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Abstract

Slot filling is a challenging task in Spoken Language Under-
standing (SLU). Supervised methods usually require large
amounts of annotation to maintain desirable performance. A
solution to relieve the heavy dependency on labeled data is to
employ bootstrapping, which leverages unlabeled data. How-
ever, bootstrapping is known to suffer from semantic drift.
We argue that semantic drift can be tackled by exploiting the
correlation between slot values (phrases) and their respective
types. By using some particular weakly-labeled data, namely
the plain phrases included in sentences, we propose a weakly-
supervised slot filling approach. Our approach trains two mod-
els, namely a classifier and a tagger, which can effectively
learn from each other on the weakly-labeled data. The experi-
mental results demonstrate that our approach achieves better
results than standard baselines on multiple datasets, especially
in the low-resource setting.

1 Introduction
Slot filling is an essential and challenging task in Spoken Lan-
guage Understanding (SLU). The task is usually interpreted
as a sequence tagging process, during which slot values,
in the form of short phrases (such as named entities), and
their corresponding slot types are annotated. For example, as
shown in Table 1, there are three slot values in the user utter-
ance, namely “Atlanta”, “Toronto”, and “Friday afternoon”,
whose corresponding slot types are departure location, arrival
location, and departure time respectively.

Although some existing supervised approaches (Raymond
and Riccardi 2007; Yao et al. 2014; Mesnil et al. 2015) have
achieved good results on slot filling, they usually require
large amounts of annotated data, which is hardly available in
real-world applications. Actually, acquiring labels is costly,
and probably the biggest obstacle to the application of these
methods. This motivates the need for effective learning tech-
niques that leverage unlabeled data.

Bootstrapping is a popular approach using unlabeled data.
The main idea is to extend new annotations based on existing
annotations. However, this method may quickly introduce
semantic drift (Curran, Murphy, and Scholz 2007): one mis-
taken label may cause even more wrong predictions in the

∗ Corresponding author
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Utterance: List flights from Atlanta to Toronto Friday afternoon

Slot Tags: O O O B-dep.loc O B-arr.loc B-dep.time I-dep.time

Phrases: O O O B O B B I

Table 1: An example of annotation for slot filling.

subsequent iterations, causing the semantics of slot types to
deviate from its original definition. For the running exam-
ple in Table 1, a model could accidentally recognize both
location mentions (“Atlanta” and “Toronto”) as departure
locations. Such results are probably wrong because a person
can only be in one departure location at a time. With this error
undetected, the slot type departure location may gradually
drift from its original meaning. And in an extreme case, the
model may consider all location mentions to be of this type,
yet the loss could still be very small!

To avoid the above problem, we advocate leveraging some
special weakly-labeled data. Our approach relies on a key
observation that, compared to slot type and value annotations,
untyped plain phrases (i.e., text chunks, as shown at the
bottom of Table 1) are much easier to acquire, since almost
all phrases in a sentence (except for auxiliary words) can
be regarded as potential slot values. Given an utterance and
phrases included in it, we can always determine the slot type
for each phrase. For example, if a user wants to book an
airline ticket, the input utterance may contain phrases such
as the departure location, the arrival location, the departure
date and time, etc. With the plethora of off-the-shelf tools for
text chunking, phrases without slot labels can be collected in
large numbers.

In this paper, we assume that the dataset is partially anno-
tated, that is, only a small number of utterances are properly
labeled with both slot values and their respective slot types,
while the rest are all weakly-labeled with phrases. To tackle
semantic drift, which typically appears as wrong slot type in
our task output, we propose a solution comprising two mod-
els in their own task formulations: a Classifier that predicts
the slot type given a phrase (slot value), and a Tagger that
predicts the phrase (slot value) given a slot type. We design a
novel training target on which both models can be collabo-
ratively trained using plain phrases without slot labels. The
need for preventing semantic drift justifies our dual-model
approach, since, only if the two models produce consistent
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results, will the joint loss be minimized, which reduces the
possibility of wrong slot type caused by a single model.

We summarize the contributions of our paper as follows:
First, we propose a weakly-supervised dual-model learning

approach for slot filling. Supplied by very limited labeled
utterances, the models can be effectively trained on large sets
of weakly-labeled phrases.

Second, we explore variants of our method, including one
that requires no additional parameters to ensure that our main
idea can be easily integrated into existing slot filling models.

Third, we perform extensive experiments over several
datasets, and the results show that our approach outperforms
conventional supervised methods as well as bootstrapping
methods, especially when given very few labeled data.1

2 Related Work
Slot filling is usually treated as a sequence tagging task. Stan-
dard approaches include MEMMs (McCallum, Freitag, and
Pereira 2000) and CRFs (Raymond and Riccardi 2007). Many
researchers (Mesnil et al. 2013, 2015; Yao et al. 2013, 2014)
apply RNNs (Huang, Xu, and Yu 2015; Lample et al. 2016)
to this task and have promising achievements. Extensions in-
clude encoder-decoder models (Liu and Lane 2016; Zhu and
Yu 2017), memory networks (Chen et al. 2016), slot-gated
model (Goo et al. 2018), “label-recurrent” model (Gupta,
Hewitt, and Kirchhoff 2019), SF-ID interrelated model (Hai-
hong et al. 2019), capsule networks (Zhang et al. 2019), and
stack-propagation model (Qin et al. 2019). However, these ap-
proaches are sensitive to the size of training data, and cannot
achieve acceptable results given very few labeled samples.

To address this issue, some work focuses on exploiting ex-
ternal knowledge via transfer learning (Yang, Salakhutdinov,
and Cohen 2017), so they can quickly bootstrap the model in
a new domain with only a handful labeled data (Fritzler, Lo-
gacheva, and Kretov 2019) or even without any data (Bapna
et al. 2017; Shah et al. 2019; Lee and Jha 2019).

Bootstrapping (Yarowsky 1995) is a well-known technique
which leverages unlabeled data. The main idea is to extend
new annotations based on the existing annotations. Lee (2013)
propose to use pseudo labels generated by the model as if
they were true labels. Thenmalar, Balaji, and Geetha (2015)
define the pattern with a small set of training data, and then
use it as a seed pattern to generate new patterns. Co-training
(Blum and Mitchell 1998; Nigam et al. 2000) is similarly
motivated but uses a pair of classifiers to iteratively learn
and generate additional training labels. In mutual learning
(Zhang et al. 2018), multiple models are trained jointly for
the same task by minimizing the KL-divergence between
their predictions.

Another related technique to leverage unlabeled data is
Π-model (Sajjadi, Javanmardi, and Tasdizen 2016) where the
input is perturbed with noise, and the model is then required
to produce similar predictions with and without perturbation.
Miyato et al. (2018) proposed an adversarial training strategy
to generate noise.

1Our code is available at https://github.com/LorrinWWW/
weakly-supervised-slot-filling
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Figure 1: Dual-model overview.

Dual learning (He et al. 2016) is first proposed for neural
machine translation. It is also applied in SLU (Su, Huang, and
Chen 2019), where natural language generation (NLG) is the
dual task. Zhu, Cao, and Yu (2020) propose a semi-supervised
learning approach to slot filling which improves performance
by integrating a dual task of semantic-to-sentence generation.
However, the work is based on a very strong assumption that
semantic forms (namely intents and lists of slot-value pairs)
are available. Given such slot-value pairs as a gazetteer alone,
one can easily build a high-quality slot filler even by keyword
lookup. In contrast, our method only leverages plain phrases
produced by off-the-shelf chunking tools.

3 Approach
3.1 Model
We describe the model structure of Tagger and Classifier in
this section. Both models share the same text encoder, which
maps each word in the input utterance to a fixed-dimensional
vector. Figure 1 presents the overview. Classifier predicts the
slot type for the given phrase. Meanwhile, Tagger predicts
the slot value for the given slot type. Being two independent
parts, however, they provide each other with supervision
information via a dual-model learning mechanism, as will be
described in the next subsection.

Encoder We first introduce the text encoder used in Tagger
and Classifier, shown in Figure 1. For an utterance contain-
ing n words x = [x(i)]

n−1
i=0 , we define the word embeddings

xw ∈ Rn×d1 , as well as character embeddings xc ∈ Rn×d2
computed by an LSTM (Lample et al. 2016). We also con-
sider the contextualized word embeddings xl ∈ Rn×d3 ,
which is produced from pre-trained language models such as
BERT (Devlin et al. 2019).

We concatenate those embeddings for each word and use a
linear layer to reduce the embedding size and a bidirectional
LSTM to compute the final word representation x̃ ∈ Rn×d:

x̃ = LSTM(Linear([xc;xw;xl])) (1)

where each word is represented as an d dimensional vector.
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Tagger Figure 1a presents the structure of Tagger. Given an
utterance x and a slot type s, it needs to predict tags for every
word in BIO scheme2 (Ratinov and Roth 2009), indicating
the phrase boundary of slot type s.

We first use a bidirectional LSTM to contextualize the
word embeddings x̃ defined at Equation 1. And for each slot
type, we use a distinct linear layer to compute the score for
tag B, I, and O. Formally, we have:

logitsTAG = Linears(LSTM(x̃)) (2)
so the tag probability distribution is:

Pr
θTAG

(P |x, s) = softmax(logitsTAG) (3)

where θTAG is the set of parameters related to Tagger;
Linears means the model will use different parameters ac-
cording to the given slot type s; P = [P(i)]

n−1
i=0 is a fixed-

length sequence of random variables on BIO tags.

Classifier Figure 1b illustrates the model structure of Clas-
sifier. Given an utterance x and a phrase p = [p(i)]

n−1
i=0 in it,

Classifier needs to predict the slot type of the phrase.
We use the text encoder to encode the sequence of words

in the utterance, denoted x̃. And the input phrase p is given
in BIO tags, and we map each tag to a learnable embedding,
so the phrase p can be represented with embeddings p̃. We
add the utterance embeddings x̃ and phrase embeddings p̃
word-wise, and then feed them to a bidirectional LSTM to
obtain the contextualized hidden vectors h = [h(i)]

n−1
i=0 :

h = LSTM(x̃ + p̃) (4)

Next, we use attention to aggregate the sequence of vectors
into one vector:

h̃ =
∑

0≤i<n

α(i)h(i), α(i) =
exp(h(i) · vα)∑

0≤j<n exp(h(j) · vα)
(5)

where vα is a learnable vector.
Finally, we use a linear layer to calculate the slot type

probability distribution of the input phrase:

logitsCLS = Linear(h̃) (6)

Pr
θCLS

(S |x,p) = softmax(logitsCLS) (7)

where θCLS is the set of parameters related to Classifier, and
S is a random variable of the slot type.

3.2 Training
We explore the weakly-supervised learning scenario, where
the raw dataset is available in two groups: 1) utterances with
correctly labeled slots, and 2) unlabeled utterances. We then
use off-the-shelf text chunking tools to extract phrases from
the unlabeled utterances (see §4.1 for details), which then be-
come weakly-labeled data for dual-model learning. Usually,
the labeled utterances are scarce but they provide examples
to define slot types. In contrast, the weakly-labeled data (i.e.,
phrases) are abundant as they can be easily acquired, but their
information is weak, and cannot directly fulfill the need for
supervising slot filling.

2B-tag for the beginning word of a text span, I-tag for other
words inside a text span, and O-tag for words outside any spans.
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Figure 2: Weakly-supervised learning part.

Supervised Learning We begin with the supervised learn-
ing setting. Given correctly labeled data, the learning process
is straightforward – to train the two models individually. For
both models, we use the prevalent cross-entropy loss.

Given an utterance x, a phrase p in it and its slot type s
(s ∈ {si}m−1i=0 , where m is the number of slot types), we
define the loss for Classifier:

LCLS = − log Pr
θCLS

(S = s|x,p) (8)

Similarly, we define the loss for Tagger, which is the sum
of cross-entropy between the prediction of each word and its
corresponding phrase tag:

LTAG = −
∑

0≤i<n

log Pr
θTAG

(P(i) = p(i)|x, s) (9)

We add the two losses to obtain the final loss:

Lsup = LCLS + LTAG (10)

Note that we also keep the negative samples here. A neg-
ative sample is when the utterance x does not contain any
valid slot value for slot type s, so the input phrase p is an
all-O-tag sequence. In this case, LCLS is simply discarded.

Weakly-Supervised Learning Before introducing the
weakly-supervised learning part, we first rewrite the super-
vised learning loss in another form. For Classifier, we have:

LCLS = − log Pr
θCLS

(S = s|x,p)

= −
∑

0≤i<m

1{s}(si) log Pr
θCLS

(S = si|x,p)

= −
∑

0≤i<m

1{s}(si) `
CLS
(i) (11)

where 1 is an indicator function defined as 1E(e) = 1 if
e ∈ E, and 0 otherwise; `CLS

(i) represents the log-likelihood
between slot type si and the prediction.
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Similarly, for Tagger, we have:

LTAG = −
∑

0≤j<n

log Pr
θTAG

(P(j) = p(j)|x, s)

= −
∑

0≤i<m

1{s}(si)
∑

0≤j<n

log Pr
θTAG

(P(j) = p(j)|x, si)

= −
∑

0≤i<m

1{s}(si) `
TAG
(i) (12)

where `TAG
(i) represents the log-likelihood between phrase p

and the prediction for slot type si.
Now the total loss at Equation 10 can be derived as:

Lsup = −
∑

0≤i<m

(1{s}(si) `
CLS
(i) + 1{s}(si) `

TAG
(i) ) (13)

Note that only term 1{s}(si) depends on the gold slot type
s, which might be unavailable in the weakly-supervised data.

To compensate for the missing supervision in these data,
our weakly-supervised learning is motivated by the following
ideas: 1) If the prediction of Tagger for slot type si is very
close to the given phrase p (i.e., `TAG(i) is large), then the
phrase is likely to belong to this slot type; 2) If the relevance
between slot type si and phrase p, estimated by Classifier, is
very high (i.e., `CLS(i) is large), then Tagger should be able to
retrieve phrase p for this slot type. Therefore, we can allow
the two models to supervise each other, so as to compensate
for the missing information 1{s}(si).

As depicted in Figure 2, we give the loss as follows:

Lweak = −
∑

0≤i<m

(rTAG
(i) `

CLS
(i) + rCLS

(i) `
TAG
(i) ) (14)

rTAG = softmax([`TAG
(i) ]m−1i=0 ) (15)

rCLS = softmax([`CLS
(i) ]m−1i=0 ) (16)

where we may notice rCLS
(i) = PrθCLS(S = si|x,p).

During training, specifically for the weakly-labeled utter-
ances, the optimizer will mainly maximize `TAG

(i) when `CLS
(i) is

large, and maximize `CLS
(i) when `TAG

(i) is large. Consequently,
the total loss is minimized only when Classifier and Tagger
agree with each other, i.e., Classifier chooses the correct slot
type and Tagger predicts phrase p for that slot type simulta-
neously.

Besides, another important feature of our method is that, it
is encouraged to categorize phrases inside the same utterance
into different slot types. For instance, assuming Classifier
classifies two different phrases into the same slot type s0,
since we have L ≥ −rCLS

(0) `
TAG
(0) , to keep the loss small, the

optimizer should at least ensure `TAG
(0) to be reasonably large.

However, since the predicted phrase by Tagger for slot type
s0 is always the same, we cannot keep the likelihood with the
two phrases large at the same time. As a result, as long as the
algorithm converges, i.e., the training loss is reasonably small,
our method will attempt to capture the subtle differences of
phrases in the same context.

Note that conventional bootstrapping approach is prone
to the problem of semantic drift when encountering similar

slot types. In the scenario of slot filling, similar slot types
frequently co-occur in the same utterances, such as departure
location and arrival location. Therefore, the above-mentioned
feature becomes a strong advantage over bootstrapping in
mitigating semantic drift in our task, as it helps disambiguate
phrases of similar slot types.

Joint Training For each training step, we sample from
labeled utterances and weakly-labeled utterances, and we
train models jointly by minimizing the total loss:

L = Lsup + λLweak (17)

where λ is a hyperparameter weighting the importance of
the weakly-supervised part.

4 Experiments
4.1 Data
We evaluate the performance of our method on three dif-
ferent datasets, namely SNIPS (Coucke et al. 2018), ATIS
(Hemphill, Godfrey, and Doddington 1990; Tur, Hakkani-Tür,
and Heck 2010) and MIT Rest. (Liu et al. 2013). We use the
standard train-dev-test split for these datasets. For ATIS and
MIT Rest., since they do not have a standard development
set, we randomly pick 10% of the original training set as the
development set.

To simulate low-resource scenarios, we randomly retain a
small portion of the original training set as labeled data. We
use all the utterances in the original training set to generate
weakly-labeled data. Though text chunks are not directly
available, they are not expensive to acquire. Briefly, with plain
sentences available, we use off-the-shelf chunking tools, e.g.,
AutoPhrase3 (Shang et al. 2018), Flair4 (Akbik et al. 2019)
and rule-based methods (e.g., gazetteers and regex rules),
filtered by task specific stop-words. We merge all the outputs
by majority voting to obtain the collection of plain phrases
– retain text chunks that are extracted by at least half of all
chunking methods.

Since our method is tolerant to possibly missing candidate
slot values (meaning its performance will not be hurt much,
see §4.6 for details), we give priority to ensuring the precision
and, for this purpose, recall fewer phrases.

4.2 Setup
Model Setting For each mini-batch, we sample 30 utter-
ances from labeled data and from weakly-labeled data. GloVe
word vectors (Pennington, Socher, and Manning 2014) are
used to initialize word embeddings, which are tuned dur-
ing training. We also use BERT (bert-large-uncased, fixed
without fine-tuning) to produce contextualized embeddings
concatenated after the word embeddings. We set the hidden
size to 200, and since we use bidirectional LSTMs, the hidden
size for each LSTM is 100. We also apply 0.3 dropout after
embeddings and LSTMs to mitigate the over-fitting issue. We
use Adam with a learning rate of 1e-3 to train the model.

3https://github.com/shangjingbo1226/AutoPhrase
4https://github.com/zalandoresearch/flair
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Dataset SNIPS ATIS MIT Rest.

# labeled utterances 100 300 1000 all 100 300 1000 all 100 300 1000 all

SF-ID Network 41.3 59.7 77.6 93.7 69.5 84.5 92.4 95.5 42.5 55.2 67.0 77.2
Stack-Propagation 44.7 64.3 81.1 94.5 69.6 86.5 92.9 95.7 48.7 59.9 68.8 78.4
JointBERT 62.8 78.8 89.4 97.0 79.9 89.4 94.1 96.1 53.1 69.1 75.7 79.3
LSTM+BERT 61.7 77.5 88.4 95.7 77.0 88.3 94.2 95.9 58.7 68.3 75.1 78.8
LSTM+CRF+BERT 62.2 77.7 88.4 95.6 77.4 88.6 94.0 95.9 59.2 68.8 75.7 79.8
Pseudo-Label 67.4 81.1 90.6 95.5 78.6 89.3 94.2 95.9 59.4 69.6 75.9 79.5
VAT 64.4 83.4 90.5 95.4 75.8 88.1 94.0 95.9 61.1 70.5 77.2 79.5
DML 53.9 82.7 90.9 95.5 76.5 88.3 94.9 95.9 62.7 71.8 77.5 79.6

ours w/o BERT 80.3 88.5 92.5 95.1 80.9 90.8 94.6 95.9 67.2 72.4 75.1 78.4
ours 82.0 91.4 93.2 95.4 81.1 91.1 95.0 95.9 73.0 75.4 78.0 78.7

Table 2: Comparison with different number of labeled utterances. The reported metric is F1 score.

Metric Following the established line of work, we report
the F1 score, where a slot filling prediction is considered
correct if the boundary and slot type are both correct. We
report the metrics averaged on 5 runs. And for each run, we
save the model checkpoint that achieves the highest F1 score
on the dev set, and report its score on the test set.

Evaluation Both Tagger and Classifier can be used inde-
pendently. But to ensure the test conditions are consistent
with previous work, we will only use Tagger. Specifically, for
a given utterance, we input all slot types into Tagger in turn to
obtain a complete slot filling output. Since the datasets used
do not contain overlapping slot values, when two predicted
slot values overlap with each other, we preserve the one with
higher confidence and discard the other one.

4.3 Baselines
We compare our approach with the following baselines:

SF-ID Network Haihong et al. (2019) introduced an SF-
ID network to establish direct connections for slot filling and
intent detection to help them improve each other mutually.
We further enhance the model with GloVe embeddings to
improve their performance under the low-resource setting.

Stack-Propagation Qin et al. (2019) proposed a joint
model with Stack-Propagation to better incorporate the intent
information for slot filling. We also enhance it with GloVe.

JointBERT Chen, Zhuo, and Wang (2019) fine-tuned
BERT to get a joint model for slot filling and intent detection.

LSTM+BERT (+CRF) LSTM-based model is a simple
yet still powerful baseline for sequence tagging tasks. In
our implementation, it uses the same input features as our
approach.

Pseudo-Label Lee (2013) used pseudo labels, the classes
that have the maximum predicted probability as if they were
true labels. We adapt the idea to LSTM+BERT, so that it can
be used for slot filling.

VAT Miyato et al. (2018) proposed a virtual adversarial
loss that can be applied to unlabeled data. We apply it to
LSTM+BERT, and evaluate in slot filling datasets.

DML Zhang et al. (2018) proposed deep mutual learning,
using two identical classifiers to supervise each other by
minimizing their outputs’ KL-divergence. We apply it to
LSTM+BERT so as to evaluate for slot filling.

4.4 Main Results
Table 2 shows that the performance of different methods
varies with the number of labeled utterances. For supervised
methods, we only use labeled utterances for training, and we
also retain the intent labels of these utterances for systems
that are designed for joint intent detection and slot filling.
However, due to limited training resources, all these base-
lines do not perform very well. And only when the training
data become relatively abundant, can these methods gradu-
ally manifest their advantages. Pseudo-Label, VAT and DML
leverage unlabeled data and obtain some improvements, how-
ever, their performance is still unsatisfactory.

In comparison, in the low-resource settings, our method
achieves significant improvements over the baselines. When
we increase the number of labeled utterances, the perfor-
mance margins tend to narrow down, but our method still
achieves the best scores, except for the all-retained setting,
where all utterances are correctly labeled.

Besides, one important advantage is that our method miti-
gates semantic drift (as discussed in §3.2), which occurs in
bootstrapping methods. We investigate it with case study:

Case 1: “find a show called friday download”
It contains an object type “show” and an object name

“friday download”. However, Pseudo-Label accidentally rec-
ognized both of them as object types, and in the next several
iterations, the model continuously strengthened this bias and
led to semantic drift, where the model incorrectly expanded
the definition of object type and included part of the object
name. In comparison, in our method, Tagger and Classifier
diverged in classifying these two phrases at first, but finally
agreed that “show” is closer to the object type, and thus the
other phrase is more likely to be an object name.

Case 2: “... the movie time for the marcus corporation”
It contains a location name “marcus corporation” and an

object type “movie time”. However, Pseudo-Label failed to
recognize “marcus corporation”, which might cause more
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(a) Magnitude of each loss term (b) F1 score on dev and test set (c) Inconsistency ratio on dev and test set

Figure 3: Statistics during training. The X-axis is the training steps.

false negatives since the prediction would be treated as
ground truth. In this case, the semantics of location name
learned by the model has become incomplete. Nevertheless,
our method correctly detected both slots.

Case 3: “... flights between san jose and houston”
It contains a fromloc.city name “san jose” and a

toloc.city name “houston”. Pseudo-Label recognized both
fo them as toloc.city name. Although the utterance does not
explicitly show which is the departure city and which is the
destination, it is certain that they cannot share the same slot
type. In our method, the model successfully distinguishes the
two slots.

4.5 How Does it Work?

In this section, we attempt to give some insights into how and
why our learning strategy works. We conduct experiments on
SNIPS, of which 300 utterances are retained as labeled data.

We especially want to know how the weakly-supervised
loss (Lweak) affects the training process. We investigate this
by plotting each part of the loss and the F1 score according
to training steps, which are shown in Figure 3a and 3b. We
can make the following observations: 1) In the early stage
of training, since we assign the weakly-supervised part a
smaller weight (λ = 0.2), the supervised part plays a major
role and thus its loss drops more rapidly; 2) When the loss
of the supervised part decreases to a certain level (steps 500-
1000), the weakly-supervised part gradually starts to take
effect; 3) Moreover, as shown in 3b, after step 1000, the F1
score growth rate of our method without weakly-supervised
loss significantly slows down; meanwhile, the one having the
weakly-supervised loss is still growing steadily.

Besides, we also want to know if our approach benefits
from the mutual persuasion between Classifier and Tagger.
Figure 3c presents the inconsistency ratio on dev and test
set during training, where we consider inconsistency occurs
if arg maxi `

CLS
(i) 6= arg maxi `

TAG
(i) . In the supervised setting

(without Lweak), since Tagger and Classifier are trained indi-
vidually, inconsistency occurs much often than the weakly-
supervised setting (with Lweak). This result indicates that the
weakly-supervised loss can effectively promote the two mod-
els to reach agreement, and therefore explains the significant
improvements in F1 compared to the baselines.

Boundary Shift 0% 7% 15% 30%

LSTM+CRF+BERT 77.7 - - -
w/ chunk 87.4 85.1 83.1 82.2

ours 91.5 90.4 88.8 85.8

Missing Phrase 0% 7% 15% 30%

LSTM+CRF+BERT 77.7 - - -
w/ chunk 87.4 85.4 84.8 84.1

ours 91.5 91.3 91.1 91.0

Table 3: Effect of chunking quality. “w/ chunk”: use another
linear layer to predict text chunking tags. The metric is F1.

4.6 Supervision from Text Chunking
Since we use text chunking tools to extract phrases in the
unlabeled utterances, this brings additional supervision infor-
mation that is beneficial to the performance, especially in the
low-resource setting. Its effect needs to be studied in order
to understand the contribution of our method beyond this
extra knowledge. So we construct an LSTM-based sequence
tagging model to predict both slot tags as well as text chunk
tags, in a multi-task learning manner. Specifically, we lay
another linear layer on the top of the LSTM networks, and
directly train on the gold text chunks (phrases).

In addition, we are also interested in the impact of chunk-
ing quality to the performance, so we apply two types of
noises to the gold text chunk labels: 1) Boundary Shift: we
randomly shift the left or right boundary of e% text chunk
labels by one, e.g., “New York” may become “York”; 2)
Missing Phrase: we randomly drop e% text chunk labels,
which cannot be used in training. We investigate the effect by
varying the error rate e%, and the results are shown in Table
3. The experiments are conducted on SNIPS, of which 300
utterances are retained as labeled data.

In Table 3, when using gold text chunk labels, i.e., error
rate is 0%, the multi-task setting (“w/ chunk”) outperforms
the single-task setting, which indicates that text chunk la-
bels do facilitate better slot value detection. However, the
improvement of our method does not just come from this,
and in fact, “w/ chunk” still has a big performance gap with
our method. Table 3 also shows the results under a certain
amount of noise. For Boundary Shift, our method has been
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Setting P R F1

default 90.5 92.4 91.4
w/o Char Emb 90.6 92.2 91.4
w/o Word Emb 89.3 91.1 90.2
w/o GloVe 88.7 90.5 89.6
w/o BERT 87.6 89.5 88.5

w/o rTAG
(i) `

CLS
(i) 89.1 92.1 90.6

w/o rCLS
(i) `

TAG
(i) 86.9 81.9 84.3

w/o Lweak 85.4 75.8 80.3

w/o Lweak w/ LweakS 88.9 91.8 90.3
w/o Lweak w/o Cls w/ LweakS 88.5 91.6 90.0
w/o Lweak w/o Cls 84.4 75.1 79.4

Table 4: Ablation study.

affected a bit, but the decline is less than “w/ chunk”, which
indicates that our approach is robust enough to withstand a
certain percentage of noise in the phrase; for Missing Phrase,
it did not bring much negative impact to our method, which
indicates that our approach can tolerate missing phrase labels
and its performance will not be hurt much.

4.7 Ablation Study
We design several additional experiments to understand the
effectiveness of components in our system. The experiments
are conducted on SNIPS with 300 labeled utterances.

Features The features used in our experiments include
word embeddings (GloVe), character embeddings, and con-
textualized embeddings from language models (BERT). Table
4 shows the results removing each of them. Among them,
character embedding is not very useful, possibly because the
SLU datasets are not case sensitive.

Loss Terms Table 4 presents the performance changes by
removing loss term rCLS

(i) `
TAG
(i) , rTAG

(i) `
CLS
(i) , and both of them,

respectively. We see that both of them have a certain contri-
bution to the final performance, of which rCLS

(i) `
TAG
(i) plays a

more important role. An interesting finding is that, the term
rCLS
(i) `

TAG
(i) affects recall more, while the term rTAG

(i) `
CLS
(i) im-

proves precision more. The former makes Tagger tend to
predict more slot values, as the false positive ones can be
masked by rCLS

(i) . The latter makes Tagger more cautious since
a phrase can only have one slot type.

Additional Classifier Since the dual models gain supervi-
sion from each other, an intuitive attempt is to only avail each
model of self-supervision. Specifically, we define the loss:

LweakS = −
∑

0≤i<m

(rCLS
(i) `

CLS
(i) + rTAG

(i) `
TAG
(i) ) (18)

where the “S” in “weakS” is for “self-supervision”. In addi-
tion, since Lweak is removed and Classifier is not used in the
evaluation, we also try to remove Classifier (w/o Cls in Table
4). In this case, the term rCLS

(i) `
CLS
(i) is removed from LweakS.

Setting P R F1

LSTM+BERT 76.9 78.1 77.5
w/ Lweak w/ Cls 89.7 91.0 90.3
w/ LweakS w/o Cls 86.8 89.3 88.0

LSTM+CRF+BERT 77.3 78.2 77.7
w/ Lweak w/ Cls 89.5 91.0 90.3
w/ LweakS w/o Cls 87.5 89.5 88.5

ours 90.5 92.4 91.4

Table 5: Integration with common sequence tagging models.

Table 4 shows the results. Although the results of self-
supervision (w/o Lweak w/ LweakS) seems good, they are still
lower than the default dual-model learning setting. This may
be due to the different induction biases of the two different
models. The mutual supervision makes it possible to take
advantage of this difference, thereby reducing overfitting and
semantic drift in the iterative process.

4.8 Integration with Other Tagging Models
Our weakly-supervised learning technique can be integrated
into the training process of a regular sequence tagging model
in two adaptation schemes. Without making any change to
the supervised learning part, we add a weakly-supervised part
to be jointly trained, in which the regular model is considered
as “Tagger” and supplied with phrase information. Tagger
can be trained 1) using Lweak with an additional Classifier; or
2) using LweakS without adding a Classifier.

Table 5 presents the results of incorporating our schemes
into the prevalent LSTM and LSTM+CRF with BERT em-
beddings. It can be observed that, for both LSTM+BERT and
LSTM+BERT+CRF, adding the weakly-supervised learning
part brought significant improvements to the performance.
Among them, “w/ Lweak w/ Cls” shows a clear advantage
over “w/ LweakS w/o Cls”, indicating the effectiveness of the
dual-model setting. However, it is still slightly worse than the
original Tagger, mainly due to the inconsistency between the
targets in different learning parts, especially when using CRF.
On the contrary, our original Tagger does not switch between
different learning targets, thus avoiding the performance loss
caused by inconsistency.

5 Conclusion
In this paper, we studied the slot filling problem and used
two different models in different task formulations, namely
a Classifier that predicts the slot type given a phrase (slot
value), and a Tagger that predicts the phrase (slot value)
given a slot type. To leverage the large amounts of unlabeled
data, we propose to let the dual models supervise each other
in a weakly-supervised learning manner. Our experimental
results showed that our method worked especially well when
given very few labeled data. In the future, we would like to
investigate methods that do not rely on text chunking tools
as a preprocessing step. We will also try to select suitable
utterances from a larger general-purpose corpus to improve
the performance on full datasets.
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