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Abstract

Stacked self-attention models receive widespread attention,
due to its ability of capturing global dependency among
words. However, the stacking of many layers and compo-
nents generates huge parameters, leading to low parameter
efficiency. In response to this issue, we propose a lightweight
architecture named Continuous Self-Attention models with
neural ODE networks (CSAODE). In CSAODE, continuous
dynamical models (i.e., neural ODEs) are coupled with our
proposed self-attention block to form a self-attention ODE
solver. This solver continuously calculates and optimizes the
hidden states via only one layer of parameters to improve
the parameter efficiency. In addition, we design a novel ac-
celerated continuous dynamical model to reduce computing
costs, and integrate it in CSAODE. Moreover, since the origi-
nal self-attention ignores local information, CSAODE makes
use of N-gram convolution to encode local representations,
and a fusion layer with only two trainable scalars are de-
signed for generating sentence vectors. We perform a series
of experiments on text classification, natural language infer-
ence (NLI) and text matching tasks. With fewer parameters,
CSAODE outperforms state-of-the-art models on text classi-
fication tasks (e.g., 1.3% accuracy improved on SUBJ task),
and has competitive performances for NLI and text matching
tasks as well.

Introduction
Transformer has achieved successful performances in many
natural language processing (NLP) tasks (Vaswani et al.
2017; Shen et al. 2018b,c; Dai, Li, and Xu 2020), since its
self-attention mechanism can effectively model the global
dependencies among words (Shen et al. 2017; Vaswani et al.
2017). However, self-attention networks have a limitation
in its stacked structures. A single-layer self-attention com-
ponent cannot fully learn the information in the text repre-
sentations. To capture more abstract features, positional in-
formation and so on, the self-attention components are usu-
ally stacked, leading to the parameter redundancy (Dehghani
et al. 2018).

On the other hand, based on continuous dynamical sys-
tems, neural ordinary differential equations (Neural ODEs)
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(Chen et al. 2018) are a novel family of deep neural net-
work (NN) models, in which the continuous hidden states
can be learned using only one layer of parameters. In su-
pervised learning tasks (e.g., image classification), Neural
ODEs (e.g., RKNet and RKFNet) (Chen et al. 2018), with
a small number of parameters, can obtain similar accuracy
scores as the six-layer stacked ResNet (He et al. 2015).

This inspires us to solve the parameter deficiency problem
of the stacked self-attention models, by proposing a Con-
tinuous Self-Attention models with neural ODE networks
(CSAODE). In our proposed CSAODE, we first design a
self-attention block which includes a Self-Attention Layer
and a Encoding with Position component, which can effec-
tively learn global features with position information. Then,
we represent such a self-attention block by a continuous self-
attention system, in which continuous hidden states are cal-
culated by the self-attention ODE solver.

CSAODE is capable of learning the continuous hidden
states of the representation matrix with only one layer of pa-
rameters, for performing multiple calculations and optimiza-
tions, and finally obtaining the global representation matrix.
Moreover, the self-attention ODE solver calculates the gra-
dients of parameters by the adjoint ODE back-propagation
approach (Chen et al. 2018), which can be integrated into
the end-to-end CSAODE model.

In addition, to reduce the computational costs in existing
continuous dynamical models RKNet and RKFNet (Chen
et al. 2018), we design a novel continuous dynamical model
named as ARKNet, by proposing an accelerated Runge-
Kutta method (Udwadia and Farahani 2008), which im-
proves the training speed compared to RKNet. Then we cou-
ple such an ARKNet and our proposed self-attention block
to construct a self-attention ARK solver in CSAODE.

In addition to the global dependencies modeled in the
original self-attention network, the local dependencies are
also important for the sequence modeling. Therefore, in
CSAODE, we introduce a local representation matrix cal-
culated by N-Gram convolution, which will be inputted to
the self-attention ODE solver. Furthermore, we develop a fu-
sion layer consisting of Euclidean-Attention and Gate. The
Euclidean-Attention computes the absolute difference be-
tween the local representation and the global representation,
and such a Gate can fuse all features by two trainable scalars.

To sum up, the contributions of our work are:
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• We propose the Self-Attention ODE Solver coupling exist-
ing continuous dynamical models (RKNet ,RKFNet) and
our self-attention block. The solver effectively learns con-
tinuous hidden states of features with positional informa-
tion, and train the global representation matrix via high
parameter efficiency.

• We design an accelerated RKNet (ARKNet) coupling
with our proposed self-attention block to construct the
Self-Attention ARK Solver. The ARK solver has similar
accuracy scores as the RK solver, with faster training
speed.

• CSAODE can learn local dependencies by N-Gram Con-
volution and global-range features by Self-Attention ODE
Solver, and its fusion layer can effectively balance global
and local features by very few parameters (two scalars).

• In general, CSAODE obtains competitive experimental
results, with less than one million parameters (much
less than the other models). In particular, CSAODE
can achieve better test accuracy than a state-of-the-art
lightweight model (Dai, Li, and Xu 2020) on five text
classification tasks, i.e., TREC (+0.6%), SUBJ (+1.3%),
CR (+1.6%), MPQA (+0.4%), and MR (+0.1%).

Related Work
Self-attention networks usually need to be stacked to im-
prove results, such as the (Vaswani et al. 2017) and (Guo,
Zhang, and Liu 2019). However, the stacking of self-
attention usually causes the parameter redundancy. This is-
sue has attracted many researchers to study.

Self-Attention Networks
For the issue of stacking, the universal transformer (UT)
(Dehghani et al. 2018) introduces a parallel-in-time self-
attentive recurrent sequence model, which designs a parame-
ter sharing mechanism between different stacked layers, and
embeds discrete time variables to represent the depth of lay-
ers. However, for recurrent mechanism of RNN, the gradient
will decay exponentially as the time increases. Due to the
application of the RNN mechanism, UT has a performance
degrading problem as the depth increases (Bai, Kolter, and
Koltun 2019). Moreover, in the ALBERT model (Lan et al.
2019), its parameter sharing method plays the role of param-
eter compression, while the effect on the results is negative.

For feature extraction tasks such as text classification
and matching, there are some lightweight models based on
the self-attention structures (Yang et al. 2018, 2019). Shen
et al. (2018b) develop the Reinforced Self-Attention Net-
work (ReSAN), in which self-attention is used to model the
sparse dependencies between the head and dependent to-
kens by reinforcement learning. By a mask mechanism, Dai,
Li, and Xu (2020) propose MPSAN model which uses dif-
ferent self-attention components to capture temporal order
and positional information, respectively. However, for non-
sequential modeling tasks, the temporal order and positional
information may not be necessarily learned by multiple self-
attention components.

Neural ODEs
Neural ODEs (Chen et al. 2018) consists of RKNet with a
stable step size by Runge–Kutta (RK) ODE numerical solu-
tion (Jameson, Schmidt, and Turkel 1981) and RKFNet with
an adaptive step size by the Runge–Kutta–Fehlberg (RKF)
algorithm (Fehlberg 1969). The neural ODE networks with
high parameter efficiency can be viewed as a versatile con-
tinuous version of a ResNet (He et al. 2015), which can
model many kinds of dynamical systems (Liu et al. 2020).
In addition to high parameter efficiency of deep neural net-
works, Neural ODEs also have other advantages such as
memory efficiency and continuous time-series models.

As mentioned before, Neural ODEs have attracted many
researchers to study. Voelker, Kajić, and Eliasmith (2019)
develop Legendre ODEs continuous memory units to cou-
ple LSTM networks, learning the dependent relationship
spanning 100,000 time steps without exponential decay of
gradients. GRU-ODE-Bayes (De Brouwer et al. 2019) im-
proves GRU models by ODEs mechanism, adding Bayes al-
gorithms to achieve the continuous time modeling of spo-
radic and irregular data in the real world. The human atten-
tion prior modeled by continuous dynamics helps the ma-
chine to implicitly ignore unnecessary reasoning steps and
find the shortest reasoning path in (Kim and Lee 2019).

It is worth noting that there are two main types of contin-
uous dynamical models: RKNet and RKFNet. The RKFNet
is good at series modeling of uneven time with adaptive step
size, but the training speed drops sharply as the step size
increases. For RKFNet, a recent work (Dupont, Doucet,
and Teh 2019) solves the problem of the explosion of func-
tional evaluations in RKFNet. On the contrary, for RKNet,
the problem of training speed remains unsolved.

The Architecture of CSAODE
As illustrated in Figure 1, in the proposed Continuous Self-
Attention models with neural ODE networks (CSAODE),
we first come up with a self-attention ODE solver which has
high parameter efficiency. The solver continuously calcu-
lates and optimizes the output of our designed self-attention
block via parameters of one block. Moreover, in order to im-
prove training speed, the self-attention accelerated Runge-
Kutta solver is also proposed in our work. Finally, we use
a simple N-gram convolution to capture local dependency
of texts, and we design a fusion layer to fuse all features
with two parameters. As mentioned above, the CSAODE is
a lightweight architecture.

N-Gram Convolution
The input of CSAODE is a sequence S with M words
[w1, . . . , wi, . . . , wM ]. We use a look-up layer to transform
a word wi into a word embedding hi ∈ Rde , where de is the
dimension of word embeddings. The representation matrix
H ∈ RM×de of the sequence S can be written as:

H = [h1,h2, . . . ,hM ] (1)

Then, we generate the local representation ĥj ∈ Rd for
the phrase Rj = [hj , . . . ,hj+N−1] ∈ RN×de , 0 ≤ j ≤
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Figure 1: The Architecture of CSAODE

M−N+1, using the convolution weightsWL ∈ RNde×d:

ĥj = ReLU(RjWL + bL) (2)

where bL ∈ Rd, d is the number of feature maps, and ReLU

is activation function. Then, Ĥ = [ĥ1, . . . , ĥM−N+1] ∈
R(M−N+1)×d is padded by zero vectors to form a local rep-
resentation matrixHL ∈ RM×d.

The Self-Attention ODE Solver
In the self-attention ODE solver shown in Figure 2, we pro-
pose a basic neural network component (i.e., a self-attention
block), which consists of Encoding with Position and Self-
Attention Layer structures.

Encoding with Position In Encoding with Position, the
representation P ∈ RM×d of position encoding is fixed in
the training process, and it is defined as:

Pi,j =

{
sin(i · c

j
d ) j ∈ even,

cos(i · c
j−1
d ) j ∈ odd,

(3)

where i ∈ {1, . . . ,M} is the positional index of phrase fea-
tures in a sequence, and j ∈ {1, . . . , d} is the dimensional
index of a phrase vector. In addition, the best value of c is
10−4 in (Vaswani et al. 2017).

Then, the positional information P is added to the repre-
sentation matrix HL. Finally, HL + P will be learned by
a linear transformation, which apply on ReLU and Norm
functions as shown below:

x = ReLU(Norm((HL + P )WP + bP )) (4)

where WP ∈ Rd×d, bP ∈ Rd, and Norm represents a layer
normalization function.

Self-Attention Layer With the same input x, the Q,K
and V in self-attention models can be computed. Then, by
the dot-product attention and activation, the outputG is:

G = ReLU(Norm(A · xWV ))

A = softmax(xWQ · (xWK)>)
(5)

where xWQ, xWK and xWV represent the Q, K
and V in the self-attention mechanism, respectively, and
WQ,WK ,WK ∈ Rd×d. The self-attention score matrix A
is normalized by softmax function. In addition, · represents
the dot product and > is the the transpose operation.

The self-attention block formed by Encoding with Po-
sition and Self-Attention Layer components can be repre-
sented as F (HL;θ), where θ represents all the trained pa-
rameters (e.g.,WQ or bP ), andHL is the input.

The Self-Attention Runge-Kutta Solver To improve the
parameter efficiency of a self-attention block, continuous
dynamical models are used to couple a self-attention block.

First, we design a continuous self-attention system, the
formula of which can be written as :

G(b) =G(s) +

∫ b

s

F (G(t), t;θ)dt

0 ≤ s ≤ b ≤ T
(6)

which is with an initial input G(0) =HL, where G(b) and
G(s) ∈ RM×d are hidden states at the b and s time steps,
and F (G(t), t;θ) is a self-attention block parameterized by
θ and takes the previous state (G(t), t). The final hidden
state isG(T ) at time T , and the global representation matrix
HG = G(T ).

The Equation (6) is equivalent to the initial value prob-
lem of ODE dG(t)

dt = F (G(t), t;θ), which is guaranteed to
have a unique solution under mild conditions (Tenenbaum
and Pollard 1963). In addition, the reason why we use the
encoding method shown as the Equation (3) is that it can
be regarded as a constant position signal to influence each
hidden state in ODE, d(G(t)+P )

dt = F (G(t) + P , t;θ). The
ODE is rewritten as:

dG(t)

dt
= F (G(t) + P , t;θ) (7)

Then, the continuous dynamical models RKFNet and
RKNet (Chen et al. 2018) are used to design the self-
attention RKF solver and the self-attention RK solver re-
spectively, to actually calculate the continuous hidden states
in Equation (6). In CSAODE, taking the RKNet as an exam-
ple, the self-attention RK solver can be written as:

G(ti) = G(ti−1) + r
4∑

j=1

cjZj 1 ≤ i ≤ T

Zj = F (ti−1 + ajr,G(ti−1) + P + ajrZj−1;θ)

(8)

where 0 < r ≤ 1.0 is a stable step size (i.e., a hyper-
parameter), ti − ti−1 = r, cj and aj are also hyper-
parameters. The input of the solver isG(t0) =H

L(t0 = 0),
the output is HG = G(tT ) (T = d 1r e), and de indicates
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Figure 2: The Self-Attention ODE Solver.

rounding In addition, Zj represents the output of the self-
attention block F (·) in different states of a time step.

We can make use of the efficient approach proposed
by (Chen et al. 2018) to calculate the gradients of θ with
respect to the overall training loss, which allows us to in-
clude the parameterized dynamical self-attention block into
the end-to-end training of CSAODE.

The Self-Attention Accelerated-RK Solver
After successfully coupling existing continuous dynamical
models (e.g., RKNet) with our self-attention block to form
the self-attention ODE solver written as Equation (8), we
propose a new continuous dynamical model named ARKNet
via accelerated Runge-Kutta (ARK) algorithm (Udwadia
and Farahani 2008), which has a truncation error of O(r5)
as RKNet. This can be demonstrated in Claim 1.

Claim 1 The order of local truncation error of the self-
attention accelerated Runge-Kutta (ARK) solver shown as
Equation (9) isO(r5), which is the same as the self-attention
Runge-Kutta (RK) solver written as Equation (8).

The same truncation error means ARKNet and RKNet
have similar accuracy, while the training speed of ARKNet
is higher than RKNet. The self-attention ARK solver formed
by a self-attention block and ARKNet is written as:

G(ti+1) =c0G(ti)− c−0G(ti−1) + c1Z1 − c−1Z−1

+
3∑

j=2

cj(Zj −Z−j) 1 ≤ i ≤ T − 1
(9)

where c0, c−0 and other coefficients are hyper-parameters.
G(t0) = HL (t0 = 0) is the input, the output is HG =
G(tT ) (T = d 1r e), andG(ti+1) ∈ RM×d is the hidden state
at the ti+1 time step.

It is worth noting that the self-attention ARK solver
shown as Equation (9) cannot be self-started, that is, G(t1)
is computed by Equation (8). When the step size r = 1.0, the
Equation (9) will not be calculated, so that 0 < r < 1. More-
over, Zj or Z−j represent the outputs of the self-attention

×

× +

Euclidean 
Attention

Pooling & Softmax

Norm

Figure 3: The Fusion Layer.

block F (·) in different states of a time step:

Zj = rF (ti + ajr,G(ti) + P + ajrZj−1;θ)

Z−j = rF (ti + ajr,G(ti−1) + P + ajrZ−j+1;θ)
(10)

where aj (j ∈ {2, 3}) are the stable hyper-parameters which
can be calculated by accelerated Runge-Kutta algorithm.

Attention and Gate Layer
After the global representation matrix HG and local repre-
sentation matrix HL of a sequence are obtained, the fusion
layer is illustrated in Figure 3. The fusion layer consists of
Euclidean-Attention and Gate, and compares HL and HG

to perform the feature fusion.

Euclidean-Attention For obtaining the absolute differ-
ence (Yin et al. 2016) between global features and local fea-
tures, we use Euclidean distance to compute a Euclidean-
attention score matrix E ∈ RM×M , which is written as:

Elg =
1√∑d

j=1(h
L
lj − hG

gj)
2

(11)

HE = E ·HL (12)
whereHL = [hL

1 , . . . ,h
L
l , . . . ,h

L
M ], the global representa-

tion matrix HG = [hG
1 , . . . ,h

G
g , . . . ,h

G
M ], and d is the di-

mension of these vectors. The attention scores between dif-
ferent hL

l and hG
g vectors are reciprocals of Euclidean dis-

tance, which means that the closer the distance, the higher
the score. By using the dot-product, the attention score ma-
trix E is applied in HL to make global features focus on
important local features, which isHE ∈ RM×d.

Gate We use trainable parameters to construct Gate,
which chooses more effective information in HE and HL

to calculate the fused representation matrixHO ∈ RM×d:

HO = Norm(W1 ×HL +W2 ×HE) (13)

which is optimized by layer normalization function Norm,
where W1 and W2 are the parameterized scalars trained in
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Model CR MR MPQA SUBJ TREC |θ|
CNN (Kim 2014) 84.7 81.0 89.6 93.0 92.8 1.40M
Multi-head (Vaswani et al. 2017) 82.6 – 89.8 94 93.4 2.00M
SA-SNN (Zhao et al. 2018) – 82.1 – 93.9 – 3.75M
DiSAN (Shen et al. 2017) 84.8 – 90.1 94.2 94.2 2.35M
Bi-BloSAN (Shen et al. 2018c) 84.8 – 90.4 94.5 94.8 2.80M
MPSAN (Dai, Li, and Xu 2020) 85.4 – 90.4 94.6 94.8 1.09M

CSARKF 86.5 82.1 90.8 95.2 95.4 0.63M
CSARK 87 81.6 90.5 95.9 94.8 0.63M
CSAARK 86.2 82.2 90.5 95.2 95.2 0.63M

Table 1: Experimental results (Accuracy) on the test sets of CR, MR, MPQA, SUBJ and TREC classification tasks. The θ
represents the number of network parameters. ”–” means results are not reported.

the CSAODE. Finally, the output o of classifier is written as:

o = pooling(HO)WO + bO (14)

where o ∈ Rdl , pooling is the max-pooling function,WO ∈
Rd×dl and bO ∈ Rdl are the parameters of a FFN layer, and
the dl is the number of classes.

Experiments
We test our CSAODE models on text classification tasks,
natural language inference and question-answering tasks.
Moreover, our CSAODE architectures are implemented with
RKFNet, RKNet and ARKNet, which are then denoted by
CSARKF, CSARK and CSAARK, respectively.

For all tasks, we implement our model with Pytorch-1.20,
and train them on a Nvidia P40 GPU. Word embeddings
are initialized by GloVe (Pennington, Socher, and Manning
2014) with 300-dimension. All other parameters are initial-
ized with Xavier (Glorot and Bengio 2010) and normalized
by weight normalization (Salimans and Kingma 2016). As
for learning method, we use the Adam optimizer (Kingma
and Ba 2014) and an exponentially decaying learning rate
with a linear warm up. The dimension of the hidden vectors
is set to 300, which is equal to the word embedding size. As
for convolution, the filter size is set to 2. In addition, dropout
with a keep probability of 0.1 is applied in the layers. The
initial learning rate is set from 0.0001 to 0.003 and the batch
size is tuned from 80 to 256. The L2 regularization decay
factor is 10−5. In addition, the initial step size of the self-
attention ODE solver is tuned from 10−2 to 5× 10−1.

Text Classification
We evaluate our model on five text classification tasks.
MR (Pang and Lee 2004a): Movie reviews are divided into
positive and negative categories; CR (Hu and Liu 2004):
Customer reviews set where the task is to predict positive or
negative product reviews; SUBJ (Pang and Lee 2004b): Sub-
jectivity dataset where the target is to classify a text as being
subjective or objective; MPQA (Wiebe, Wilson, and Cardie
2005): Opinion polarity detection subtask; TREC (Li and
Roth 2002): question classification dataset which involves
classifying a question into 6 question types. We choose
small-scale baselines based on CNN or self-attention com-
ponents. Accuracy is used as the evaluation metric.

As shown in Table 1, compared with the SOTA results
(achieved by MPSAN), CSARKF improves the test accuracy
by 0.4%, 0.6% for MPQA and TREC tasks, respectively.
Moreover, CR and SUBJ tasks are improved by 1.6% and
1.3% respectively by CSARK. In addition, the test accuracy
of MR increases 0.1% via CSAARK. It is worth noting that
CSAODE models (i.e., CSARKF, CSARK and CSAARK)
have only about 630,000 parameters, and compared with
CNN, Multi-head, SA-SNN, DiSAN, Bi-BloSAN and MP-
SAN, CSAODE models reduce the parameters by 0.77M,
1.37M, 3.12M, 1.72M, 2.17M and 0.46M, respectively. We
found that for most tasks, the performance of CSAARK
is weaker than CSARK, because CSAARK loses a small
amount of accuracy while reducing the training cost.

Continuity Analysis The continuity analysis is based on
the self-attention scores changing over time step.

In the experiments, the window size of convolution is set
to 1, so the tokens of self-attention score matrices in the self-
attention ODE solvers can represent words in a sentence. In
addition, the step size r of solvers is equal to 0.2, and we
record the self-attention score matrices of some time steps
from 0.0 to 1.0. As shown in Figure 4, we use the sentence
“What state did the Battle of Bighorn take place in” obtained
from TREC test set to demonstrate the high continuity in
our model. In this sentence, the words “state” and “Bighorn”
are closely related, of which the attention should be crucial
for determining the answer. In the training, attention score
of this pair of words keeps increasing from 0.0023 to 0.57
through a dynamic process, suggesting that important infor-
mation has been obtained by our model. A vector field graph
made from attention scores is also displayed in Figure 4. The
smooth curve and surrounding arrows further indicate the
continuous nature of the learning process.

Ablation Experiments We present an ablation study of
our CSAARK model. For the original CSAARK, its step
size is set to 2 × 10−1 on TREC. This study compares
the original CSAARK with three ablation baselines: (1)
“w/o ODE (1 block)”: without coupling continuous dynam-
ical models, and only use a self-attention block; (2) “w/o
ODE (5 blocks)”: stacking five self-attention blocks are con-
nected by residual connection, and without ARKNet; (3)
“w/o conv”: only without N-Gram Convolution. We carry
out a set of experiments on the TREC task in Table 2.
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0.0 0.2 0.4 0.6 0.8 1.0 Time

Attention
Score

0.0023 0.019 0.076 0.21 0.45 0.57

The state of self-attention score matrix at time 1.0. Vector field plot of  the self-attention score over time.

Figure 4: Continuity Analysis. The sub-figure on the left is the heat map of the self-attention score matrix A shown as Equa-
tion (5) at time 1.0. The sub-graph at the top shows the states of a certain value in the self-attention score matrix over time. With
the records in the top sub-graph, the vector field plot of the self-attention score over time are shown on the right sub-figure.

Model Test Acc |θ|
w/o ODE (1 block) 93.7 0.63M
w/o ODE (5 blocks) 94.2 1.62M
w/o conv 92.8 0.45M
CSAARK 95.2 0.63M

Table 2: An ablation study of CSAARK model on the TREC
dataset. |θ| is the number of parameters.

The first ablation baseline shows that without contin-
uous dynamical models (i.e., ARKNet), the performance
on TREC task degrades significantly. The step size of
CSAARK is 0.2, which means that the self-attention block is
called for five times in a solver. In the second baseline, five
self-attention blocks are stacked for comparison with origi-
nal CSAARK, and the test accuracy increases by 0.5% than
the 1 block baseline. However, the result of second baseline
still has a 1% gap with CSAARK, while the second base-
line adds around 1000,000 parameters. The results of the
third baseline show that without n-gram convolution learn-
ing local information, the performance of CSAARK has a
decrease by 2.4% on TREC task.

Performance analysis In this section, we first analyze the
time performance between CSARK and CSAARK models
on TREC task. Reported results are the average of 10 runs.

As shown in Figure 5, the step sizes of the self-attention
solvers are set to 0.1, 0.2 ,0.4, 0.6, 0.8 and 1.0. In the trends
of CSAARK and CSARK, with the step size getting smaller,
the training time increases. This phenomenon is because as
the step size decreases, the time step increases, then the cal-
culation cost increases. In addition, if the step size r < 1.0,
the time per epoch of CSAARK is continuously lower than

0.2 0.4 0.8 1.00.6
Step Size

20
Ep

oc
h 

Ti
m

e (
s)

CSARK  
CSAARK

18

16

14

12

10

15.5s

12.2s

Figure 5: As the step size changes, the training time compar-
ison between CSARK and CSAARK.

CSARK model, which illustrates the effectiveness of accel-
erated RKNet. Moreover, when the step size r is 1.0, the
computation of CSAARK is equivalent to CSARK. As for
training speed, when step size r is set to 2e-1, the train-
ing speed of CSAARK is 12.2 second per epoch, which is
a 21.3% increase compared to CSARK model.

Regarding the influence of the dimension, the convolution
window size and step size r in CSAARK model, we perform
comparative experiments for the number of parameter (|θ|)
and performance (test accuracy). In Table 3, “d” means the
dimension d of hidden layers, “cov” means the convolution
window size (N in N-gram) and “r” means step size of ODE.

First, CSAARK (300d+2conv+0.2r) gets the best test ac-
curacy of 95.2% in the fourth part of the Table 3. In the
first part, the convolution window size of the CSAARK is
fixed, the hidden dimension is set to 50 and 200, respec-
tively. It is obvious that as the hidden dimension increases,

14398



Model Test Acc |θ|
CSAARK (50d+2cov+0.2r) 91.6 0.043M
CSAARK (200d+2conv+0.2r) 94.3 0.32M

CSAARK (300d+1cov+0.2r) 94.1 0.54M
CSAARK (300d+3cov+0.2r) 94.5 0.72M

CSAARK (300d+2conv+0.5r) 94.6 0.63M
CSAARK (300d+2conv+0.1r) 95.0 0.63M

CSAARK (300d+2conv+0.2r) 95.2 0.63M

Table 3: Performance analysis experiments about dimen-
sion, step size and filter size. |θ| is the number of parameters.

the parameters and accuracy increase significantly. On the
other hand, in the second part of Table 3, we notice that
the result of CSAARK (300d+2cov+0.2r) is higher than
CSAARK (300d+1cov+0.2r) by 1.1%. However, it does not
mean that performance is in positive relationship with the
window size, since when we set 3conv, the result is even
lower than CSAARK (300d+2conv+0.2r) by 0.7%. In addi-
tion, the results of the third and fourth part in Table 3 evalu-
ate that the smaller the step size r, the better the performance
may not be, and the amount of parameters does not change.

Visualization Experiments To better understand what
role the fusion layer plays, we perform analyses of visual-
ization experiments for Euclidean-Attention and Gate.

As we can see in the Figure 6(a), the Euclidean-Attention
is indispensable to help global information capturing impor-
tant phrase features. For example, a question sentence is the
“Where is John Wayne airport” in TREC test set. For “2”
tokens, the attention scores for “Where is” and “Wayne air-
port” are 0.31 and 0.39, respectively, while for “is John” and
“John Wayne”, the probabilities are only 0.07 and 0.15.

In the Figure 6(b), there are 48× 10 = 480 batches in the
training process, where 48 is the number of batches in an
epoch, and 10 is the number of epochs. Within 200 epochs,
the global weight shows a clear upward trend, while the lo-
cal weight shows a downward trend from 0.5 to about 0.47.
After 200 epochs, the two parameters have a steady trend.

Natural Language Inference and Text Matching
We first introduce the data sets. SNLI (Bowman et al. 2015):
Stanford Natural Language Inference is a benchmark dataset
for natural language inference. There are 570k human anno-
tated sentence pairs with four labels, and test accuracy is the
metric. WikiQA (Yang, Yih, and Meek 2015) is a retrieval-
based question answering dataset based on Wikipedia,
which is composed of 20.4k/2.7k/6.2k (train/dev/test) sam-
ples. The mean average precision (MAP) and mean recipro-
cal rank (MRR) are used as the evaluation metrics.

As shown in Table 4, compared with the reported results
in recent years, our CSAODE which consists of CSAARK,
CSARK and CSARFK models achieves competitive perfor-
mances for NLI and matching task. On the one hand, the test
accuracy of SNLI with our CSAODE is higher than Star-
Transformer by 0.1%. On the other hand, we obtain a MRR
result similar to CNN+Transformer on the WikiQA dataset.

Where is is John
John Wayne

Wayne airport
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Figure 6: Visualization Experiments of Fusion Layer. (a)
Attention probabilities of Euclidean-Attention in CSAODE.
The tokens aligned in horizontal axis are phrase features,
and the tokens aligned in vertical axis are global informa-
tion; (b) Local weight and global weight represent two train-
able scalars in Gate, respectively. In the training process of
TREC task, the two weights are initialized by 0.5, and al-
ways satisfy L1 normalization as the batch changes.

Model SNLI WikiQA
Acc MAP MRR

SWEM (Shen et al. 2018a) 83.8 0.681 0.692
Bi-BloSAN (Shen et al. 2018c) 85.7 – –
Star-Transformer (Guo et al. 2019) 86.0 – –
CNM (Li, Wang, and Melucci 2019) – 0.675 0.686
LANN (Shao et al. 2019) – 0.689 0.702
CNN+Transformer (Chen et al. 2020) – 0.691 0.703

CSAODE 86.1 0.686 0.706

Table 4: Experimental results on SNLI and WikiQA tasks
with CSAODE models.

Conclusion

In this paper, without stacking, we propose the self-attention
ODE solver formed by existing continuous dynamical
model (Chen et al. 2018), to effectively calculate the contin-
uous states of hidden features only via one-layer parameters.
Moreover, we design a novel accelerated continuous dynam-
ical model coupled in self-attention solver to improve train-
ing speed. In addition, the N-gram convolution and fusion
layer are used to capture local dependencies and generate
sentence representation, respectively. Finally, all mentioned
above are integrated in our lightweight CSAODE architec-
ture. The experiment results show that by no more than 1M
parameters, our CSAODE achieves good performances on
text classification, NLI and matching tasks. In the future, we
will apply the continuous dynamical models to a larger ar-
chitecture such as Transformer (Vaswani et al. 2017), to im-
prove its parameter efficiency.
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