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Abstract

Attention with positional encoding has been demonstrated as
a powerful component in modern neural network models, such
as transformers. However, why positional encoding works
well in attention models remains largely unanswered. In this
paper, we study the scalar relative positional encoding (SRPE)
proposed in the T5 transformer. Such an encoding method has
two features. First, it uses a scalar to embed relative positions.
Second, the relative positions are bucketized using a fixed
heuristic algorithm, and positions in the same bucket share the
same embedding. In this work, we show that SRPE in attention
has an elegant probabilistic interpretation. More specifically,
the positional encoding serves to produce a prior distribution
for the attended positions. The resulting attentive distribution
can be viewed as a posterior distribution of the attended po-
sition given the observed input sequence. Furthermore, we
propose a new SRPE (AT5) that adopts a learnable bucketi-
zation protocol and automatically adapts to the dependency
range specific to the learning task. Empirical studies show that
the AT5 achieves superior performance than the T5’s SRPE.

Introduction
Self-attention (SA) has been demonstrated as a key and pow-
erful module for building modern neural networks, such as
the Transformer. It has been used in many NLP tasks, in-
cluding machine translation (Vaswani et al. 2017), natural
language inference (Guo, Zhang, and Liu 2019) and text clas-
sification (Dai, Li, and Xu 2020). However, without relying
on the recurrent structure or the convolutional module, the
operations in SA are agnostic to the word order in the input
sequence. Thus positional encoding plays a crucial role in SA
to capture the temporal information of the text. In general, to
incorporate the positional information, previous researchers
have proposed varied positional encoding approaches. These
approaches can be divided into two types: absolute positional
encoding and relative positional encoding.

The absolute positional encoding represents the absolute
position of the word in an input sentence as embedding vector,
with dimension usually taken the same as the token embed-
ding so that the two embeddings can be summed as the word
representation. The absolute positional encoding includes
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Figure 1: The framework of SRPE. b is the bucketing function
and g is the bucket-embedding function. sij is the context
score computed by the dot-product of the transformed word
embedding pair; el is the scalar embedding for relative po-
sition l. αij is the final attentive score, a summation of the
scalar embedding and the context score.

Trigonometric Position Embedding (TPE) (Vaswani et al.
2017) and the learnable position embedding (Devlin et al.
2019).

The relative positional encoding (RPE) represents the rel-
ative position of the word in an input sentence either as a
vector (VRPE) (Shaw, Uszkoreit, and Vaswani 2018; Dai et al.
2019) or as a scalar (SRPE) (Raffel et al. 2019). In VRPE,
the embedding vectors of relative positions have the same
dimension with the word embedding. The SRPE approach
used in the T5 Transformer (Raffel et al. 2019), the focus of
study in this paper, consists of bucketing function and bucket
embedding (Figure 1). The bucketing function assigns the rel-
ative positions into different buckets through a fixed heuristic
algorithm, and the bucket embedding component maps each
bucket to a learnable scalar value; this “scalar embedding” is
then added to the corresponding context score to obtain the
final attentive score, giving rise to the self-attention weights.

Despite its power demonstrated in practice, how positional
encoding functions remains largely a mystery and lacks prin-
cipled explanation. This research is driven by a curiosity to
understand how positional encoding takes effect in SA, where
focus on the relative positional encoding approach designed
in the T5 transformer. To that end, we arrive at an elegant
probabilistic interpretation of the positional encoding in the
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Figure 2: Scores of each token attending to the current central
word spice of one attention head in SRPE (Scalar Relative Po-
sitional Encoding). (a): Relative position scores (b): Context
scores (c): Final attentive scores.

SA of T5. Furthermore, we show that, under an appropriate
probability model, the scalar positional embedding in T5 can
be viewed as defining a prior distribution over the relative
positions and that the final attentive distribution can be seen
as the posterior given the observed input sequence.

Specifically, the final attentive scores which give rise to
the posterior distribution via a softmax transformation are
obtained by summing the scalar position embeddings (cor-
responding to the prior distribution after the softmax trans-
formation) with their respective context scores. A concrete
example is shown in Figure 2 to explain the role of SRPE
in shaping the attentive scores (hence the posterior distri-
bution). In Figure 2, we expect to gain the attentive scores
for computing the self-attention weights when the “query”
word is spice in sentence there are slow and repetitive parts,
but it has just enough spice to keep it interesting. We note
that in this example, the sentence has a positive sentiment.
But the word “interesting” gets a negative context score in
(b). Its final attentive score is however flipped to positive (c),
which is due to the strong positive signal given by the relative
position embedding in (a).

This understanding also enables us to identify two short-
falls of SPRE in T5. First, the bucketing function in T5 is
a fixed heuristics, incapable of adapting to different tasks
or datasets. Second, the scalar embeddings for the T5 buck-
ets are learned independently without being constrained by
each other. Arguably the first problem limits the adaptivity of
the model, making it risk underfitting in some applications,
while the second endows the model with an unnecessarily
high capacity, making it risk overfitting.

This paper proposes a revised version of T5 with a new
scalar relative positional encoding model, Adaptive T5 (or
AT5) to overcome these two limitations. More precisely, we
replace the heuristic bucketing function with a learnable
function, which can automatically adjust for different tasks.
We also impose constraints between the bucket embeddings
through a small MLP network. Our experiments on several
artificial tasks and three NLP tasks show the superior perfor-

mance of our proposed model. Our extensive ablation studies
and quantitative analysis empirically demonstrate the benefits
of AT5 for varied tasks. The source code and the Appendix
material are now available at https://github.com/wujsAct/
Scalar-Embedding-of-Relative-Positions.

Related Work
In general, SA with the absolute positional encoding uses the
sum of position embedding and token embedding as the input
token embedding (Vaswani et al. 2017; Devlin et al. 2019).
However, TUPE (Ke, He, and Liu 2020) points out that it
is beneficial for the model to disentangle the computation
of the attentive score for position embedding and the token
embedding. Recently, T5 (Raffel et al. 2019) is proposed to
generate scalar relative positional embedding independent of
the sequence context and then directly add the scalar position
embedding into the token’s scaled dot-product context score
to compute the final attention weights.

Associating the relative positions with a prior distribu-
tion appears to represent an important class of techniques
in attention or transformer models. For example, in several
recent works (e.g., (Guo, Zhang, and Liu 2019; Wang, Lee,
and Chen 2019)), explicit prior distributions are designed for
the relative positions, and the power of prior distributions
is demonstrated. These approaches however do not take an
SRPE approach. They use both absolute positional encoding
(TPE) and some proposed priors.

Analysis
Attention with Scalar Relative Position Embedding
(SRPE Attention)
In the T5 transformer, the attention mechanism uses a scalar
embedding for relative positions. We now describe the struc-
ture of such attention, which we refer to as SRPE attention.

Let the input to a SRPE attention be a sequence of vec-
tors x1, x2, . . . , xn each having dimension din. The SRPE
attention’s objective is to generate, from the input sequence,
a sequence of output vectors y1, y2, . . . , yn each having di-
mension dout. For simplicity, the input and output sequences
will also be denoted as x and y respectively. We note that the
position indices 1, 2, . . . , n for the input and output are the
absolute positions.

For the convenience of working with relative positions,
we will switch to a relative position indexing. Specifically,
we will use a superscript to denote the relative position of a
vector with respect to the current output vector. For example,
when consider generating yi, we will denote yi by y(0), xi
by x(0), xi+1 by x(1), xi−1 by x(−1) etc. We will use L to
denote the set of all relative positions. Then L can be taken
as {−n∗ + 1,−n∗ + 2, . . . , 0, . . . , n∗ − 2, n∗ − 1}, where
n∗ is the lengths of the longest document we deal with.

Associate with xi a “key vector” ki and a “qurey vector”
qi both having dimension dkey, as well as a “value vector”
vi having dimension dval. In transformers, usually each of
the three kinds of vectors is expressed as a respective linear
transformation the corresponding input vector (Vaswani et al.
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2017), where

ki = wKxi (1)
qi = wQxi (2)
vi = wVxi (3)

where wK, wQ, wV are learnable parameters. We may again
switch to indexing these vectors using relative position in-
dices and, likewise, k(l), q(l), and v(l) are all well defined for
all l ∈ L.

To compute the output vector y(0), at each relative position
l ∈ L, let context “score” s(l) be defined as

s(l) := 〈q(0), k(l)〉 (4)

where 〈·, ·〉 denotes inner product. For each relative position
l, let there be a scalar embedding e(l). Let a distribution α
over the set L of positions be defined as follows.

α(l) :=
exp

(
s(l) + e(l)

)∑
l′∈L

exp
(
s(l′) + e(l′)

) (5)

For later use, we also define another distribution β on the
relative positions L: for each l ∈ L

β(l) :=
exp

(
e(l)
)∑

l′∈L
exp

(
e(l′)

) (6)

The output y(0) is then computed as

y(0) :=
∑
l∈L

α(l)v(l) (7)

In T5 Transformer, an attention layer essentially contains
multiple copies (with separate learnable parameters) of such
an attention mechanism. Each copy is referred to as a “head”.

SRPE Attention Is Probabilistically Principled
Next, we will show that such an attention structure has an
elegant probabilistic interpretation.

Let X be a compact representation of the input sequence;
here, we use a capitalized notation to emphasize that the
sequence and each vector within are treated as random vari-
ables. Consider a stochastic system that takes X as input and
generates a vector V of dimension dout. The system will run
for n times (recall that n is the length of the input sequence),
and at each time i, it generated such a vector V and listed
them in order as a din × n matrix. Thus time i corresponds
to column i, or position i, of the output.

We now specify the system, namely, defining how it gen-
erates the current output V at each output position i, and we
will use relative indexing of the positions as needed.

Let L be a random variable taking values in L. Here L
indicates as the relative position in the input sequence the
system must attend to in order to generate the current output
V . Note that L is dependent on the entire sequence X. To
model this dependency, we define the joint distribution pLX
as

pLX(l, x1, x2, . . . , xn) =
1

c
β(l) exp(s(l)) (8)

where c is a normalization constant so that pLX is a valid
probability measure. Additionally, if the relative position l is
attended to, then the system outputs

V = v(l) (9)

At this point we have completely specified the system. The
following result can then be proved.

Theorem 1 Let pL and pL|X be respectively the distribu-
tion of L and the conditional distribution of L given X in
the above defined system. Then for all l ∈ L and all input
sequences (x1, x2, . . . , xn),

pL(l) = β(l) (10)
pL|X(l|x1, x2, . . . , xn) = α(l) (11)

E{V |X = (x1, x2, . . . , xn)} = y(0) (12)

This result implies the following. Under the above defined
probability model, β, which is only specified via the scalar
relative position embedding, can be regarded as the prior
distribution of the relative position that should be attended
to, without observing the sequence X. On the other hand, α,
which specifies the attention weights, can be regarded as the
posterior distribution of relative position upon observing the
input sequence X. Finally, the output vector y(0) of SRPE
attention at the current position is just the expected output of
the defined system when input sequence (x1, x2, . . . , xn) is
fed to the system.

At this end, we have endowed SRPE attention with a prob-
abilistic principle. Under such a principle, designing embed-
ding for SRPE attention, learnable or not, can be seen as
designing the prior distribution for the relative positions.

SRPE in T5 Transformer
In general, designing SRPE boils down to designing an encod-
ing function f : L → R from the set L of relative positions
to the set R of real numbers so that for every l ∈ L,

e(l) = f(l) (13)

We now explain the encoding function fT5 for SRPE used
in the attention layers of the T5 transformer.

Overall the function fT5 is expressed as the composition
g ◦ b of a “bucketing function” b, which maps a relative posi-
tion to a “bucket” index, and a bucket-embedding function
g, which represents a bucket index as a real value. We now
describe the two functions concisely.

Bucketing Function b Assume that there are Bmax buck-
ets, with indices taking values in B := {0, 1, . . . , Bmax− 1}.

Let M > Bmax be another integer. For each relative posi-
tion l ∈ L and any positive even integer K, define

A(l,K) :=

{
l, if 0 ≤ l < K/2

min
(
K
2 +

⌊
log 2l−logK
log 2M−logK ·

(
K
2

)⌋
,K − 1

)
(14)

where b·c denote the flooring operation.
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Figure 3: Examples of T5 and AT5 bucketing function.

If the T5 transformer is bidirectional (namely attending to
both sides of the current position), the bucketing function b
is defined as

b(l) :=

{
A(−l, Bmax

2 ), if l ≤ 0;
A(l, Bmax

2 ) + Bmax

2 if l > 0.
(15)

If the T5 transformer only considers the information from
the previous tokens, using algorithm A, the bucketing func-
tion b is defined as:

b(l) :=

{
A(−l, Bmax), if l ≤ 0;
0 if l > 0.

(16)

Note that in both cases, the bucketing function b is not learn-
able and the function is completely controlled by hyper-
parameters (M,Bmax). We plot the bucket function in T5
with different M and Bmax in Figure 3.

Bucket-embedding Function g In T5, the bucketing em-
bedding function g is a mapping from {0, 1, . . . , Bmax} to
real numbers. Let denote the bucket-embedding matrix as
E ∈ RBmax×1. Then the g(b) = eTb E, where eb ∈ RBmax×1

is the one-hot vector with a 1 in the b-th coordinate and 0’s
elsewhere. The unconstrained matrix E is randomly initial-
ized and continuously updated during the training process.

Adaptive T5 Model
Note that our earlier theoretical analysis has provided a princi-
pled interpretation of SRPE in the general setting of attention
models, where SRPE defines a prior distribution over rel-
ative positions. This interpretation allows us to dissect the
SRPE structure in T5 in the section above. Two weaknesses
of T5 SRPE can be identified under this interpretation. A) the
bucketing algorithm is independent of the dataset. B) the em-
bedding of bucket indices is independent of each other. Note
that weakness A insists the same bucketing algorithm works
for all datasets. But the granularity of semantics depends

on the data set and the learning task. The rigid bucketing
algorithm then potentially risks an under-fitting. On the other
hand, weakness B provides unnecessarily high model free-
dom in defining the priors over positions (which are grouped
rigidly in buckets). This is because one expects that adjacent
buckets have similar or correlated prior probability values.
Thus excessive modeling freedom induced by weakness B
may potentially risk an over-fitting. Further, note the under-
fitting induced by weakness A is on a different “dimension”
from the over-fitting induced by weakness B. Thus the two
issues won’t cancel each other. Rather they are expected to
demonstrate a compounding negative effect.

We now propose an “Adaptive T5” (AT5) model to al-
leviate these weaknesses of T5 by replacing its bucketing
function with learnable exponential functions, and its bucket-
embedding function with small MLP networks.

Let L = L+ ∩ L− denote the relative position, where
L− = {−n,−n + 1, · · · ,−1} and L+ = {0, 1, · · · , n} de-
note the negative relative position set and positive relative
position set respectively. We next define the bucketing func-
tion and bucket-embedding function for positive and negative
relative position separately.

For a positive relative position l ∈ L+, we define the
bucketing function as:

b+(l) = 1− exp−l×A×max(0,γ+) (17)
where γ+ is the trainable parameter to control ramping speed
and is initialized from range [Γmin,Γmax]. A is a constant
scalar and set as 1

n . Recall n is the length of the input se-
quence.

Then we obtain the bucket-embedding through a function
g+, defined as:

g+(b+) := MLP(b+; θ+) (18)
Here the function MLP denotes the multi-layer perceptrons
with two hidden layers and θ+ denotes the parameters of the
multi-layer perceptrons.

Similarly, we define the bucketing function for a negative
relative position l ∈ L− as:

b−(l) = 1− expl×A×max(0,γ−) (19)
where γ− ∈ [Γmin,Γmax] is the trainable parameter to con-
trol ramping speed.

And similarly we define the bucket-embedding function
g− as:

g−(b−) := MLP(b−; θ−) (20)
where θ− is the parameters of the multi-layer perceptrons.

For illustrative purposes, the bucketing function of AT5
with different (γ+, γ−) settings is plotted in Figure 3.

Experiment
We evaluate the proposed AT5 model on some artificial tasks,
text classification, question answering, and machine trans-
lation. We adopt AT5 in the Transformer encoder model in
classification or regression tasks, including artificial tasks,
text classification, and question answering. In machine trans-
lation, we apply AT5 in both the encoder and decoder part
of the Transformer-based encoder-decoder model. We imple-
ment all models using Tensorflow and run the experiments
on NVIDIA V100 8GB GPU or NVIDIA V100 32GB GPU.
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Model Reber Process-50 Adding-100
Position absolute relative neither
Non-PE 0.496 0.549 1.0
T5-NoB 1.0 0.772 0.943

T5 1.0 0.808 1.0
AT5-NoB 1.0 0.843 0.961

AT5 1.0 0.843 1.0

Table 1: The evaluation results on artificial tasks. Bold-face
values indicate the best performance.

Baseline Models
The proposed adaptive T5 model is compared with two base-
line models: (1) without position information (Non-PE); (2)
with T5 relative position encoding (T5) (Raffel et al. 2019).
We introduce a suffix ”NoB” to indicate a positional encod-
ing approach without a bucketing function for the ablation
study. Specifically, T5-NoB denotes the Transformer model
with T5 positional encoding but does not utilize the buck-
eting function. AT5-NoB denotes the Transformer model
with AT5 positional encoding but maps each relative position
to a scalar value between [0, 1] as the input for the bucket-
embedding layer. We also report other baseline models in
specific tasks for the completeness of the experiments. Such
as the Word2vec (Conneau et al. 2017), Sent2vec (Pagliar-
dini, Gupta, and Jaggi 2018), QuickThoughts (Logeswaran
and Lee 2018) models in the text classification task and the
QANet (Yu et al. 2018) model in question answering task.

Artificial Tasks
The artificial tasks that we use to evaluate the baseline models
and the AT5 model include:

(1) Embedded Reber Grammar: The goal of this task is
to predict the last character of a given string (a sequence of
characters). The string is generated by a logic engine named
Reber grammar. Note that, the last character of the generated
string only depends on the string’s second character, which
means this task relies on the absolute positional information.
The reader can refer to the Appendix for details.

(2) Process Classification: This task is a sequence-
classification task, in which each sample is a binary sequence
generated by a transition probability matrix. The sequences
generated by the same transition probability matrix are as-
signed with the same label. In this paper, we generate two
classes of sequences by using two different transition matrix.
In this task, models need to rely on the neighbor elements to
infer the state transition pattern. That is, this task relies on
relative positional information.

(3) Adding Problem: The task aims to predict a target
value given a sequence of value-marker pairs. Let T denote
the length of the pair sequence and (vi,mi) denote the ith
value-marker pair. Here vi ∈ [−1, 1] is a value element and
mi ∈ {−1, 0, 1} is a marker element which is used to rep-
resent the start and end position. The target value of a pair
sequence in the data is calculated as 0.5 +

vj+vk
4 , where

j < 10 and k < T
2 − 1 are randomly selected pair indexes,

and the corresponding maker elements mj and mk are set to
1. This task relies on neither absolute positional information

nor relative positional information, since the computation of
the target value is independent with positions. As a standard
evaluation procedure, we treat a predicted value whose ab-
solute error with the target value less than 0.04 as a correct
prediction (Hochreiter and Schmidhuber 1997).

The dimension of the word embedding and the hidden
layers are 256 and 512. The number of heads in the self-
attention module is 8. The learning rate is chosen from the
set {1e−4, 5e−4}. The number of layers in all Transformer
models is set to 1. The numbers of training samples are 5000
for Process-50 and 1000 for Reber and Adding-100. The num-
ber of testing samples is 5000 for all tasks. For Process-50,
the average of the encoder’s output vectors is used as fea-
tures for classification. And for Reber and Adding-100, the
last output vector is used as features for classification. In the
T5 model, the ramping parameter M is set as the longest se-
quence length in each task’s training data. The bucket number
is 32. In AT5 model, the hyper-parameter pair (Γmin,Γmax)
are selected from {(0.1, 10.0), (1.0, 10.0)}, and the hidden
sizes for MLP are (100, 5) for reber and (15, 2) for both
Process-50 and Adding-100. All the hyper-parameters are
fine-tuned on the validation set. We run the experiments with
the same setting five times for each model and report its
average performance.

The experimental results in artificial tasks are shown in
Table 1. From the table, we observe that the Non-PE Trans-
former model performs much worse than other Transformer
models, except for the adding problem. This fact indicates
that Non-PE may struggle with tasks highly relying on the
positional information.

In the Embedded Reber Grammar task, as the classification
target relies on the character in the second position (absolute
position), models with positional encoding achieve much
better performance than the Transformer with Non-PE. In
contrast, Non-PE performs nearly randomly guessing. T5
and AT5 achieve the same accuracy because they focus on
modeling relative positions instead of absolute positions.

In the Process-50 task relying on relative positional infor-
mation, the Non-PE model still achieves bad performance,
only a little better than random guessing. T5-NoB achieves
lower accuracy than T5, revealing the importance of the buck-
eting function for relative positional encoding. The higher
accuracy of AT5 comparing to T5 demonstrates the effec-
tiveness of the proposed learnable bucketing function and
dependency modeling of scalar embeddings in AT5.

In the Adding-100 task, we observe that either the mod-
els with positional encoding or without positional encod-
ing achieve similar and very high accuracy. The reason is
that the Adding problem relies on neither absolute position
nor relative position, thus just a simple Transformer without
positional encoding can perfectly solve this problem. AT5-
NoB (T5-NoB) performs worse than AT5 (T5), revealing that
SRPE without bucketing function may bring noises for the
Transformer when handling this problem.

Text Classification
We evaluate the proposed AT5 model on six real-world text
classification datasets, including MR, SUBJ, CR, MPQA,
SST, and TREC. The statistics for these text classifica-
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Dataset MR SUBJ CR MPQA SST TREC
Class 2 2 2 2 2 6

Length 59 120 105 36 52 37
Train 9595 9000 3397 9549 67349 5452
Dev 1067 1000 378 1061 872 329
Test - - - - 1821 500

Table 2: Dataset statistic of text classification.

Model MR SUBJ CR MPQA SST TREC
W2V 0.777 0.909 0.798 0.883 0.797 0.836
S2V 0.763 0.912 0.791 0.872 0.802 0.858
QT 0.824 0.948 0.86 0.902 - 0.924

Non-PE 0.805 0.941 0.844 0.902 0.847 0.916
T5-NoB 0.805 0.940 0.844 0.903 0.851 0.927

T5 0.806 0.939 0.845 0.903 0.849 0.925
AT5-NoB 0.810 0.940 0.846 0.903 0.851 0.920

AT5 0.812 0.943 0.851 0.901 0.863 0.94

Table 3: Text classification evaluation results. W2V:
Word2Vec; S2V: Sentence2Vec; QT: QuickThoughts.

tion datasets are presented in Table 2. Following the prior
work (Wang et al. 2020), on the SST and TREC datasets, we
report the average accuracy for five runs. For other datasets,
the results of the 10-fold cross-validation are reported.

The word-embedding is initialized using Glove (Penning-
ton, Socher, and Manning 2014). The number of layers for all
Transformer models is set to 5. The number of heads is 6. The
learning rate is 2e-4 and the input dropout probability is 0.4.
The residual dropout probability is set to 0.3. The features for
all datasets are the last output vector from the encoder. In the
T5 model, the ramping parameter M is set as 128, and the
bucket number is 32. In AT5 model, (Γmin,Γmax) is set as
(1.0, 10.0), and the hidden sizes for MLP are 64 and 8. The
position scores of T5 and AT5 are added at the first layer of
the Transformer model.

The evaluation results for text classification task are shown
in Table 3. From the table, we observe that the models
with the Transformer encoder outperform Word2Vec and
Sent2Vec models, demonstrating the advantage of the Trans-
former. The Transformer models with positional embedding
achieve similar performance with the Non-PE model on the
SUBJ, CR, and MPQA datasets. This phenomenon illustrates
that the positional information provides little contribution
to classifying the text in these datasets. AT5 outperforms
T5 with large margins on the MR, SST, and TREC datasets,
which indicates the superiority of AT5 compared to T5.

Question Answering
Given a passage and a query, the SQuAD question answering
task’s goal is to find the answer in the passage. In general,
The answer is a text span from the passage. The total number
of examples in the dataset is 107.7k. Similar to the previous
work QANet (Yu et al. 2018), we extract 10.1k examples as
the validation set, another 10.1k examples as the test set, and
the left 87.5k as the training dataset. Moreover, the maximum
length of the passages and queries are 400 and 50.

Model EM F1
QANet 73.6 82.7
T5-NoB 70.95(0.45) 80.08(0.4)

T5 (32-128) 71.29(0.19) 80.36(0.12)
T5(64-512) 71.28(0.24) 80.36(0.21)
T5(128-512) 71.07(0.3) 80.14(0.22)

AT5-NoB 70.49(0.51) 79.88(0.52)
AT5 72.12(0.41) 80.93(0.21)

Table 4: The performance of QANet with varied positional
encoding for SQuAD 1.0.

Sent length 2014t 2015t 2016t 2017t 2017corpus
(0, 20] 975 796 1313 1216 2,003,208

(20, 40] 1379 942 1274 1404 2,474,947
(40, 60] 523 345 350 336 989,654
(60, 80] 110 64 54 43 296,460
(80, 100] 14 16 7 3 77,006

(100, 120] 2 6 1 2 8,992

Table 5: The statistics of the machine translation datasets.
Here 2014t, 2015t, 2016t and 2017t represent the new-
stest2014, newstest2015, newstest2016 and newstest2017.

For the QANet model, the embedding encoder layer and
the model encoder layer is a stack of three basic blocks: sev-
eral convolutional layers, a self-attention-layer, and a feed-
forward layer. In this study, we focus on evaluating different
positional embedding approaches. Thus, we remove the con-
volutional layers from the QANet. To study the affection
of positional encoding in the QA task, we replace TPE in
the QANet with T5 or AT5. We add T5 or AT5 positional
encoding at each layer. In each encoder block of AT5, we set
the same hyper-parameters for each layer’s bucketing algo-
rithm. In T5, the best ramping parameter M is set as the 128,
and the bucket number is 32. In AT5, (Γmin,Γmax) is set as
(5.0, 15.0) and the hidden sizes of MLP are 50 and 10. We
tune parameter on validation dataset.

The evaluation results for the question answering task are
presented in Table 4. The results of the original QANet are
from (Yu et al. 2018). We report the average EM and F1
scores in five runs. In Table 4, AT5 performs better than
T5. Different configurations of bucket numbers and ramping
parameters do not provide a significant performance improve-
ment. We can also find that without a bucketing algorithm,
the performance of both T5 and AT5 will decline.

Machine Translation
We utilize the WMT 2017 English-German (en2de) corpus
as the training set and the newstest2014 dataset as the val-
idation dataset in the machine translation (MT) task. The
newstest2015, newstest2016, and newstest2017 datasets are
employed as the test sets. The statistics for the machine trans-
lation datasets are shown in Table 5.

We implement the machine translation models on THUMT
platform (Zhang et al. 2017). Label smooth (Müller, Korn-
blith, and Hinton 2019) is set to 0.1. Following the previous
researches (Klein et al. 2017; Vaswani et al. 2018), we use the
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Dataset 2014t 2015t 2016t 2017t
T5-NoB 28.24(0.13) 30.07(0.1) 33.73(0.23) 28.06(0.15)

T5 28.15(0.07) 30.05(0.25) 33.64(0.23) 28.0(0.13)
AT5-NoB 27.91(0.31) 29.86(0.19) 33.58(0.27) 28.0(0.20)

AT5 28.34(0.07) 30.18(0.13) 34.26(0.25) 28.21(0.14)

Table 6: Comparison of Transformer-based NMT model with
different positional encoding methods on test datasets. The
value in bracket is the standard deviation.
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Figure 4: The prior probabilities of one head at a self-
attention layer learned by T5 and AT5 on the Process-50
(P-50) and machine translation (MT) tasks.

pre-norm residual unit, and the residual dropout is 0.1. The
maximum sequence length for encoder and decoder are both
256. The length penalty term in the beam search (Wu et al.
2016) is 0.6. The maximum length ratio of a translation is
50. The batch size is 25000. The evaluation metrics is Multi-
BLEU. We only add T5 and AT5 positional encoding at the
first layer of the encoder and decoder. The hyper-parameters
Bmax and M for T5 are 64 and 128 respectively. In AT5
model, (Γmin,Γmax) is set as (1.0, 15.0) and the hidden
sizes of MLP are 32 and 4.

The evaluation results of the machine translation task are
shown in Table 6. AT5 consistently performs better than T5,
especially on the testnews2016 dataset. Comparing the per-
formance of T5 and T5-NoB, we find that heuristic bucketing
function in T5 do not provide performance improveme nt on
all test dataset in MT task. In contrast, the bucketing function
proposed in AT5 brings benefits to model performance.

Quantitative Analysis
To explain how the AT5 works better than T5, we make
quantitative analysis about T5 and AT5. Specifically, we first
analyze the prior probabilities of T5 and AT5 generated on
the Process-50 and MT, then make an ablation study on the
heads in the Transformer. Figure 4 presents the distributions
of prior probabilities learned by T5 and AT5 on different
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Figure 5: Prior probability ablation study for T5 and AT5.

tasks. On the Process-50 task, the prior probabilities learned
by T5 uniformly distribute at relative positions. Different
from T5, the prior probabilities learned by AT5 are higher and
uneven among different relative positions. This phenomenon
indicates that T5 fails to learn the difference among relative
positions, leading to worse performance than AT5. The high
prior probabilities of AT5 near the peak demonstrate that
AT5 pays more attention to short-distance relative positions
than long-distance relative positions. On the MT task, both
T5 and AT5 successfully learned the difference in relative
positions. However, AT5 learned better distribution for the
prior probabilities and achieved higher BLEU than T5.

The ablation study in Figure 5 illustrates the changes of the
test performance for T5 and AT5 when the heads are added
into the Transformer one by one according to their maximum
probabilities among all relative positions (from heads with
lower maximum probabilities to heads with higher maximum
probabilities). From the figure, we observe that when the
lower-probability heads are added into the transformer, the
T5 performs better than AT5, and when the higher-probability
heads are added into the transformer, the performance of AT5
improves faster than T5 and eventually outperforms T5. This
fact demonstrates that the higher-probability heads in AT5
make primary contribution for its performance gain.

Conclusion
In this paper, we provide a probabilistic interpretation of
the T5 scalar relative positional encoding and reveal its lim-
itations in its fixed bucketing heuristics and in its lack of
constraint across bucket embeddings. To overcome these
limitations, we propose a novel Adaptive T5 (AT5) model
that combines a learnable bucketing function with depen-
dency modeling of bucket embeddings. The proposed model
is demonstrated to improve upon T5 in artificial tasks, text
classification, question answering, and machine translation
tasks, and may apply to other NLP tasks.
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