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Abstract

For natural language understanding tasks, either machine
reading comprehension or natural language inference, both
semantics-aware and inference are favorable features of the
concerned modeling for better understanding performance.
Thus we propose a Semantics-Aware Inferential Network
(SAIN) to meet such a motivation. Taking explicit contex-
tualized semantics as a complementary input, the inferential
module of SAIN enables a series of reasoning steps over se-
mantic clues through an attention mechanism. By stringing
these steps, the inferential network effectively learns to per-
form iterative reasoning which incorporates both explicit se-
mantics and contextualized representations. In terms of well
pre-trained language models as front-end encoder, our model
achieves significant improvement on 11 tasks including ma-
chine reading comprehension and natural language inference.

Introduction
Recent studies (Zhang et al. 2020a; Mihaylov and Frank
2019; Sun et al. 2019; Zhang et al. 2019b, 2018) have
shown that introducing extra common sense knowledge or
linguistic knowledge into language representations may fur-
ther enhance the concerned natural language understanding
(NLU) tasks that latently have a need of reasoning abil-
ity, such as natural language inference (NLI) (Wang et al.
2019; Bowman et al. 2015) and machine reading compre-
hension (MRC) (Rajpurkar, Jia, and Liang 2018; Koisk
et al. 2018). Zhang et al. (2020a) propose incorporating ex-
plicit semantics as a well-formed linguistic knowledge by
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                          Machine Reading Comprehension

Context: 
ArmadaV-A1 is a science fiction novel writtenV by Ernest ClineV-A2. 
Ernest ClineV1-A0 also co-wroteV1 the screenplay of  Ready Player 
OneV1-A1’s upcoming movieV2-A1 adaptedV2 by Steven SpielbergV2-A0.

Question: 
Which novelV1-A1 writtenV by the author of ArmadaV1-A0 was madeV2 
into a movieV2-A1 by Steven spielbergV2-A0?

Answer: Ready Player One

                          Natural Language Inference

S1: 2.7 million peopleV-A0 are infectedV with HIVV-A2.

S2: 2.7 percent of the peopleV1,V2-A1 infectedV1 with HIVV1-A2 liveV2 
      in AfricaV2-LOC.

Label: not entailment

Figure 1: Examples in MRC and NLI with necessary seman-
tic annotations. The connected predicates have important ar-
guments to predict the answer.

concatenating the pre-trained language model embedding
with semantic role labeling embedding, and obtains signif-
icant gains on the SNLI (Bowman et al. 2015) and GLUE
benchmark (Wang et al. 2019). Mihaylov and Frank (2019)
use semantic information to strengthen the multi-head self-
attention model, and achieves substantial improvement on
NarrativeQA (Koisk et al. 2018). In this work, we propose
a Semantics-Aware Inferential Network (SAIN) to refine the
use of semantic structures by decomposing text into different
semantic structures for compositional processing in inferen-
tial network.

Questions in NLU tasks are usually not compositional,
so most existing inferential networks (Weston, Chopra, and
Bordes 2014; Yu, Zha, and Yin 2019) input the same text
at each reasoning step, which is not efficient enough to per-
form iterative reasoning. To overcome this problem, we use
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Figure 2: Overview of the framework. Here we only show the inputs and outputs of the first step and last step. The encoding
module outputs M semantic representations that integrate both the contextualized and semantic embedding. The model attends
to Qi and Pi in step i. The final memory state mM is used to predict the answer.

semantic role labeling to decompose the text into different
semantic structures which are referred as different semantic
representations of the sentence (Khashabi et al. 2018; Mi-
haylov and Frank 2019).

In Figure 1, to correctly answer the MRC question, the
model needs to recognize that the author of Armada is
Ernest Cline firstly, and then knows that Ernest Cline’s
novel Ready Player One was made into a movie by Steven
spielberg, which requires iteratively reasoning over the two
predicates written and made because they have very simi-
lar arguments with the corresponding predicates written and
adapted in the context. For the NLI example, if the model
recognizes the predicate infected as the central meaning in
S2 and ignores the true central word live, it probably makes
wrong prediction entailment because S1 also has a similar
structure predicated on infected. So it may be helpful to re-
fine the use of semantic clues by integrating all the semantic
information into the inference.

We are motivated to model these semantic structures by
presenting SAIN, which introduces semantic information
(Zhang et al. 2020a) into the multi-step reasoning model
(Hudson and Manning 2018). In SAIN, there are a set of
reasoning steps, each step attends to one predicate-argument
structure and can be viewed as a cell consisting of three
units: control unit, read unit and write unit, that operate over
dull control and memory hidden states. The cells are recur-
sively connected, where the result of the previous step acts
as the context of next step. The interaction between the cells
is regulated by structural constraints to perform iterative rea-
soning in an end-to-end way.

This work will focus on two typical NLU tasks, nat-
ural language inference and machine reading comprehen-
sion. Experiment results indicate that our proposed model
achieves significant improvement over the strong baselines
on these tasks and obtains the state-of-the-art performance
on SNLI and MRQA datasets.

Approach
The model framework is shown in Figure 2. Our model in-
cludes: 1) contextualized encoding module which obtains
the joint representation of the pre-trained language model
embedding and semantic embedding. 2) inferential module
which consists of a set of recurrent reasoning steps/cells,
where each step/cell attends to one predicate-argument
structure of one sentence. 3) output module which predicts
the answer based on the final memory state of the inferential
module.

For MRC task, given a passage (P) and a question (Q),
the goal is to predict the answer from the given passage. For
NLI task, given a pair of sentences, the goal is to judge the
relationship between their meanings. Our model will be in-
troduced with the background of MRC task, and the corre-
sponding NLI implementation of our model can be regarded
as a simplified case of the MRC, considering that passage
and question in MRC task correspond to two sentences in
NLI task.

Semantic Role Labeling

Semantic role labeling (SRL) is generally formulated as
multi-step classification subtasks in pipeline systems to
identify the semantic structures. There are a few of formal
semantic frames, including FrameNet (Baker, Fillmore, and
Lowe 1998) and PropBank (Palmer, Gildea, and Kingsbury
2005), which generally present the semantic relationship
as predicate-argument structure. When several argument-
taking predicates are recognized in one sentence, we obtain
multiple semantic representations of the sentence. For ex-
ample, given the context sentence in Figure 3 with target
predicates loves and eat, there are two semantic structures
labeled as follows,

[The cat]ARG0 [loves]V [to eat fish]ARG1.
[The cat]ARG0 [loves to]O [eat]V [fish]ARG1.

where ARG0, ARG1 represents the argument role 0, 1 of the
predicate V, respectively.
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The cat loves to eat fish

 The   cat   loves   to     eat   fish

ARG0 (x2)     V ARG1 (x3)

ARG0 (x2)      O (x2)    V ARG1

transformer transformer...

contextualized embedding semantic embedding

Figure 3: Different semantic representations of one sentence
combined by contextualized embedding and semantic em-
bedding.

Contextual Encoding
Semantic Embedding Given the sentence X =
{x1, ..., xn} with n words and m predicates (m = 2
in Figure 3), there come m corresponding labeled SRL
sequences {L1, L2, ..., Lm} with length n. Note this is
done in data preprocessing and these labels are not updated
with the following modules. These semantic role labels are
mapped into vectors in dimension dw where each sequence
Li is embedded as Esi = {ei1, ..., ein} ∈ Rn×dw .

Contextualized Embedding With an adopted contextu-
alized encoder, the input sequence X = {x1, ..., xn} is
embedded as Ew = {e1, ..., ens

} ∈ Rns×ds , where ds is
hidden state size of the encoder and ns is the tokenized se-
quence length.

Joint embedding Note that the input sequence may be
tokenized into subwords. Then the tokenized sequence of
length ns is usually longer than the SRL sequence of length
n. To align these two sequences, we extend the SRL se-
quence to length ns by assigning the subwords the same
label with original word. The aligned contextualized and se-
mantic embeddings are then concatenated as the joint em-
bedding for the sequence EXi = [Esi ;Ew] ∈ Rns×d,
where d = ds + dw.

Different sentences have various numbers of predicate-
argument structures, here we set the maximum number
as M for ease of calculation. So for MRC, the pas-
sage and question both have M encoded representations
where EP = {EP1 , ..., EPM } ∈ RM×|P |×d and EQ =
{EQ1 , ..., EQM } ∈ RM×|Q|×d, where |P |, |Q| are the
length of passage and question.

Inferential Network
The inferential module performs explicit multi-step reason-
ing by stringing together M cells, where each attends to one
semantic structure of the sentence. Each cell has three oper-
ation units: control unit, read unit and write unit, iteratively
aggregating information from different semantic structures.

For MRC, each reasoning step attends to one semantic
structure of each sentence from passage and question, re-

W,b W,b

control unit

Figure 4: The control unit.

spectively. So passage EPi = {pi,1, ..., pi,|P |} and question
EQi = {qi,1, ..., qi,|Q|} are the input sequences for step i.
Besides, we use biLSTM to get the overall question repre-
sentation bqi = [−→qi,1;←−−−qi,|Q|] ∈ R2d.

Reasoning Cell The reasoning cell is a recurrent cell de-
signed to capture information from different semantic struc-
tures. For each step i = 1, ...,M in the reasoning pro-
cess, the ith cell maintains two hidden states: control ci
and memory mi, with dimension d. The control ci retrieves
information from EQi by calculating a soft attention-based
weighted average of the question words. The memory mi

holds the intermediate results from the reasoning process
up to the ith step by integrating the preceding hidden state
mi−1 with the new information ri retrieved from the pas-
sage EPi .

There are three units in each cell: control unit, read unit
and write unit, which work together to perform iterative rea-
soning. The control unit retrieves the information from the
question, updating the control hidden state ci. The read unit
extracts relevant information from the passage and outputs
extracted information ri. The write unit integrates ci and ri
into the memory mi−1, producing a new memory mi. In
the following, we give the details of these three units. All
the vectors are of dimension d unless otherwise stated.

The control unit (Figure 4) attends to the ith semantic
structure of the question EQi at step i and updates the con-
trol state ci accordingly. Firstly, we combines the overall
question representation bqi and preceding reasoning opera-
tion ci−1 into wi through a linear layer. Subsequently, we
calculate the similarity between wi and each question word
qi,j , and pass the result through a softmax layer, yielding an
attention distribution over the question words. Finally, we
sum the words over this distribution to get the new control
ci. The calculation details are as follows:

wi =W d×2d[ci−1, bqi] + bd

ai,j =W 1×d(wi � qi,j) + b1

vi,j = Softmax(ai,j), j = 1, ..., |Q|

ci =

|Q|∑
j=1

vi,j · qi,j

(1)

where W d×2d, W 1×d, bd and b1 are learnable parameters,
|Q| is the question length.

The read unit (Figure 5) inspects the ith semantic struc-
ture of the passage EPi at step i and retrieves the informa-
tion ri to update the memory. Firstly, we compute the in-
teraction between every passage word pi,p and the memory
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W,b W,b

read unit

Figure 5: The read unit.

mi−1, resulting in Ii,p which measures the relevance of the
passage word to the preceding memory. Then, Ii,p and pi,p
are concatenated and passed through a linear transformation,
yielding Îi,p which considers both the new information from
EPi and the information related to the prior intermediate re-
sult. Finally, aiming to retrieve the information relevant to
the question, we measure the similarity between Îi,p and ci
and pass the result through a softmax layer which produces
an attention distribution over the passage words. This distri-
bution is used to get the weighted average ri over the pas-
sage. The calculation is detailed as follows:

Ii,p = [W d×d
1 mi−1 + bd1]� [W d×d

2 pi,p + bd2]

Îi,p =W d×2d[Ii,p, pi,p] + bd

rai,p =W d×d(ci � Îi,p) + bd

rvi,p = Softmax(rai,p), p = 1, ..., |P |

ri =

|P |∑
p=1

rvi,p · pi,p

where all the W and b are learnable parameters, |P | is the
passage length.

The write unit (Figure 6) is responsible for integrating
the information retrieved from the read unit ri with the pre-
ceding memory mi−1, guided by the ith reasoning opera-
tion ci from the question. Specificly, a sigmoid gate is used
when combining the previous memory state mi−1 and the
new memory candidate mr

i . The calculation details are as
follows:

mr
i =W d×2d[ri,mi−1] + bd

ĉi =W 1×dci + b1

mi = σ(ĉi)mi−1 + (1− σ(ĉi))mr
i

(2)

Output Module

For MRC, the output module predicts the final answer to
the question based on the set of memory states {m1,...,mM}
produced by the inferential module. For MRC, we calcu-
late the similarity between the ith memory mi ∈ Rd and
each passage word pi,p in ith semantic passage represen-
tation EPi , resulting in ÊPi , i = 1, ...,M. We concate-
nate ÊP1 , ..., ÊPM as the final passage representation ÊP ∈
R|P |×Md which is then passed to a linear layer to get the
start and end probability distribution ps, pe on each position.

W,b

W,b

write unit

Figure 6: The write unit.

Finally, a cross entropy loss is computed:

mpi,p = ReLU(mi) · pi,p
ÊPi = [mpi,1, ...,mpi,|P |] ∈ R|P |×d

E = [ÊP1 , ..., ÊPM ] ∈ R|P |×Md

[ps, pe] = EWMd×2 ∈ R|P |×2

Loss =
1

2
CE(ps, ys) +

1

2
CE(pe, ye)

where ys and ye are the true start and end probability dis-
tribution. ps, pe, ys and ye are all with size R|P |. CE(·)
indicates the cross entropy function.

For NLI, the final memory state mM is activated by the
Tanh function and passed to a linear layer to produce the
probability distribution over the labels: p = Tanh(mM) ·
W d×N ∈ RN . Cross entropy is used as the metric: Loss =
CE(p, y), where N is the number of labels. p ∈ RN is the
predicted probability distribution over the labels and y ∈
RN is the true label distribution.

Experiments
Data and Task Description
Machine Reading Comprehension We evaluate our model
on extractive MRC such as SQuAD (Rajpurkar, Jia, and
Liang 2018) and MRQA1 (Fisch et al. 2019) where the an-
swer is a span of the passage. MRQA is a collection of
existing question-answering related MRC datasets, such as
SearchQA (Dunn et al. 2017), NewsQA (Trischler et al.
2017), NaturalQuestions (Kwiatkowski et al. 2019), Triv-
iaQA (Joshi et al. 2017), etc. They are transformed into
SQuAD style extractive MRC.

Natural Language Inference Given a pair of sentences,
the target is to judge the relationship between their mean-
ings, such as entailment, neural and contradiction. We eval-
uate on 4 diverse datasets, including SNLI (Bowman et al.
2015), MNLI (Williams, Nangia, and Bowman 2018), QNLI
(Rajpurkar et al. 2016) and RTE (Bentivogli et al. 2009).

Implementation Details
To obtain the semantic role labels, we use the SRL system
of (He et al. 2017) as implemented in AllenNLP (Gardner
et al. 2018) that splits sentences into tokens and predicts
SRL tags such as ARG0, ARG1 for each verb. We use O for
non-argument words and V for predicates. The dimension
of SRL embedding is set to 30 and performance does not
change significantly when setting this number to 10, 50 or

1https://github.com/mrqa/MRQA-Shared-Task-2019.
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NewsQA TriviaQA SearchQA HotpotQA NaturalQA (Avg.)
MTLbase (Fisch et al. 2019) 66.8 71.6 76.7 76.6 77.4 73.8
MTLlarge (Fisch et al. 2019) 66.3 74.7 79.0 79.0 79.8 75.8
CLER (Takahashi et al. 2019) 69.4 75.6 79.0 79.8 79.8 76.7
BERTlarge (Joshi et al. 2019) 68.8 77.5 81.7 78.3 79.9 77.3
HLTC (Su et al. 2019) 72.4 76.2 79.3 80.1 80.6 77.7
SemBERT∗ (Zhang et al. 2020a) 69.1 78.6 82.4 78.6 80.3 77.8
SpanBERT (Joshi et al. 2019) 73.6 83.6 84.8 83.0 82.5 81.5
BERT∗base 66.2 71.5 77.0 75.0 77.5 73.4
BERT∗large 69.2 77.4 81.5 78.2 79.4 77.2
SpanBERT∗ 73.0 83.1 83.5 82.5 81.9 80.9
RoBERTa∗ 73.3 83.2 83.7 82.8 82.1 81.1
Our Models
SAINBERTbase 68.3 72.6 78.2 77.7 78.9 75.2
SAINBERTlarge 72.1 80.1 83.4 79.4 82.0 79.4
SAINSpanBERT 75.1 85.2 85.4 84.4 83.8 82.8
SAINRoBERTa 75.4 85.5 85.7 84.5 84.3 83.1

Table 1: Performance (F1) on five MRQA tasks. Results with ∗ are our implementations. Avg indicates the average score of
these datasets. All these results are from single models.

Model MNLI-m/mm QNLI RTE SNLI (Avg.) SQuAD 1.1 SQuAD 2.0 (Avg.)
Acc Acc Acc Acc Acc EM F1 EM F1

BERTbase 84.6 83.4 89.3 66.4 90.7 82.9 80.8 88.5 77.1∗ 80.3∗ 81.7
BERTlarge 86.7 85.9 92.7 70.1 91.1 85.3 84.1 90.9 80.0 83.3 84.5
SemBERTbase 84.4 84.0 90.9 69.3† 91.0∗ 83.9
SemBERTlarge 87.6 86.3 94.6 70.9† 91.6 86.2 84.5∗ 91.3∗ 80.9 83.6 85.1
Our Models
SAINBERTbase 84.9 85.0 92.1 72.0 91.3 85.1 82.2 89.3 79.4 82.0 83.2
SAINBERTlarge 88.7 87.5 95.6 73.9 91.9 87.5 85.4 92.1 82.8 85.4 86.4

Table 2: Experiment results on NLI and SQuAD datasets. The results of BERT and SemBERT are from (Devlin et al. 2019)
and (Zhang et al. 2020a). † indicates the results of SemBERT without random restarts and distillation. Results with ∗ are our
implementations. Avg indicates the average score of these datasets. All these results are from single models.

100. According to the experimental results, it is a reasonable
configuration that sets the maximum number of predicate-
argument structures (reasoning steps)M to 3 and 4 for MRC
and NLI tasks, respectively.

Our model framework is based on the Pytorch implemen-
tation of transformers2. We use Adam as our optimizer with
initial learning rate 1e-5 and warm-up rate of 0.1. The batch
size is set to 8.

Overall Results
Our main comparison models are the BERT baselines
(BERT (Devlin et al. 2019) and SpanBERT (Joshi et al.
2019)) and SemBERT (Zhang et al. 2020a). SemBERT im-
proves the language representation by concatenating the
BERT embedding and semantic embedding, where embed-
dings from different predicate-argument structures are sim-
ply fused as one semantic representation by using one lin-
ear layer. We compare our model to these baselines on 11
benchmarks including 5 MRQA datasets, 4 NLI tasks and 2

2https://github.com/huggingface/transformers.

SQuAD datasets in Tables 1 and 2.

SAIN vs. BERT/SpanBERT baselines Compared to
BERT, our model achieves 2.2% (79.4 vs. 77.2), 2.2% (87.5
vs. 85.3), 1.7% (88.8% vs. 87.1 %) average improvement
on MRQA, NLI and SQuAD datasets. Our model also out-
performs other BERT based models CLER (Takahashi et al.
2019) and HLTC (Su et al. 2019) on MRQA. We also com-
pare with SpanBERT on MRQA datasets and our model out-
performs this baseline by 1.3% (82.8 vs. 81.5) in average F1
score. To the best of our knowledge, we achieve state-of-the-
art performance on MRQA (dev sets) and SNLI.

SAIN vs. SemBERT Our SAIN outperforms SemBERT
on all tasks, including 1.6% (79.4 vs. 77.8), 1.3% (87.5 vs.
86.2) and 1.3% (86.4 vs. 85.1) average improvement on
MRQA, NLI and SQuAD datasets. We attribute the supe-
riority of our SAIN to its more refined use of semantic clues
in terms of inferential network rather than SemBERT which
simply encodes all predicate-argument structures into one
embedding.
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RTE SQuAD 1.1 SQuAD 2.0
SAIN 71.8 89.1 82.2
w/o IM 69.5 (-2.3) 87.5 (-1.6) 80.7 (-1.5)
w/o SI 69.9 (-1.9) 87.4 (-1.7) 80.8 (-1.4)
w/o IR 70.4 (-1.4) 88.0 (-1.1) 81.0 (-1.2)

Table 3: Ablation study on RTE, SQuAD 1.1 and SQuAD
2.0 (F1), using BERTbase as contextual encoder. IM, SI and
IR is defined in Section .

RTE SQuAD 1.1
full model 71.8 89.1
w/o control unit 68.5 (-3.3) 88.0 (-1.1)
w/o read unit 69.0 (-2.8) 87.4 (-1.7)
w/o write unit 69.2 (-2.6) 88.1 (-1.0)
w/o memory gate 70.4 (-1.4) 87.9 (-1.2)
w/o mem-con separation 68.0 (-3.8) 86.9 (-2.2)
w/o question attention 68.2 (-3.6) 87.7 (-1.4)

Table 4: Ablations of inferential module on RTE and
SQuAD 1.1, using BERTbase as contextual encoder.

Ablation Study
Semantics and Inference To evaluate the contribution of
semantics and inference in our model, we perform ablation
studies on the RTE and SQuAD dev sets as shown in Ta-
ble 3. Here we focus on these components: (1) the whole
inferential module (IM); (2) the semantic information (SI);
(3) iterative reasoning (IR) that different reasoning cells at-
tend to different predicate-argument structures. To evaluate
their contribution, we perform experiments respectively by:
(1) IM: removing the inferential module and simply com-
bining the BERT embedding with semantic embeddings; (2)
SI: removing all the semantic embeddings; (3) IR: combin-
ing multiple semantic embeddings as one and different rea-
soning steps taking the same semantic embedding.

As displayed in Table 3, the ablation on all evaluated
components results in performance drop which indicates
that both semantics and inference are indispensable for the
model.

Analysis of Inferential Module To gain better insight
into the relative contribution of three units, we perform ex-
tensive ablation studies in Figure 4. We remove the control,
read and write unit by replacing ci, ri and mi with bqi,
mi−1 and ri, respectively. All three ablations result in per-
formance drop. Without control and read unit, the model
cannot iteratively retrieve information from question and
passage, which has been proved necessarily helpful for the
performance. Without the write unit, the model assigns the
newly retrieved information ri to new memory mi directly,
which has no interaction with the control state ci. This also
results in performance drop.

Control and Memory To further explore the influence of
the control and memory, (1) we remove the memory gate,
in which new memory mi is computed by averaging the re-

Figure 7: Results on the dev sets of SQuAD 2.0 and RTE
when selecting different reasoning steps M , using BERTbase
as contextual encoder. SQuAD/RTE-w/o SI indicates the re-
sults without using any semantic information.

trieved information ri and previous memory mi−1. As ex-
pected, the performance gets worse. (2) Furthermore, we
use one hidden state that plays both the roles of the con-
trol and memory (w/o mem-con separation in Table 4), iter-
atively attending and integrating information from the ques-
tion and passage. This approach leads to a sharp perfor-
mance drop(%3.8 on RTE, %2.2 on SQuAD). These results
indicate that maintaining the separation setting and retriev-
ing information from the interaction between memory and
control are necessary for the model’s accuracy.

Question Attention This ablation (w/o question atten-
tion) shows that using attention over the question words in
control unit (see Figure 4) is helpful for model performance.
Using wi in equation 1 instead of the attention based control
state ci leads to significant performance drop. This result il-
lustrates the importance and usefulness of decomposing the
question into multiple structures, such that a single cell is
faced with learning one semantic structure or a few words in
the question at a time, rather than modeling the question at
once. This is intuitively shown in Figure 8.

Influence of Semantic Information
To further investigate the influence of semantic information,
Figure 7 shows the performance comparison of whether to
use the semantic information with different numbers of rea-
soning steps M (from 1 to 7). The highest performance is
achieved when M is set to 3 on SQuAD, 4 on RTE. The
results indicate that semantic information consistently con-
tributes to the performance increase, although the inferential
network is strong enough.

To investigate influence of the accuracy of the labeler, we
randomly tune specific proportion [0, 20%, 40%] of labels
into random error ones. The scores of SQuAD 2.0 and RTE
are respectively [85.4, 83.2, 82.6] and [73.4, 71.8, 71.2],
which indicate that the model benefits from high-accuracy
labeler but can still maintain the performance even using
some noisy labels.

To investigate the influence of SRL sequence ordering,
we randomly shuffle the order to see the difference. Three
groups of comparative experiments were carried out on
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Passage: (S1) Steel pipes and storage vessels used to
store and transmit both gaseous and liquid oxygen will
act as a fuel; (S2) and therefore the design and manu-
facture of oxygen systems requires special training to
ensure that ignition sources are minimized.

Question: What does the transport and storage de-
mand for safety in dealing with oxygen?
Golden Answer: special training
SemBERT: fuel SAIN: special training

Table 5: One example that is correctly predicted by SAIN,
but wrongly predicted by SemBERT.

SQuAD 2.0 and RTE. The scores of SQuAD 2.0 and RTE are
respectively [85.3, 85.6, 85.5] and [73.3, 73.5, 73.4], which
indicate that there is no significant difference when using
various orderings of the SRL substructures.

Case Study
To obtain better insight into the underlying reasoning pro-
cesses, we study the visualization of the attention distribu-
tions during the iterative computation, and provide examples
in Table 5 and Figure 8. Table 5 shows a relatively com-
plex question that is correctly answered by our model, but
wrongly predicted by SemBERT (Zhang et al. 2020a). In this
example, there is misleading contextual similarity between
words “store and transmit” in sentence S1 and “transport
and storage” in the question which may lead the model to
wrong answer in S1, such as “fuel” by SemBERT. To over-
come this misleading, the model needs to recognize the cen-
tral connection predicates “demand” and “requires” between
the question and passage, then extract the correct answer
“special training” in S2.

Figure 8 shows how our model retrieves information from
different semantic structures of the question in each reason-
ing step. The model first focuses on the word “what”, work-
ing to retrieve a noun. Then it focuses on the arguments
“transport” and “storage” in step 2 but gets around these
words in step 3, and attends to the second verb phrase “deal-
ing with oxygen”, taking the model’s attention away from
sentence S1. Finally, the model focuses on the main meaning
of the question: “demand for security” and predicts the cor-
rect answer “special training” in sentence S2, with respect to
the semantic similarity between words “demand for safety”
and “requires to ensure”. This example intuitively explains
why our model benefits from the iterative reasoning where
each step only attends to one semantic representation.

Related Work
Semantic Information for MRC With the development of
neural models(Zhang et al. 2019a; Zhou et al. 2020; Zhang
et al. 2020b, 2019c), using semantic information to enhance
the question answering system is one effective method to
boost the performance. Narayanan and Harabagiu (2004)
first stress the importance of semantic roles in dealing with
complex questions. Shen and Lapata (2007) introduce a gen-

Figure 8: Transformation of attention distribution at each
reasoning step, showing how the model iteratively retrieves
information from the question.

eral framework for answer extraction which exploits seman-
tic role annotations in the FrameNet (Baker, Fillmore, and
Lowe 1998) paradigm. Yih et al. (2013) propose to solve
the answer selection problem using enhanced lexical seman-
tic models. More recently, Zhang et al. (2020a) propose to
strengthen the language model representation by fusing ex-
plicit contextualized semantics. Mihaylov and Frank (2019)
apply linguistic annotations to a discourse-aware semantic
self-attention encoder which is employed for reading com-
prehension on narrative texts. (Weber et al. 2019) integrate
Markov Logic Networks and Probabilistic Soft Logic with
word embeddings to strengthen the model. In this work, we
propose to use inferential model to recurrently retrieve dif-
ferent predicate-argument structures.

Inferential Network To support inference in neural net-
work, exiting models either rely on structured rule-based
matching methods (Sun, Cheng, and Qu 2018) or multi-
layer memory networks (Weston, Chopra, and Bordes 2014;
Liu and Perez 2017), which either lack end-to-end design or
no prior structure to subtly guide the reasoning direction.
On Visual QA tasks, Hudson and Manning (2018) intro-
duce an iterative network that separates memory and control
to improve interpretability for compositional question. Our
work leverages such separate design, dedicating to inferen-
tial NLU tasks.

To overcome the difficulty of applying inferential network
into general NLU tasks, and passingly refine the use of mul-
tiple semantic structures, we propose SAIN which naturally
decomposes text into different semantic structures for com-
positional processing in inferential network. Finally, we in-
tegrate semantics and inferential model in a creative way.

Conclusion
This work focuses on two typical NLU tasks, machine read-
ing comprehension and natural language inference by refin-
ing the use of semantic clues and inferential model. The pro-
posed semantics-aware inferential network (SAIN) is capa-
ble of taking multiple semantic structures as input of an in-
ferential network by closely integrating semantics and rea-
soning steps in a creative way. Experiment results on 11
benchmarks, including 4 NLI tasks and 7 MRC tasks, show
that our model outperforms all previous strong baselines,
which consistently indicate the general effectiveness of our
model.
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