
Future-Guided Incremental Transformer for Simultaneous Translation

Shaolei Zhang 1,2, Yang Feng 1,2*, Liangyou Li3

1Key Laboratory of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)

2 University of Chinese Academy of Sciences, Beijing, China
3 Huawei Noah’s Ark Lab

{zhangshaolei20z, fengyang}@ ict.ac.cn
liliangyou@huawei.com

Abstract
Simultaneous translation (ST) starts translations syn-
chronously while reading source sentences, and is used in
many online scenarios. The previous wait-k policy is con-
cise and achieved good results in ST. However, wait-k pol-
icy faces two weaknesses: low training speed caused by the
recalculation of hidden states and lack of future source in-
formation to guide training. For the low training speed, we
propose an incremental Transformer with an average embed-
ding layer (AEL) to accelerate the speed of calculation of the
hidden states during training. For future-guided training, we
propose a conventional Transformer as the teacher of the in-
cremental Transformer, and try to invisibly embed some fu-
ture information in the model through knowledge distillation.
We conducted experiments on Chinese-English and German-
English simultaneous translation tasks and compared with the
wait-k policy to evaluate the proposed method. Our method
can effectively increase the training speed by about 28 times
on average at different k and implicitly embed some predic-
tive abilities in the model, achieving better translation quality
than wait-k baseline.

Introduction
Simultaneous translation(ST) (Cho and Esipova 2016; Gu
et al. 2017; Ma et al. 2019; Arivazhagan et al. 2019), a vari-
ant of machine translation, aims to output the translations
while reading source sentences, which is more suitable for
input-output synchronization tasks (such as online transla-
tion, live subtitle and simultaneous interpretation).

Recently, wait-k policy (Ma et al. 2019) is a widely used
read / write policy, which first waits for k source tokens, and
then translates concurrently with the rest of source sentence.
Wait-k policy was trained by a “prefix-to-prefix” architec-
ture, and need to recalculate the hidden states of all previ-
ous source tokens when a new source token is received. The
wait-k policy achieved excellent results in ST and success-
fully integrated some implicit anticipation through “prefix-
to-prefix” training.

However, there are still two shortcomings in the adop-
tion of source information. According to whether the to-
ken is read, all source tokens can be divided into two cate-
gories: consumed and future. First, for the consumed source,

*Corresponding author: Yang Feng.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

wait-k needs to re-calculate the hidden states of all previous
source tokens at each decoding step, making the computa-
tional cost increase quadratically (Dalvi et al. 2018; Chen
et al. 2020). The growth factor of the computational cost
in training is proportional to the length of the target sen-
tence. Second, for the future source, since wait-k policy is
trained with “prefix-to-prefix” architecture, some source to-
kens will lag behind due to the different word order, which
is not considered in training. Although “prefix-to-prefix” ar-
chitecture makes wait-k policy have some implicit anticipa-
tion, Ma et al. (2019) pointed that the acquisition of implicit
anticipation is data-driven, since the training data contains
many prefix-pairs in the similar form. We consider that the
data-driven approach is inefficient and uncontrollable. Dur-
ing training, wait-k policy lacks the guidance from future
source information, to gain a stronger predictive ability.

To address the above two problems, we propose a
Future-Guided Incremental Transformer with average
embedding layer (AEL) and knowledge distillation (Hinton,
Vinyals, and Dean 2015). The proposed method greatly ac-
celerate the training speed, meanwhile plenty exploit the fu-
ture information to guide training and enable the model to
obtain a stronger predictive ability.

To avoid the high complexity caused by recalculation
of the consumed source hidden states, inspired by Zhang,
Xiong, and Su (2018), we propose the incremental Trans-
former, including a unidirectional encoder and a decoder
with an average embedding layer. The average embedding
layer is added into decoder to summarize the consumed
source information, by calculating the average embedding
of all consumed source tokens. Therefore, each token can
attend to all consumed tokens through the unidirectional en-
coder and AEL, avoiding the recalculation at the same time.

To utilize future source information to enhance the pre-
dictive ability, we encourage the model to embed some
future information through knowledge distillation (Hinton,
Vinyals, and Dean 2015; Ravanelli, Serdyuk, and Bengio
2018; Novitasari et al. 2019). Unlike some previous meth-
ods of adding ‘predict operation’ to ST, out method do not
explicitly predict the next word or verb, but implicitly em-
bed the future information in the model. While training in-
cremental Transformer (student), we simultaneously trained
a conventional Transformer for full-sentence NMT as the
teacher of incremental Transformer. Thus, the incremental

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

14428

Transformer can learn some future information from the
conventional Transformer. While testing, we only use incre-
mental Transformer for ST, so that it does not introduce any
waiting time or any calculations.

Experiment results on the Chinese-English, German-
English simultaneous translation tasks show our method out-
performs the baseline.

In summary, our contributions are two-fold:

• Our method does not need to recalculate the hidden states
of encoder, and also allows each source token to attend
to the complete consumed source. In training, our method
can greatly accelerate the training speed about 28 times.

• Our method provides a way to embed future information
in the incremental model, and effectively enhances the
predictive ability of the incremental model without adding
any waiting time or parameters during the inference time.

Background
We propose our method based on full-sentence NMT and
wait-k policy (Ma et al. 2019), so we first briefly introduce
them.

Full-Sentence NMT
Transformer (Vaswani et al. 2017) is currently the most
widely used model for full-sentence NMT. Transformer con-
sists of two parts, encoder and decoder, each of which con-
tains N repeated independent structures. The input sentence
is x = (x1, · · · , xn), where xi ∈ Rdmodel and dmodel rep-
resents the representation dimension. The encoder maps x
to a sequence of hidden states z = (z1, · · · , zn). Given z
and the previous target tokens, the decoder predicts the next
output token yt, and finally the entire output sequence is
y = (y1, · · · , ym).

The self-attention in conventional Transformer is calcu-
lated as following:

eij =
Q (xi)K (xj)

T

√
dk

(1)

αij =
exp eij∑n
l=1 exp eil

(2)

where eij measures similarity between inputs, αij is the at-
tention weight, Q (·) and K (·) are the projection functions
from the input space to the query space and the key space,
respectively, and dk represents the dimensions of the queries
and keys. Then, the value is weighted by αij to calculate the
hidden state zi:

zi =
n∑

j=1

αijV (xj) (3)

where V (·) is a projection function from the input space to
the value space. The final encoder output is a hidden states
sequence z ∈ Rn×dz , where dz is the dimension of the
hidden states. The per-layer complexity of self-attention is
O(n2 · d) (Vaswani et al. 2017), where n is the sequence
length and d is the representation dimension.

Figure 1: The architecture of the proposed method. The
lower part is the incremental Transformer, while the upper
part is the conventional Transformer. A knowledge distilla-
tion is applied between the hidden states for future-guidance.

Wait-k Policy
Wait-k policy (Ma et al. 2019) refers to waiting for k source
tokens first, and then reading and writing alternately, i.e., the
output always delays k tokens after the input.

Define g (t) as a monotonic non-decreasing function of t,
which represents the number of source tokens read in when
outputting the target token yt. For the wait-k policy, g (t) is
calculated as:

g (t) = min {k + t− 1, |x|} , t = 1, 2, · · · (4)

To simulate “prefix-to-prefix” training, the source tokens
participating in self-attention is limited to less than g (t):

e
(t)
ij =

{
Q(xi)K(xj)

T

√
dk

if i, j ≤ g (t)
−∞ otherwise

(5)

α
(t)
ij =

{
exp e

(t)
ij∑n

l=1 exp e
(t)
il

if i, j ≤ g (t)
0 otherwise

(6)

The hidden state of ith source token at decoding step t is
calculated as:

z
(t)
i =

n∑
j=1

α
(t)
ij V (xj) (7)

The new hidden states is z(T) ∈ Rn×dz×T , where T repre-
sents the total number of decoding steps. Since the source
token that read in changed at different decoding step, the
hidden states sequence zt at each step needs to be recalcu-
lated. The per-layer complexity of self-attention in wait-k
policy is up to O(n3 · d), which greatly increase by n times
compared with full-sentence NMT.

The Proposed Method
Our method is based on wait-k policy and consists of
two components: incremental Transformer and conventional
Transformer (full-sentence NMT). The architecture of the
proposed method is shown in Figure 1. Conventional Trans-
former is a standard Transformer (Vaswani et al. 2017), used
as the teacher of incremental Transformer for knowledge
distillation. Incremental Transformer is the proposed struc-
ture for ST, and the architecture of the incremental Trans-
former is shown in Figure 2.

14429

Figure 2: The architecture of the proposed incremental
Transformer. The rightmost column represents the last layer
of the decoder, including the average embedding layer

Incremental Transformer contains a unidirectional en-
coder (left-to-right) and a decoder with Average Embedding
Layer (AEL). To avoid the recalculation of the source hidden
states, we applied a unidirectional encoder, in which each to-
ken can only pay attention to the previous tokens. To estab-
lish the attention to the later tokens in the consumed source,
an average embedding layer is added to the last layer of de-
coder, compensating for the lack of attention. The model can
attend all consumed source through unidirectional encoder
and AEL, without much more complexity. Specific details
are introduced following.

Incremental Transformer
Unidirectional Encoder Since the wait-k poliy with the
bidirectional encoder take a high training complexity caused
by recalculation, we apply a unidirectional encoder (left-to-
right), where each source token can only focus on its pre-
vious tokens. The self-attention in unidirectional encoder is
calculated as:

eij =

{
Q(xi)K(xj)

T

√
dk

if j ≤ i ≤ g (t)
−∞ otherwise

(8)

αij =

{ exp eij∑n
l=1 exp eil

if j ≤ i ≤ g (t)
0 otherwise

(9)

Due to the characteristics of wait-k policy: g (t) =
min {k + t− 1, |x|}, g (t) changes linearly over the decod-
ing step t. The calculation of αij can be decomposed into
a unidirectional attention among all source tokens, and then
mask out the part outside the g (t) through a mask matrix.

Figure 3: The architecture of average embedding layer. For
clarity, we show an example with only four tokens (n = 4)
and wait-2 policy (k = 2).

Decoder with AEL The unidirectional encoder only need
to calculate the representation of the new source token,
avoiding the complicated recalculation. But obviously, the
price is that the front token lacks some attention to its later
tokens. To make up for this, we propose an average embed-
ding layer to summarize the information of all consumed
sources. Since applying AEL in more decoder layers will
gradually increase computational complexity, we only add
AEL into the last layer of the decoder after trade-off between
the computational complexity and translation quality.

As shown in Figure 3, through AEL, the average embed-
ding of all consumed source is added into the unidirectional
hidden states to focus on the later tokens. The inputs of the
average embedding layer are hidden states z = (z1, · · · , zn)
and input embedding E = (E1, · · · , En). First, AEL per-
forms an average operation on the input embedding:

Ai =
1

i

i∑
j=1

Ej (10)

where Ai ∈ Rdmodel is the average embedding of the first i
tokens. Since the average is not a complicated calculation,
we can use the mask matrix to parallelize average operation.

To map A from the embedding space to the hidden states
space, we applied a linear layer to get f :

fi = WAi (11)
where W ∈ Rdmodel×dmodel is a trainable parameter ma-
trix, and fi represents the average information of the first i
tokens. Then, f is added to the hidden states of the tokens
have been read in:

hij =

{
fi + zj j ≤ i

0 otherwise (12)

where hij represents the new hidden state of the jth token
when reading the first i source tokens. Through AEL, the
incremental hidden states is h ∈ Rn×n×dmodel .

Through unidirectional encoder and AEL, the incremen-
tal hidden states include the information of both previous
tokens and later tokens. In the subsequent cross-attention, at
the decoding step t, the decoder does multi-head attention
with the slice hg(t) in the incremental hidden state, where
g(t) the number of source tokens read in at t.

14430

Knowledge Distillation
The most critical issue for ST is to achieve both high transla-
tion quality and low latency. With a guaranteed low latency,
our method enables the model to predict future implicitly
and capture some future source information that helps to de-
termine sentence structure and translate.

As shown in the Figure 1, We introduced a conventional
Transformer as the teacher of the incremental Transformer,
and shorten the distance between the hidden states of them.
During training, the incremental Transformer encodes the
incremental source, while the conventional Transformer can
encode the complete source. Through knowledge distilla-
tion, conventional Transformer can teach the incremental
Transformer to encode some future source information. For
better distillation effect, we apply L2 regularization term
between the hidden states of them, where is closer to the
source. The L2 regularization term is calculated as:

L
(
zincr, zfull

)
=

1

n

n∑
i=1

∥∥∥zincri − zfulli

∥∥∥2 (13)

where zincr and zfull represent the hidden states of incre-
mental Transformer and conventional Transformer, respec-
tively.

Both incremental Transformer and conventional Trans-
former are trained with cross-entropy loss. The cross-
entropy losses of incremental Transformer L (θincr) and
conventional Transformer L (θfull) on train data D are re-
spectively expressed as:

L (θincr) = −
∑

(x,y?)∈D

log pincr (y
? | (x, θincr)) (14)

L (θfull) = −
∑

(x,y?)∈D

log pfull (y
? | (x, θfull)) (15)

Then, the total loss L is calculated as:

L = L (θincr) + L (θfull) + λL
(
zincr, zfull

)
(16)

where λ is an hyper-parameter controlling the importance of
the penalty term, we set λ = 0.1 in our experiments. We con-
ducted experiment to compare the performance between pre-
training a fixed conventional Transformer and jointly train-
ing the incremental Transformer and conventional Trans-
former in Table 1, and finally apply jointly training them.

Experiments
Datasets
We conducted experiments on Chinese→ English and Ger-
man→ English datasets.

Chinese → English (Zh-En) The training set consists
of about 1.25M sentence pairs from LDC corpora1. We
use MT02 as the validation set and MT03, MT04, MT05,
MT06, MT08 as the test sets, each with 4 English references.
We first tokenize and lowercase English sentences with the

1The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07, LDC2004T08
and LDC2005T06.

Teacher Student
BLEU AL BLEU

k = 9
Pre-training 45.13 9.81 40.57
Joint training 44.91 9.63 41.86

k = 7
Pre-training 45.13 7.81 39.71
Joint training 44.88 8.11 40.73

k = 5
Pre-training 45.13 6.50 38.39
Joint training 44.84 6.26 40.00

k = 3
Pre-training 45.13 4.62 37.00
Joint training 44.62 4.43 38.28

k = 1
Pre-training 45.13 2.34 32.11
Joint training 44.58 2.32 34.20

Table 1: Comparison between pre-training a fixed conven-
tional Transformer and jointly training incremental Trans-
former (Student) and conventional Transformer (Teacher),
testing on Zh-En validation set. We show the performance
of the final teacher model and student model. Note that the
teacher model is evaluated on full-sentence NMT.

Moses2, and segmente the Chinese sentences with the Stan-
ford Segmentor3. We apply BPE (Sennrich, Haddow, and
Birch 2016) with 30K merge operations on all texts.

German→ English (De-En) The training set consists of
about 4.5M sentence pairs from WMT15 4 De-En task. We
use news-test2013(3000 sentence pairs) as the validation set
and news-test2015(2169 sentence pairs) as the test set. We
apply BPE with 32K merge operations, and the vocabulary
is shared across languages.

Systems Setting
We conducted experiments on the following systems:

bi-Transformer: offline model. Full-sentence NMT
based on Transformer with bidirectional encoder.

uni-Transformer: offline model. Full-sentence NMT
based on Transformer with unidirectional encoder.

baseline(bi): wait-k policy based on Transformer with
bidirectional encoder (Ma et al. 2019).

baseline(uni): wait-k policy based on Transformer with
unidirectional encoder.

+Teacher: only add a conventional Transformer as the
teacher model based on Transformer with unidirectional en-
coder. The encoder of teacher model is bidirectional.

+AEL: only add average embedding layer we proposed
based on Transformer with unidirectional encoder.

+AEL+Teacher: add both AEL and teacher model based
on Transformer with unidirectional encoder.

The implementation of our method is adapted from
Fairseq Library (Ott et al. 2019). The parameters of the in-
cremental Transformer we proposed are exactly the same
as the standard wait-k (Ma et al. 2019), while the conven-
tional Transformer is the same as the original Transformer
(Vaswani et al. 2017).

2http://www.statmt.org/moses/
3https://nlp.stanford.edu/
4http://www.statmt.org/wmt15/translation-

task.html

14431

MT03 MT04 MT05 MT06 MT08 AVERAGE
∆

Training Time
(secs/b)BLEU AL BLEU

offline bi-transformer 44.56 45.69 45.28 44.63 34.51 28.83 42.93 0.31
uni-transformer 43.22 44.40 43.12 42.31 32.51 28.82 41.11 0.31

k = 9

baseline(bi) 40.35 42.21 40.21 40.78 32.45 9.99 39.20 9.92
baseline(uni) 39.42 42.08 40.33 40.12 31.59 9.99 38.71 0.31

+AEL 40.77 42.27 40.11 40.77 32.17 10.09 39.22 +0.51 0.41
+Teacher 41.52 43.05 41.75 41.59 33.12 9.74 40.21 +0.99 0.78
+AEL+Teacher 41.75 43.03 41.63 41.76 33.06 9.73 40.25 +1.54 0.80

k = 7

baseline(bi) 40.27 41.94 39.90 40.35 31.84 8.05 38.86 10.26
baseline(uni) 38.79 41.12 38.77 39.13 30.61 8.01 37.68 0.31

+AEL 39.81 41.66 38.81 40.14 31.16 8.17 38.32 +0.63 0.41
+Teacher 40.51 41.81 40.35 40.90 32.16 8.31 39.15 +1.46 0.79
+AEL+Teacher 40.41 42.08 40.29 40.44 32.94 8.10 39.23 +1.55 0.81

k = 5

baseline(bi) 40.12 41.46 39.58 40.21 31.57 6.34 38.59 10.70
baseline(uni) 37.09 39.62 37.78 37.66 29.82 6.27 36.39 0.31

+AEL 38.74 40.11 38.36 39.04 30.30 6.06 37.31 +0.92 0.41
+Teacher 39.47 40.42 38.82 39.78 30.05 6.24 37.71 +1.31 0.82
+AEL+Teacher 40.15 41.53 39.58 40.59 31.29 5.98 38.63 +2.23 0.83

k = 3

baseline(bi) 37.08 39.11 36.69 37.20 28.28 4.15 35.67 11.11
baseline(uni) 35.94 36.98 34.64 34.80 26.48 4.42 33.77 0.31

+AEL 37.40 38.72 36.64 36.59 28.06 4.11 35.48 +1.71 0.41
+Teacher 37.42 38.94 37.13 37.37 29.58 4.53 36.09 +2.32 0.84
+AEL+Teacher 38.15 38.88 37.14 37.46 28.98 4.41 36.12 +2.35 0.86

k = 1

baseline(bi) 32.67 34.51 32.55 32.04 24.79 2.45 31.31 15.11
baseline(uni) 31.99 33.75 31.47 31.56 23.86 2.71 30.53 0.31

+AEL 32.97 34.41 32.37 32.04 24.16 2.29 31.19 +0.66 0.41
+Teacher 33.95 34.51 33.07 33.17 25.14 2.35 31.97 +1.44 0.84
+AEL+Teacher 34.21 35.10 33.11 33.72 25.19 2.37 32.27 +1.74 0.86

Table 2: Translation quality (4-gram BLEU), latency (AL), and training speed (seconds/batch) on Zh-En simultaneous transla-
tion. Since our proposed method and baseline belong to the fixed policy, there is almost no difference in latency. Therefore, we
display the results in the form of table to highlight the details of the improvement in translation quality and training speed.

Comparison between Joint Training and
Pre-training

Before the main experiment, we compared the performance
of ‘+Teacher’ between pre-training a fixed conventional
Transformer or jointly training incremental Transformer and
conventional Transformer on Zh-En validation set.

As shown in Table 1, jointly training makes the model
get better performance than pre-training. The reason is that
the teacher model is for full-sentence MT, while the student
model is for ST, and the two have inherent differences in the
hidden states distribution. Since the decoding policy is incre-
mental at the inference time, we should not let the incremen-
tal Transformer learn from the conventional Transformer
without any difference, but narrow the distance between
them, helping the student model maintain the characteris-
tics of incremental decoding. Similarly, (Dalvi et al. 2018;
Ma et al. 2019) pointed out that if the full-sentence NMT
model is directly used for ST, the translation quality will be
significantly reduced. Besides, with joint-training, the per-
formance of the final teacher model will not be greatly af-
fected, which can still guide the student model. Therefore,
we jointly train the incremental Transformer and conven-
tional Transformer with the loss in Eq.(16).

Comparison with Baseline
We set standard wait-k policy as the baseline and compare
with it. For evaluation metric, we use BLEU (Papineni et al.
2002) and AL5 (Ma et al. 2019) to measure translation qual-
ity and latency, respectively. Table 2 reports translation qual-
ity (BLEU), latency (AL) and training time of our method,
baseline and offline model on Zh-En simultaneous transla-
tion, and ‘AVERAGE’ is average on all test sets. Table 3
reports the result on De-En simultaneous translation.

We first notice that the training speed of the baseline(bi)
is too slow, where the training time of each batch is about
36.84 times (average on different k) that of the offline model.
As k decreases, the training time will gradually increase, un-
til k = 1, the training time even increase by 48.74 times.
When k is smaller, the number of tokens waiting at the
beginning is less, and the number of recalculation of en-
coder hidden states increases rapidly. After adopting AEL in
Transformer with unidirectional encoder, our method avoids
the recalculation of encoder hidden states and also makes up
for the lack of attention of the unidirectional encoder. The
training speed of ‘+AEL’ is about 27.86 times (average on

5The calculation of AL is as https://github.com/
SimulTrans-demo/STACL.

14432

AL BLEU ∆

offline bi-Transformer 28.60 31.42
uni-Transformer 28.70 30.12

k = 9
baseline(bi) 9.36 28.48
baseline(uni) 9.24 28.10

+AEL+Teacher 9.25 29.42 +1.32

k = 7
baseline(bi) 7.44 28.09
baseline(uni) 7.83 27.84

+AEL+Teacher 7.90 28.38 +0.54

k = 5
baseline(bi) 5.58 26.38
baseline(uni) 5.78 25.73

+AEL+Teacher 5.74 26.97 +1.24

k = 3
baseline(bi) 3.48 24.18
baseline(uni) 3.91 24.04

+AEL+Teacher 3.95 24.39 +0.35

k = 1
baseline(bi) 1.60 18.48
baseline(uni) 1.32 18.29

+AEL+Teacher 1.31 19.36 +1.07

Table 3: Translation quality (BLEU) and latency (AL) on
De-En simultaneous translation.

different k) faster than that of baseline(bi), while the trans-
lation quality is equivalent to that of baseline(bi).

After adding the conventional Transformer to guide incre-
mental Transformer, ‘+Teacher’ improved about 1.5 BLEU
(average on different k) over the baseline(uni). Note that in
the case of low latency (smaller k), our method improves es-
pecially. When k is very small, the model waits for a very
few tokens, so that the prediction of the future is more im-
portant at a low latency. In general, after applying AEL and
Teacher model, the training speed of ‘+AEL+Teacher’ is in-
creased by about 13.67 times, and translation quality im-
proves about 1.88 BLEU on Zh-En and 0.91 BLEU on De-
En (average on different k).

For the case of different waiting time k between training
and testing, (Ma et al. 2019) pointed out that the best re-
sults when testing with wait-j policy are often from a model
trained with a larger wait-i policy (where i > j), which
shows that the model trained with more source information
performs better. Table 4 shows the results of the proposed
method using wait-i policy during training and testing with
wait-j policy. The best results are basically obtained when
j = i, since future-guided methods inspires incremental
Transformer learn implicit future information. It is worth
mentioning that the best result for wait-1 testing still comes
from wait-7 training model. We presume the reason is that
although wait-1 model learns some future information, the
delay of one token still contains too little information.

Impact of the Knowledge Distillation
Our method applies knowledge distillation with a L2 reg-
ularization term. We reduce the dimension of the hidden
states with t-Distributed Stochastic Neighbor Embedding (t-
SNE) technique, and show the distribution in Figure 4. With
the L2 regularization term, the hidden states are fused with
each other, which shows the source information extracted
by incremental Transformer and conventional Transformer

Train k
Test k 1 3 5 7 9

1 32.27 35.07 35.95 36.17 35.77
3 32.65 36.12 38.05 38.70 39.99
5 31.95 35.35 38.63 38.62 39.28
7 32.74 36.04 38.37 39.23 39.64
9 31.91 35.49 37.91 38.99 40.25

Table 4: Results(average BLEU over all Zh-En test sets) of
proposed method ‘+AEL+Teacher’ using wait-i policy dur-
ing training and wait-j policy during testing.

(a) without L2 regularization (b) with L2 regularization

Figure 4: The distribution of the hidden states of incremen-
tal Transformer and conventional Transformer on the Zh-En
validation set. Red stars represents the hidden states of the
incremental Transformer, while the blue dots represents the
hidden states of the conventional Transformer.

is more closer. Therefore, L2 regularization term success-
fully makes incremental Transformer learn some future in-
formation from conventional Transformer.

Besides, to ensure that most of the improvement brought
by ‘+Teacher’ comes from the knowledge distillation be-
tween the full-sentence / incremental encoder, not due to the
knowledge distillation between bidirectional / unidirectional
encoder, we report the results of using teacher model with
unidirectional / bidirectional encoder in Table 6. When using
Transformer with unidirectional encoder as the teacher, our
method can be improved about 1.5 BLEU. When the unidi-
rectional encoder was replaced by the bidirectional encoder,
the translation quality was only slightly further improved
about 0.2 BLEU. When both the teacher model and the
student model use unidirectional encoder, the improvement
brought by knowledge distillation is still obvious, which
shows that most of the improvement brought by our pro-
posed method ‘+Teacher’ comes from the knowledge distil-
lation between the conventional Transformer (full-sentence)
and the incremental Transformer.

Prediction Accuracy
To verify that our method implicitly embeds some future in-
formation through knowledge distillation, we tested the to-
ken prediction accuracy of ‘+Teacher’ and baseline(bi) on
Zh-En validation set. We first use GIZA++6 to align the to-
kens between the generated translation and the source sen-

6https://github.com/moses-ST/giza-pp.git

14433

k = 1 k = 3 k = 5 k = 7 k = 9
baseline +Teacher baseline +Teacher baseline +Teacher baseline +Teacher baseline +Teacher

Absent 54.88 59.82 61.34 63.26 63.54 65.38 70.72 71.80 70.48 71.57
Present 82.47 83.32 84.76 85.22 85.33 86.04 85.94 86.51 86.25 86.92

Table 5: 1-gram score of baseline and ‘+Teacher’ on Absent. set and Present. set, respectively. ‘+Teacher’ indicates apply-
ing a conventional Transformer for future-guidance. ‘Absent’ represents the aligned source token has not been read in when
generating the target token, ‘Present’ represents the aligned source token has been read in when generating the target token.

AVG BLEU ∆

k = 9
baseline(uni) 38.71

+uni-Teacher 39.72 +1.01
+bi-Teacher 40.21 +1.50

k = 7
baseline(uni) 37.68

+uni-Teacher 38.95 +1.27
+bi-Teacher 39.15 +1.46

k = 5
baseline(uni) 36.39

+uni-Teacher 37.50 +1.11
+bi-Teacher 37.71 +1.32

k = 3
baseline(uni) 33.77

+uni-Teacher 36.02 +2.25
+bi-Teacher 36.09 +2.32

k = 1
baseline(uni) 30.53

+uni-Teacher 32.08 +1.55
+bi-Teacher 31.97 +1.44

Table 6: Comparison between the teacher model using uni-
directional / bidirectional encoder, test on Zh-En test set.
‘+uni-Teacher’ indicates using unidirectional encoder, while
‘+bi-Teacher’ indicates using bidirectional encoder.

tence. As a result, the ith target token is aligned with the
jth source token. All the generated target tokens are divided
into two sets: Present and Absent. If j ≤ min (i+ k − 1, n),
the aligned source token of the ith generated token has
been read when generating, thus the generated token be-
longs to Present set. In contrast, if j > min (i+ k − 1, n),
the aligned source token has not been read when generat-
ing, thus the generated token belongs to Absent set, i.e., the
generated target token is implicitly predicted by the model.
Finally, the 1-gram score is calculated on both sets.

The results are shown in Table 5. After applying future-
guidance with the teacher model, the token prediction accu-
racy improves. Our method improves more obviously when
k is smaller, since the small k greatly limits the information
that the model can read in. When k is small, the predictive
ability from data-driven becomes unreliable, and it is espe-
cially important to explicitly introduce the future-guidance.
In addition, the accuracy on the Present. set does not de-
crease and improves slightly.

Related Work
The current research of ST is mainly divided into: precise
read / write policy and stronger predictive ability.

For read / write policy, earlier methods were based on
segmented translation (Bangalore et al. 2012; Cho and Es-
ipova 2016; Siahbani et al. 2018). Gu et al. (2017) used re-

inforcement learning to train an agent to decide read / write.
Recently, Dalvi et al. (2018) proposed STATIC-RW, first
performing S’s READs, then alternately performing RW ’s
WRITEs and READs. Ma et al. (2019) proposed a wait-k
policy, wherein begin synchronizing output after reading k
tokens. Zheng et al. (2019a) trained an agent by the input
sentences and gold read / write sequence generated by rules.
Zheng et al. (2019b) introduces a “delay” token {ε} into
the target vocabulary, and introduced limited dynamic pre-
diction. Arivazhagan et al. (2019) proposed MILK, which
uses a variable based on Bernoulli distribution to determine
whether to output. Ma et al. (2020) proposed MMA, the im-
plementation of MILK based on Transformer.

Most of the previous methods use the unidirectional en-
coder (Arivazhagan et al. 2019; Ma et al. 2020) or fune-
tuning a trained model (Dalvi et al. 2018) to reduce the
computational cost. We proposed AEL to compensate for
the lack of attention caused by unidirectional encoder.

For predicting future, Matsubara et al. (2000) applied pat-
tern recognition to predict verbs in advance. Grissom II et al.
(2014) used a Markov chain to predict the next word and
final verb to eliminate delay bottlenecks between different
word orders. (Oda et al. 2015) predict unseen syntactic con-
stituents to help generate complete parse trees and perform
syntax-based simultaneous translation. Alinejad, Siahbani,
and Sarkar (2018) added a Predict operation to the agent
based on Gu et al. (2017), predicting the next word as an ad-
ditional input. However, most of previous methods predict
a specific word through a language model, while directly
predicting specific words is prone to large errors which will
cause mistakes in subsequent translations. Unlike the previ-
ous method, our method attempt to implicitly embed some
future information in the model through future-guidance,
avoiding the impact of inaccurate predictions.

Conclusion
In order to accelerate the training speed of the wait-k pol-
icy and use future information to guide the training, we
propose future-guided incremental Transformer for simulta-
neous translation. With incremental Transformer and AEL,
our method greatly accelerates the training speed about 28
times, meanwhile attends to all consumed source tokens.
With future-guided training, the incremental Transformer
successfully embeds some implicit future information and
has a stronger predictive ability, without adding any latency
or parameters in the inference time. Experiments show the
proposed method outperform the baseline and achieve better
performance on both training speed and translation quality.

14434

Acknowledgements
We thank all the anonymous reviewers for their insightful
and valuable comments. This work was supported by Na-
tional Key R&D Program of China (NO. 2018YFC0825201
and NO. 2017YFE0192900).

References
Alinejad, A.; Siahbani, M.; and Sarkar, A. 2018. Predic-
tion Improves Simultaneous Neural Machine Translation. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, 3022–3027. Brus-
sels, Belgium: Association for Computational Linguistics.
doi:10.18653/v1/D18-1337. URL https://www.aclweb.
org/anthology/D18-1337.

Arivazhagan, N.; Cherry, C.; Macherey, W.; Chiu, C.-c.;
Yavuz, S.; Pang, R.; Li, W.; and Raffel, C. 2019. Mono-
tonic Infinite Lookback Attention for Simultaneous Machine
Translation. 1313–1323. doi:10.18653/v1/p19-1126.

Bangalore, S.; Rangarajan Sridhar, V. K.; Kolan, P.;
Golipour, L.; and Jimenez, A. 2012. Real-time Incremen-
tal Speech-to-Speech Translation of Dialogs. In Proceed-
ings of the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Hu-
man Language Technologies, 437–445. Montréal, Canada:
Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/N12-1048.

Chen, Y.; Li, L.; Jiang, X.; Chen, X.; and Liu, Q. 2020.
A General Framework for Adaptation of Neural Machine
Translation to Simultaneous Translation. In Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the As-
sociation for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language Pro-
cessing, 191–200. Suzhou, China: Association for Compu-
tational Linguistics. URL https://www.aclweb.org/
anthology/2020.aacl-main.23.

Cho, K.; and Esipova, M. 2016. Can neural machine trans-
lation do simultaneous translation? URL http://arxiv.
org/abs/1606.02012.

Dalvi, F.; Durrani, N.; Sajjad, H.; and Vogel, S. 2018. In-
cremental Decoding and Training Methods for Simultane-
ous Translation in Neural Machine Translation. In Pro-
ceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers),
493–499. New Orleans, Louisiana: Association for Com-
putational Linguistics. doi:10.18653/v1/N18-2079. URL
https://www.aclweb.org/anthology/N18-2079.

Grissom II, A.; He, H.; Boyd-Graber, J.; Morgan, J.; and
Daumé III, H. 2014. Don’t Until the Final Verb Wait: Rein-
forcement Learning for Simultaneous Machine Translation.
In Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), 1342–1352.
Doha, Qatar: Association for Computational Linguistics.
doi:10.3115/v1/D14-1140. URL https://www.aclweb.
org/anthology/D14-1140.

Gu, J.; Neubig, G.; Cho, K.; and Li, V. O. 2017. Learn-
ing to Translate in Real-time with Neural Machine Trans-
lation. In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational Linguis-
tics: Volume 1, Long Papers, 1053–1062. Valencia, Spain:
Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/E17-1099.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network.
Ma, M.; Huang, L.; Xiong, H.; Zheng, R.; Liu, K.; Zheng,
B.; Zhang, C.; He, Z.; Liu, H.; Li, X.; Wu, H.; and Wang, H.
2019. STACL: Simultaneous Translation with Implicit An-
ticipation and Controllable Latency using Prefix-to-Prefix
Framework. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, 3025–3036.
Florence, Italy: Association for Computational Linguistics.
doi:10.18653/v1/P19-1289. URL https://www.aclweb.
org/anthology/P19-1289.
Ma, X.; Pino, J. M.; Cross, J.; Puzon, L.; and Gu, J.
2020. Monotonic Multihead Attention. In International
Conference on Learning Representations. URL https:
//openreview.net/forum?id=Hyg96gBKPS.
Matsubara, Shigeki Iwashima, K.; Kawaguchi, N.; Toyama,
K.; and Inagaki, Y. 2000. Simultaneous Japenese-English
Interpretation Based on Early Predictoin of English Verb. In
Proceedings of the 4th Symposium on Natural Languauge
Processing(SNLP-2000), 268–273.
Novitasari, S.; Tjandra, A.; Sakti, S.; and Nakamura, S.
2019. Sequence-to-Sequence Learning via Attention Trans-
fer for Incremental Speech Recognition 3835–3839.
Oda, Y.; Neubig, G.; Sakti, S.; Toda, T.; and Nakamura, S.
2015. Syntax-based Simultaneous Translation through Pre-
diction of Unseen Syntactic Constituents. In Proceedings
of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Pa-
pers), 198–207. Beijing, China: Association for Computa-
tional Linguistics. doi:10.3115/v1/P15-1020. URL https:
//www.aclweb.org/anthology/P15-1020.
Ott, M.; Edunov, S.; Baevski, A.; Fan, A.; Gross, S.; Ng, N.;
Grangier, D.; and Auli, M. 2019. fairseq: A Fast, Extensible
Toolkit for Sequence Modeling. In Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics (Demonstrations), 48–
53. Minneapolis, Minnesota: Association for Computational
Linguistics. doi:10.18653/v1/N19-4009. URL https:
//www.aclweb.org/anthology/N19-4009.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a Method for Automatic Evaluation of Machine Trans-
lation. In Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, 311–318. Philadel-
phia, Pennsylvania, USA: Association for Computational
Linguistics. doi:10.3115/1073083.1073135. URL https:
//www.aclweb.org/anthology/P02-1040.
Ravanelli, M.; Serdyuk, D.; and Bengio, Y. 2018. Twin Reg-
ularization for online speech recognition. Proceedings of the

14435

Annual Conference of the International Speech Communi-
cation Association, INTERSPEECH 2018-Septe(1): 3718–
3722. ISSN 19909772. doi:10.21437/Interspeech.2018-
1407.
Sennrich, R.; Haddow, B.; and Birch, A. 2016. Neural
Machine Translation of Rare Words with Subword Units.
In Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Pa-
pers), 1715–1725. Berlin, Germany: Association for Com-
putational Linguistics. doi:10.18653/v1/P16-1162. URL
https://www.aclweb.org/anthology/P16-1162.
Siahbani, M.; Shavarani, H.; Alinejad, A.; and Sarkar, A.
2018. Simultaneous Translation using Optimized Segmen-
tation. In Proceedings of the 13th Conference of the As-
sociation for Machine Translation in the Americas (Volume
1: Research Papers), 154–167. Boston, MA: Association
for Machine Translation in the Americas. URL https:
//www.aclweb.org/anthology/W18-1815.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg,
U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan,
S.; and Garnett, R., eds., Advances in Neural Informa-
tion Processing Systems 30, 5998–6008. Curran Asso-
ciates, Inc. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.
Zhang, B.; Xiong, D.; and Su, J. 2018. Accelerating Neu-
ral Transformer via an Average Attention Network. In Pro-
ceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
1789–1798. Melbourne, Australia: Association for Com-
putational Linguistics. doi:10.18653/v1/P18-1166. URL
https://www.aclweb.org/anthology/P18-1166.
Zheng, B.; Zheng, R.; Ma, M.; and Huang, L. 2019a. Sim-
pler and Faster Learning of Adaptive Policies for Simul-
taneous Translation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 1349–1354. Hong
Kong, China: Association for Computational Linguistics.
doi:10.18653/v1/D19-1137. URL https://www.aclweb.
org/anthology/D19-1137.
Zheng, B.; Zheng, R.; Ma, M.; and Huang, L. 2019b. Si-
multaneous Translation with Flexible Policy via Restricted
Imitation Learning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, 5816–
5822. Florence, Italy: Association for Computational Lin-
guistics. doi:10.18653/v1/P19-1582. URL https://www.
aclweb.org/anthology/P19-1582.

14436

