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Abstract

This paper presents TaLNet, a model for voice reconstruc-
tion with ultrasound tongue and optical lip videos as inputs.
TaLNet is based on an encoder-decoder architecture. Sep-
arate encoders are dedicated to processing the tongue and
lip data streams respectively. The decoder predicts acoustic
features conditioned on encoder outputs and speaker codes.
To mitigate for having only relatively small amounts of dual
articulatory-acoustic data available for training, and since our
task here shares with text-to-speech (TTS) the common goal
of speech generation, we propose a novel transfer learning
strategy to exploit the much larger amounts of acoustic-only
data available to train TTS models. For this, a Tacotron 2
TTS model is first trained, and then the parameters of its de-
coder are transferred to the TaLNet decoder. We have eval-
uated our approach on an unconstrained multi-speaker voice
recovery task. Our results show the effectiveness of both the
proposed model and the transfer learning strategy. Speech
reconstructed using our proposed method significantly out-
performed all baselines (DNN, BLSTM and without trans-
fer learning) in terms of both naturalness and intelligibility.
When using an ASR model decoding the recovery speech,
the WER of our proposed method shows a relative reduction
of over 30% compared to baselines.

Introduction
Human speech production involves over 100 muscles (Anu-
manchipalli, Chartier, and Chang 2019). The tongue and lips
play a crucial role to control the shape of vocal tract, so mod-
ifying its resonant properties in order to convey the different
phonemes uttered. It is therefore natural to ask whether, and
to what extent, speech can be reconstructed by computer
model from observed tongue and lip articulations alone.
In this paper, we study the issue of continuous and open-
vocabulary speech generation using both ultrasound tongue
and optical lip video. This task falls under the umbrella of
articulatory-to-acoustic conversion, and may also be referred
to as a silent speech interface (SSI) (Denby et al. 2010). Not
only does work in this area improve our understanding of
speech production mechanisms, but it also promises wide-
ranging practical applications, such as restoring speech com-
munication for patients who have undergone laryngectomy
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surgery, or as an aid for assisting communication in either
high-noise or silent environments.

A reasonable amount of prior work has looked at voice
reconstruction over the years, from either tongue or lip data,
or both data streams combined. One early study adopted
contour points extracted from ultrasound tongue imaging as
inputs to a multi-layer perceptron (MLP) for acoustic fea-
ture prediction (Denby and Stone 2004). Eigentongues have
also been proposed for feature extraction from tongue im-
ages (Hueber et al. 2007a). Naturally, deep neural networks
(DNNs) have been used for tongue-to-speech conversion
and F0 estimation (Csapó et al. 2017; Tóth et al. 2018; Grósz
et al. 2018; Kimura, Kono, and Rekimoto 2019). Other work
has focused on speech recovery from lip videos, for ex-
ample: convolutional neural networks (CNNs) (Ephrat and
Peleg 2017; Akbari et al. 2018; Kumar et al. 2019) and a
dual CNN model (Ephrat, Halperin, and Peleg 2017) have
been proposed for speech reconstruction. Prajwal et al. pro-
posed a model for accurately learning a lip-to-speech map-
ping for an individual speaker using about 20 hours of that
speaker’s video (Prajwal et al. 2020). Some studies, mean-
while, have leveraged both tongue and lip data together. For
example, (Hueber et al. 2011; Hueber and Bailly 2016) built
and compared Gaussian mixture models (GMMs) and hid-
den Markov models (HMMs) for the articulatory-to-acoustic
conversion task.

Previous studies like these have achieved impres-
sive results, but have also had several limitations. First,
the articulatory-to-acoustic conversion models have been
trained only with data specifically designed and recorded
with specialist articulography equipment for the task. This
has strongly limited the amount of data available for train-
ing, certainly in comparison with standard audio-only TTS
corpora which are much easier to collect. To address this,
we argue that since both TTS and articulatory-to-acoustic
conversion have in common the same objective of gener-
ating natural speech, we should seek to transfer learning
from a TTS task to our model for articulatory-to-acoustic
conversion. Second, the majority of work has focused ex-
clusively either on tongue or lip inputs, rather than utiliz-
ing both features in tandem. Third, because articulatory-to-
acoustic conversion remains challenging, many studies have
focused only on narrow and constrained-vocabulary tasks,
or indeed speaker-dependent models trained with data from
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a single speaker. Multi-speaker performance has not been
well studied, and nor has performance on tasks with wide-
ranging vocabularly.

To overcome these limitations, we propose TaLNet – a
model for voice recovery from tongue and lip articula-
tions which exploits transfer learning from TTS. TaLNet
is based on an encoder-decoder architecture. Tongue and
lip videos are processed by dedicated encoders based on
three-dimensional (3D) CNNs. The hidden outputs from the
tongue and lip encoders are then fused together along with a
speaker code and fed into a decoder for predicting acoustic
features. For transfer learning, a multi-speaker Tacotron 2
model is first trained on a large TTS corpus, and its decoder
is then transferred to that of TaLNet. For fast, high-quality
speech waveform recovery, we adopt a parallel-WaveGAN
neural vocoder (Yamamoto, Song, and Kim 2020).

We have evaluated the TaLNet model on a multi-speaker,
large-vocabulary speech task. The results of our experiments
show the proposed method performs significantly better than
all baselines in terms of both naturalness and intelligibility.
We furthermore present the results of several ablation stud-
ies conducted to examine the characteristics and form of the
TaLNet model. Finally, we also demostrate speech recovery
from silent utterances.

Related Work
Other Articulography Features
In addition to the ultrasound tongue imaging and lip video
used in this work, speech articulator movements can also
be recorded by a range of other techniques, including: elec-
tromagnetic articulography (EMA) (Schönle et al. 1987);
surface electromyography (sEMG) (Jorgensen and Dusan
2010); X-ray microbeam cinematography (Kiritani 1986);
and magnetic resonance imaging (MRI) (Baer et al. 1987).
Among these, EMA is perhaps the one that has been most
frequently used in previous modelling work. (Kello and
Plaut 2004; Ling et al. 2009; Toda, Black, and Tokuda 2008;
Aryal and Gutierrez-Osuna 2016; Liu, Ling, and Dai 2016,
2018; Taguchi and Kaburagi 2018). EMA captures the lo-
cation and orientation of sensor coils attached at selected
fixed points on the articulators (typically tongue, lips, jaw,
velum). Compared to EMA, tongue ultrasound and lip video
have much higher dimensionality and greater noise to deal
with. However, the advantage of tongue ultrasound and lip
video is that they are non-invasive and do not require ex-
pensive bulky equipment, and so are far cheaper and more
convenient to acquire.

Text Recognition from Tongue and Lips
Rather than reconstructing an audible speech signal, an al-
ternative approach to SSIs that has attracted researchers’ in-
terest is recognition of text from tongue and lip data. Ultra-
sound tongue imaging (Xu et al. 2017; Ribeiro et al. 2019),
lip video (Wand, Koutnı́k, and Schmidhuber 2016; Assael
et al. 2017; Afouras, Chung, and Zisserman 2018), or both
of them together (Hueber et al. 2007b; Liu et al. 2016; Tat-
ulli and Hueber 2017; Ji et al. 2018), have previously been
adopted as model inputs. In particular, the conversion of lip

video to text is often referred to lipreading. Compared to
predicting text, speech reconstruction has two main attrac-
tive properties for SSI use. First, in addition to linguistic
content, some prosodic characteristics of the speech can be
preserved, which conveys supplementary information such
as emotion and emphasis. Second, by regressing very short
units of speech frame by frame, it can reconstruct words that
are not present in the training set.

Text-to-speech Synthesis
Recently, sequence-to-sequence (seq2seq) models have been
adopted for TTS, which predict acoustic features in an
auto-regressive manner, for example Deep Voice 3 (Ping
et al. 2018), Tacotron (Wang et al. 2017; Shen et al. 2018)
or Tranformer-TTS (Li et al. 2019). High-fidelity neural
vocoders, such as WaveNet (Den Oord et al. 2016), Wa-
veRNN (Kalchbrenner et al. 2018) or parallel-WaveGAN
(PWG) (Yamamoto, Song, and Kim 2020) are typically used
for waveform reconstruction. Thanks to techniques such as
these, synthesized speech is now reported to achieve perfor-
mance that is very close to human quality (Li et al. 2019).
Compared to TTS, our task in this paper shares the same
goal of generating realistic speech signals, but differs in
terms of input data streams (i.e. text for TTS versus articula-
tion for articulatory-to-acoustic conversion). Our work here
is inspired by the recent success of text-to-speech synthesis,
and in particular because of their similarity. In our method, a
seq2seq model and a high-fidelity neural vocoder are applied
to the articulatory-to-acoustic conversion task. A strategy of
transfer learning from a TTS task is also employed in order
to increase performance.

Multi-speaker Tacotron
In this section, we briefly describe the Tacotron 2 model for
multi-speaker text-to-speech synthesis. Tacotron 2 consists
of a text encoder E and an acoustic decoder Da. Let the
text input sequence be X = [x1, x2, . . . , xN ] and acoustic
features be A = [a1, a2, . . . , aT ], where N and T are lengths
of text and acoustic sequence respectively. The text encoder
first transforms the text inputs into linguistic representations
L = [l1, l2, . . . , lN ] as

L = E(X). (1)

The acoustic decoder accepts inputs of the linguistic repre-
sentations L and speaker code s in the form of an x-vector
(Snyder et al. 2018) in our experiments. The t-th acoustic
frame is predicted by the decoder auto-regressively as

at = Da(L, s, a<t). (2)

The auto-regressive inputs are first processed by a PreNet
then sent to the decoder long short-term memory (LSTM).
The decoder model is equipped with an attention block,
which enables it to concentrate on a local context ct of the
linguistic sequence each step. This is achieved by a soft se-
lection over the whole linguistic sequence as

ct =
N∑

n=1

αn,t ∗ ln, (3)
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Figure 1: An overview of the TaLNet model structure.

αn,t = SoftAttention(qt, ln), (4)

where qt is the query vector from the decoder LSTM state.
In order to further boost the accuracy of acoustic feature pre-
diction, a CNN-based PostNet is employed following the
initial decoder outputs. We suggest the reader refers to the
Tacotron 2 paper (Shen et al. 2018) for the full details.

Proposed Method
TaLNet has an encoder-decoder architecture, which includes
a tongue encoder Et for processing ultrasound images of
the tongue, a lip encoder El for processing the images of
the lips, and an acoustic decoder Da for recovering acoustic
features, as shown in Figure 1. We next describe each com-
ponent in detail.

Encoder
Let It = [It,1, It,2, . . . , It,T ] be ultrasound tongue frames
and Il = [Il,1, Il,2, . . . , Il,T ] be lip video images. For both
tongue and lip images, pixel-wise mean and standard devia-
tion are computed for each speaker. To obtain the inputs of
the encoder, they are repeated and then appended as extra
channels to the sequence of tongue and lip. The inputs are
processed by the tongue encoder Et and lip encoder El as

Ht = Et(It, It,s, Ît,s), (5)

Hl = El(Il, Il,s, Îl,s), (6)

where Ht and Hl denote representations from tongue and lip

respectively. It,s, Ît,s,Il,s and Îl,s represent the mean tongue
image, tongue standard deviation image, and lip mean and
standard deviation images for speaker s respectively.

Ultrasound tongue and lip videos are challenging to deal
with because of significant inter-speaker variation, arising
from factors related to physiology, age or the recording pro-
cess itself, including: tissue fat, shape of the oral cavity and
face, facial hair, or placement of the ultrasound probe and
camera. Therefore, by simply using the average and standard
deviation images for the tongue and lips, we provide some
speaker-specific information to better model inter-speaker
variation. The tongue and lip encoders both adopt the same
structure, which is based on stacks of 3D CNNs. The 3D
CNN has been shown to be effective in multiple tasks in-
volving spatio-temporal video data. The input to our net-
work is a sequence of articulatory images with dimensions
T ×H ×W , where T is the number of input frames, and H
and W correspond to the spatial dimensions of the tongue
and lip images.

Within the 3D CNN processing, the spatial dimensions H
and W are reduced while the time dimension T is preserved.
Maxpooling and dropout are also used to prevent overfit-
ting. The final CNN layer outputs are flattened and passed
through a fully connected layer to produce a single visual
vector for each frame. Lastly, the vectors from tongue and
lips are fused together to yield the final representations as

H = WHt + UHl + b, (7)

where W, U and b are model parameters.

Decoder
The decoder Da is conditioned on the visual representations
H and the speaker x-vector s to predict the acoustic features
as

A = Da(H, s). (8)

The acoustic decoder is transferred from a Tacotron 2 de-
coder pre-trained on a TTS task. The same structure is used,
except we adopt a forced attention mechanism rather than
the standard soft attention. Specifically, we force the de-
coder to attend to the corresponding visual vector along the
time dimension by using an impulsive attention coefficient.
Specifically, Equation 4 is replaced with

αn,m = δ(m− n), (9)

where δ(0) = 1, otherwise δ(i) = 0 when i �= 0. Prelim-
inary experiments showed it is necessary to use the forced
attention. Otherwise, it proves difficult to ensure the the at-
tention alignment converges after transferring from the TTS
task. In contrast to the teacher forcing training typically
used in Tacotron, we adopt a scheduled sampling strategy.
During training, the model-predicted acoustic feature is se-
lected with probability p as the auto-regressive input frame,
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Figure 2: Training strategy of TaLNet. “TaL Data” repre-
sents the tongue and lip dataset used in the work here.

rather than always taking the natural one at each decoder
step. Compared to always feeding back natural frames as in
teacher forcing (i.e., p=0 in this case), scheduled sampling
alleviates mismatch at training and testing times. The exper-
iments later in the paper demonstrate the advantage of this.

Training Strategy
There are four stages involved in TaLNet training, as illus-
trated in Figure 2 and summarised as follows:

Stage 1 A multi-speaker Tacotron model, with text encoder
and acoustic decoder, is trained on a multi-speaker TTS
corpus. Mean absolute error (MAE) between predicted
and target acoustic features is the optimization criterion.

Stage 2 The text encoder of the Tacotron model is dis-
carded, while its decoder is transferred to be used as the
TaLNet decoder. The soft attention module is substituted
with forced attention. The decoder parameters are frozen
and only the tongue and lip encoder parameters are up-
dated at this stage. The encoders are therefore trained to fit
the Tacotron decoder to minimize the MAE loss of acous-
tic feature prediction.

Stage 3 The encoders and the decoder of TaLNet are jointly
optimized to fit each other with further training. Sched-
uled sampling is introduced with probability p linearly in-
creased from 0 to 1.

Stage 4 TaLNet is fine-tuned on each speaker with a small
learning rate. The model will thus be dedicated to one
speaker to give further improvement in performance, as
our results in the experiment section will show.

Experiments
Experiment Conditions
We used a multi-speaker dataset1 containing ultrasound
tongue imaging, optical lip video and audio for each utter-

1https://ultrasuite.github.io/data/tal corpus/

ance. The tongue was captured using a medical ultrasound
transducer placed beneath the chin, and the lip videos were
recorded using a video camera in front the mouth of the
speakers. Further details about our dataset are described in
our Technical Appendix. We used read-speech data from 75
speakers, which was split into a training set with a total of
10648 utterances, a validation set with a total of 750 utter-
ances, and a test set with a total of 1800 utterances. The lin-
guistic content of utterances was unique for each speaker in
the training and validation sets, while it was the same across
speakers in the test set (i.e. each speaker read the same set
of test sentences). The content of the three sets was mutu-
ally exclusive with each other. The ultrasound tongue im-
ages, with a size of 64× 842 for each frame, were recorded
at 81.5 fps. The lip videos, with a shape of 240 × 320 for
each frame, were recorded at 60 fps. Each ultrasound frame
was resized to 64 × 128 pixels. Each video frame was ran-
domly flipped horizontally, resized to 72 × 136 and then
cropped to 64 × 128 pixels. The lip videos were resampled
to 81.5 fps using ffmpeg in order to match the frame rate of
the ultrasound stream. For acoustic features, 80-dimensional
Mel-spectrograms were extracted with the Mel filter banks
spanning from 80 Hz to 7600 Hz. They were then scaled
by logarithm compression. For TTS pretraining, 460 hours
data from 1150 speakers of the LibriTTS corpus2 was used.
Phoneme sequences were extracted using a grapheme-to-
phoneme model as the inputs to the Tacotron 2 model. For
speaker representation, x-vectors were extracted using the
Kaldi toolkit3.

Hyper-parameters in our experiments were determined
according to how the model performed on our validation
set. The Adam optimizer was used and the learning rate
was determined by lr = d−0.5

model ∗ min(step−0.5, step ∗
warmup−1.5), where dmodel were set as 512, step repre-
sents the number of training step counted from the second
training stage. warmup was set as 30k steps, which was
also the beginning of the third stage. The scheduling sam-
pling probability p increased linearly from 0 at 30k steps
and reached 1 after 100k training steps. The model was kept
training on the multi-speaker dataset until around 130k steps
and then fine-tuned on each speaker. Details of the TaLNet
encoders are presented in our Technical Appendix. The de-
coder structure follows that of Tacotron 2 except we have
used a smaller LSTM layer with 512 units rather than 1024
in the original paper.

Comparison with Baselines
Three baseline methods were developed to compare with our
proposed method, as follows:4

DNN Following recent DNN-based work on ultrasound-to-
speech conversion (Csapó et al. 2017), 41-dimensional
mel-cepstral coefficients (MCCs) and fundamental fre-
quency (F0) were extracted by STRAIGHT (Kawahara,

2http://www.openslr.org/60/
3https://kaldi-asr.org/
4Samples from our experiments are available at https://

jxzhanggg.github.io/TaLNet demos/
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Methods MCD (dB) STOI CER (%) WER (%)
DNN 3.81±0.31 0.52±0.05 52.7±12.2 75.7±14.2

BLSTM 3.31±0.15 0.59±0.04 35.9±9.1 53.6±11.8
TaLNet* 3.43±0.16 0.66±0.03 37.3±7.8 55.9±9.9
TaLNet 3.22±0.16 0.69±0.03 23.3±7.9 36.5±10.8

Table 1: Objective evaluation results comparing baselines and the proposed method for all speakers combined. Best results for
each metric are highlighted in bold font. ± indicates the standard deviation of the metrics across speakers.

Figure 3: Histogram of per-speaker word error rate (WER)
for TaLNet.

(a)(a)

Some have accepted it as amiracle without physical explanationSome have accepted it as amiracle without physical explanation

(b)

(c)

Figure 4: Spectrogram visualization of: (a) voice recon-
structed by TaLNet without transfer learning (TaLNet*) (b)
voice reconstructed by TaLNet, (c) natural speech. The color
boxes indicate two pronunciation errors that occurred in (a),
which correspond to phones and respectively.

Intelligibility

Naturalness

Figure 5: Naturalness and intelligibility ratings of the pro-
posed method and three baselines obtained in a MUSHRA
listening test. Natural denotes the natural target speech.

Masuda-Katsuse, and Cheveigné 1999) as acoustic fea-
tures. Eigentongue and eigenlip transformations were
used to extract 1000-dimensional feature vectors, and
5 consecutive frames were concatenated as inputs. The
tongue and lips were processed by separate 3×1024 layer
DNNs. Their outputs were concatenated and sent to an-
other 3×1024 layer DNN to predict the acoustic features.
Batch normalization and dropout were used before and af-
ter ReLU activation in each DNN layer.

BLSTM This model was made similar to the previously re-
ported LipNet (Assael et al. 2017) and Lipper (Kumar
et al. 2019). MCCs and F0 were extracted by STRAIGHT
(Kawahara, Masuda-Katsuse, and Cheveigné 1999). The
tongue and lip encoders were based on the same 3D CNN
structures as in TaLNet. The visual representations from
tongue and lips were then concatenated to be consumed
by a two-layer bi-directional LSTM-RNN. Each LSTM
layer had 256 units for each direction.

TaLNet* This model was the same as the proposed method
except that the transfer learning strategy was not used.
The model was randomly initialized and pretrained on the
multi-speaker tongue and lip dataset, then finetuned on
each speaker.

For objective evaluation, we report mel-cepstral distor-
tion (MCD) and short-time objective intelligibility (STOI)
as metrics. In order to further evaluate intelligibility, we have
decoded the synthesized speech using an open-source auto-
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# of spk. Methods MCD (dB) STOI CER (%) WER (%)

75
TaLNet* 3.22 0.71 20.8 33.7
TaLNet 3.03 0.74 9.7 17.5

25
TaLNet* 3.36 0.68 30.8 48.9
TaLNet 3.11 0.72 13.4 24.2

9
TaLNet* 3.49 0.66 35.1 55.1
TaLNet 3.18 0.71 15.4 27.9

3
TaLNet* 3.52 0.65 36.7 57.1
TaLNet 3.25 0.70 23.9 42.6

1
TaLNet* 3.64 0.63 39.4 62.6
TaLNet 3.29 0.69 25.4 41.1

Table 2: Objective evaluation results when varying the number of training speakers. All results calculated using the test set of
speaker 70ms, with the best highlighted in bold font.

matic speech recognition (ASR) model5 based on ESPnet
(Watanabe et al. 2018) and report character error rate (CER)
and WER. For reference, the natural test speech measured
1.55% (CER) and 3.55% (WER).

As presented in Table 1, the DNN baseline obtained
lower performance compared to the sequential models. The
bidirectional long short-term memory (BLSTM) baseline
achieved slightly better results than TaLNet* except for the
STOI metric. The proposed method (TaLNet) achieved the
best performance. In particular, there was a significant im-
provement of CER and WER over the baselines, which re-
flects higher intelligibility of reconstructed speech. WER
distribution among speakers is further presented in Figure 3.
These results show large variance across speakers, among
which the least intelligible achieved a WER of 80% and the
most intelligible a WER of 15.2%. Closer examination re-
vealed that the least intelligible speakers often suffered from
bad imaging quality, such as an unclear tongue edge or tilt-
ing of lip videos. Focusing on bad speaker data and improv-
ing performance there will be important future work. Fig-
ure 4 shows spectrograms of one utterance in the test set.
We observe that the spectrogram of speech synthesized by
the proposed method is close to the natural one. TaLNet
performed better than the equivalent model without trans-
fer learning in reconstruction accuracy. The colored boxes
indicate two examples of pronunciation errors for TaLNet*,
which were not present when transfer learning was used.

For evaluating the method subjectively, we also conducted
a MUSHRA (MUlti-Stimulus test with Hidden Reference
and Anchor) listening test to measure both naturalness and
intelligibility. 100 test utterances from 25 speakers were ran-
domly selected. Twenty native British English listeners were
recruited on the Prolific6 crow-sourcing platform. The stim-
uli were presented in random order and listeners were asked
to give a score ranging from 0 to 100 (from least to most nat-
ural/intelligible). The results are shown in Figure 5. We can
clearly see that the proposed TaLNet method outperformed
the baselines significantly in terms of both naturalness and
intelligibility. There is still, however, a gap between the re-

5https://drive.google.com/file/d/1BtQvAnsFvVi-
dp qsaFP7n4A 5cwnlR6/view?usp=drive open

6https://www.prolific.co/

covered and natural utterances.

Varying the Number of Speakers
In this section, we investigate the relationship between the
amount of training data and the resulting performance of the
proposed method. To this end, we gradually removed speak-
ers from the original training set, resulting in a series of
training subsets, which contained 75, 25, 9, 3 and 1 speaker
respectively. For equal comparison across the different con-
figurations, performance was evaluated on the test set of the
final remaining speaker (speaker ID 70ms). In Table 2, we
see that performance degraded as the number of speakers
used for training decreased. The results also demonstrate the
effectiveness of using the transfer learning strategy, which
consistently improved model performance by a large margin
when varying the amount of training data.

Ablation Studies
To evaluate the relative contributions of tongue ultrasound
and lip video, ablation studies were conducted without us-
ing tongue data (“w/o tongue”) or lip images (“w/o lip”) re-
spectively. We also tried to remove the average and standard
deviation tongue and lip images (“w/o stat.”). To gauge the
effectiveness of the scheduled sampling strategy, the model
was trained with only teacher forcing (“w/o ss”). Results be-
fore fine-tuning (i.e., the last training stage) are also reported
(“w/o finetuning”).

We see in Table 3 that “w/o lip” greatly outperformed
“w/o tongue”. Best performance, though, was achieved
when combining both features (TaLNet), indicating they
complement each other well. “w/o stat.” achieved very close
performance to the proposed method. This may be because
the speaker-specific inputs were less useful after the model
was fine-tuned on each speaker. The performance of “w/o ss”
declined significantly compared to the proposed method, un-
derlining its importance. Comparing “w/o finetune” with the
proposed method demonstrates how fine-tuning can further
improve the quality of reconstructed speech.

Voice Reconstruction from Silent Utterances
In this section, we explore voice reconstruction from silent
utterances (i.e. speakers were asked to articulate with-
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Methods MCD (dB) STOI CER (%) WER (%)
TaLNet 3.22±0.16 0.69±0.03 23.3±7.9 36.5±10.8

w/o tongue 4.20 ±0.21 0.52±0.04 68.3±3.3 90.9±3.7
w/o lip 3.38±0.16 0.66±0.03 35.3±8.0 53.0±10.2
w/o stat 3.22±0.15 0.69±0.03 23.5±7.0 36.9±9.9
w/o ss 3.55±0.19 0.63±0.04 36.8±8.5 54.3±10.6

w/o finetune 3.34±0.16 0.68±0.03 26.4±8.6 40.7±11.3

Table 3: Objective evaluation results of the proposed method in ablation studies. Best results for each metric are highlighted in
bold font. ± indicates the standard deviation of the metrics across speakers.

Type of utt. CER (%) WER (%)
audible 22.4±8.4 34.4±10.6
silent 60.3±8.6 77.3±9.3

Table 4: Objective evaluation results of audible and silent
utterances. ± indicates the standard deviation of the metrics
across speakers.

out emitting sound). Figure 6 compares spectrograms of
utterances recovered from silently-articulated and normal
speech. We observe that speech generated from silent speech
has similar spectral patterns to audible speech, despite the
model not having been trained on silent sentences. We
also observe an interesting phenomenon, however, whereby
silent utterances were 20% longer than the corresponding
audible utterances on average. This indicates speakers spent
more effort to speak silently without auditory feedback.

The silent and corresponding normal test utterances were
evaluated, and CER and WER are reported in Table 4. MCD
and STOI were omitted because the target speech signal was
of course not available. We observe that the intelligibility
of recovered speech was significantly degraded for silently
spoken utterances. A similar effect was also observed in a
previous study (Kimura, Kono, and Rekimoto 2019). Com-
pared to speaking normally, speakers were observed to ut-
ter slightly differently when doing so silently. This may be
caused by the lack of auditory feedback. However, Kimura
et al. reported seeing speakers attempt to change their mouth
movement over time to obtain better results, and generated
speech improved after several trials (Kimura, Kono, and
Rekimoto 2019). It is possible to implement our method on-
line to introduce auditory feedback, which will be tackled in
future work.

Conclusions
In this paper, we have proposed TaLNet, an articulatory-to-
acoustic model with both tongue ultrasound and lip video
as inputs. The model is based on the encoder-decoder struc-
ture. Transfer learning from text-to-speech models for the
decoder has also been presented. Our method achieved the
best performance in terms of naturalness and intelligibility
compared to all baselines. We have used ablation studies to
demonstrate the effectiveness of our proposed method. We
have also presented promising results on silent utterance re-
covery. To further improve the intelligibility of silent utter-

There is according to legend a boilingpotof gold at oneendThere is according to legend a boilingpotof gold at oneend

(b)

(a)

Figure 6: Spectrogram of (a) speech reconstructed from a
silently articulated utterance, and (b) speech reconstructed
from an equivalent audibly spoken utterance.

ances by introducing auditory feedback of speakers’ speech
will be our future work.

Acknowledgements
This work was partially funded by the National Key
R&D Program of China (Grant No. 2019YFF0303001 and
2017YFB1002202), the National Nature Science Founda-
tion of China (Grant No. 61871358), and the UK EPSRC
Healthcare Partnerships Programme grant EP/P02338X/1
(Ultrax2020: http://www.ultrax-speech.org). The first author
gratefully acknowledges financial support from the China
Scholarship Council. Many thanks to the Ultrax2020 project
team for technical help and feedback, and in particular to
Manuel Sam Ribeiro for giving early access to the TaL cor-
pus and for his many useful suggestions.

References
Afouras, T.; Chung, J. S.; and Zisserman, A. 2018. Deep Lip
Reading: a comparison of models and an online application.
In INTERSPEECH.

Akbari, H.; Arora, H.; Cao, L.; and Mesgarani, N. 2018.
Lip2audspec: Speech reconstruction from silent lip move-
ments video. In 2018 IEEE International Conference on

14408



Acoustics, Speech and Signal Processing (ICASSP), 2516–
2520. IEEE.

Anumanchipalli, G. K.; Chartier, J.; and Chang, E. F. 2019.
Speech synthesis from neural decoding of spoken sentences.
Nature 568(7753): 493–498.

Aryal, S.; and Gutierrez-Osuna, R. 2016. Data driven ar-
ticulatory synthesis with deep neural networks. Computer
Speech & Language 36: 260–273.

Assael, Y. M.; Shillingford, B.; Whiteson, S.; and de Freitas,
N. 2017. LipNet: Sentence-level lipreading. In ICLR, 1–13.

Baer, T.; Gore, J.; Boyce, S.; and Nye, P. 1987. Applica-
tion of MRI to the analysis of speech production. Magnetic
resonance imaging 5(1): 1–7.
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