performed better than T5-Text on all metrics and
all semantic classes. Particularly, LayoutT5 showed signifi-
cantly improvements on the Picture, Caption, Sub-Data, and
Other classes. This indicates that our model was especially
effective at understanding vision-related data. However,
both T5-Text and LayoutT5 underperformed on the Picture
and Data classes compared with the other classes; determin-
ing ways of improving performance on these classes will be
our future work.

B-4 M R-L C Bs
LayoutT5LARGE 42.1 35.6 54.5 344.1 90.9

LayoutBARTLARGE 40.6 34.6 55.2 329.1 91.2
Human 39.6 41.0 57.9 370.3 91.9

Table 7: Human performance compared with those of our
models in the end-to-end setting on the sampled test set.

Model Avg. Time
T5-Text 0.1812

LayoutT5 0.2253
LayoutT5LARGE 0.4489

Table 8: Average time (sec.) to answer a single question.

Do our models outperform than humans? Table 7 com-
pares the performance of our best models (LayoutT5LARGE

and LayoutBARTLARGE) with human performance in the
end-to-end setting. Our models achieved the highest BLEU-
4, but the human level of performance was significantly
higher on the other metrics. This indicates that there is still
a performance gap between humans and the best machine.

How fast is our model? Table 8 shows the average time to
answer a single question from our models and the baselines
with a NVIDIA Quadro RTX 8000 GPU. LayoutT5 needs to
obtain a number of appearance embeddings for OCR tokens;
however, LayoutT5 did not slow down significantly com-
pared with T5-Text. The Faster R-CNN for appearance em-
beddings ran fast because it does not need to propose ROIs.
LayoutT5LARGE ran much slower because it has about 3.5
times the parameters of LayoutT5.

Output Example
Figure 7 shows an example of answers generated by the
baselines and our model. In response to the question about
the percentage of the Roman Catholics in Cape Verde, our
model was able to understand that the first row of the vi-
sual data table contains the information required to answer
the question (“77.3%”) and generate the same answer as the
ground-truth. T5-Text, which does not take into account the
visual layout of the document images, was distracted by an-
other percentage representation (“less than 1 percent”).

Figure 8 shows an incorrect example, where the question
is about the color of an object in the diagram. The proposed
and baseline models could not identify the object related to
the question and correctly answer its color. This indicates
that further research should be conducted on detecting ob-
jects in diagrams within the document image.

Related Work and Discussion
Transfer learning for vision and language. Recent
Transformer-based vision and language models, pre-trained
with large-scale image captioning and VQA datasets, have
achieved state-of-the-art performances on vision and lan-
guage tasks (Chen et al. 2020; Li et al. 2020a; Lu et al.
2020; Zhou et al. 2020). Moreover, as a pre-trained model
for document layout analysis, Xu et al. (2020) proposed Lay-
outLM, which models interactions between text and layout
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Q: what is the percentage of roman catholics in cape verde?
GT: the percentage of roman catholics in cape verde is 77.3%.
M4C: the percentage of young women in cape town are about 54% of
western somalia
T5-Text: percentage of roman catholics in cape verde is less than 1
percent.
LayoutT5: the percentage of roman catholics in cape verde is 77.3%.

Figure 7: Correct example generated by LayoutT5. GT de-
notes the ground-truth answer. The image was sourced from
https://en.wikipedia.org/wiki/Religion in Cape Verde.

information across grayscale scanned document images. It
takes OCR words and their appearance as inputs and per-
forms well in form and receipt understanding and in docu-
ment image classification. But it cannot consider the appear-
ance of visual content such as charts that can be handled
with M4C and our models.

The NLG ability is important for the VisualMRC task,
but the above pre-trained vision and language models, in-
cluding LayoutLM, are not pre-trained on text-to-text tasks.
Sequence-to-sequence models pre-trained with large-scale
text corpora have been successful in NLG tasks, so we de-
cided to use BART and T5 as the base models and modified
them into vision and language models.

Document layout analysis. Neural networks have been
recently used for page segmentation in order to split a doc-
ument image into ROIs and to recognize the role of each
ROI. Yang et al. (2017) treated the task as a pixel-by-pixel
classification problem. Katti et al. (2018) treated each docu-
ment page as a two-dimensional grid of characters and pre-
dicted a segmentation mask and bounding boxes. Soto and
Yoo (2019) proposed an adaptation of the Faster R-CNN ob-
ject detection model (Ren et al. 2015), with the addition of
contextual features such as page numbers and ROI positions
and sizes. We also used a Faster R-CNN to detect the bound-
ing boxes and semantic classes of ROIs. To further improve
the accuracy in the end-to-end VisualMRC setting, it will be
important to improve the document layout analysis.

Conclusion
This study posed visual machine reading comprehension
as a novel vision and language task. Compared with ex-

Q: in the graphic, what is the colour of economy?
GT: green
M4C: the colour of graphics is red.
T5-Text: ay
LayoutT5: economy is yellow.

Figure 8: Incorrect example. The image was sourced from
https://pro.europeana.eu/page/allezculture.

isting VQA datasets such as TextVQA and DocVQA, our
VisualMRC dataset focuses more on developing NLU and
NLG abilities on various document images. Our dataset con-
tains 30,000+ questions defined on 10,000+ images of con-
temporary born-digital webpages on multiple domains. It re-
quires a system to be able to read and reason about multiple
pieces of text and non-text data in images and to generate
abstractive answers. We believe that this dataset will con-
tribute to the development of intelligent assistant agents that
can read real-world documents.

Our visual machine reading comprehension models are
based on encoder-decoder models pre-trained on large-scale
text corpora, such as BART and T5, and they additionally
learn the visual layout and content of document images. Our
models outperformed BART and T5 simply fine-tuned with
only textual information and M4C, a state-of-the-art model
for text-based VQA datasets that takes question, OCR to-
kens, and visual features of documents. The key to its suc-
cess is transferring the pre-trained NLG capability to the vi-
sual machine reading comprehension task by adding embed-
dings and an auxiliary saliency detection task for learning
visual information in a way that does not cause catastrophic
forgetting. Moreover, our approach can be easily applied to
other pre-trained encoder-decoder models. Our future work
will involve exploring more effective pre-training methods
for this task and improving the understanding of data objects
such as tables, charts, and diagrams.
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