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Abstract

Word-character lattice models have been proved to be effec-
tive for Chinese named entity recognition (NER), in which
word boundary information is fused into character sequences
for enhancing character representations. However, prior ap-
proaches have only used simple methods such as feature con-
catenation or position encoding to integrate word-character
lattice information, but fail to capture fine-grained correla-
tions in word-character spaces. In this paper, we propose DC-
SAN, a Dynamic Cross- and Self-lattice Attention Network
that aims to model dense interactions over word-character
lattice structure for Chinese NER. By carefully combining
cross-lattice and self-lattice attention modules with gated
word-character semantic fusion unit, the network can explic-
itly capture fine-grained correlations across different spaces
(e.g., word-to-character and character-to-character), thus sig-
nificantly improving model performance. Experiments on
four Chinese NER datasets show that DCSAN obtains state-
of-the-art results as well as efficiency compared to several
competitive approaches.

Introduction
Named Entity Recognition (NER), which aims to automat-
ically detect named entities from giving text and identify
their categories (Zhao et al. 2020), is one of the most impor-
tant tasks in information extraction. Due to the additional
word segmentation process of Chinese (Zhao et al. 2019),
Chinese NER is more difficult compared to English NER.

Traditionally, the task of Chinese NER is decoupled into a
pipeline of two separated subtasks, namely word segmenta-
tion and word sequence labeling (Yang et al. 2016). The ma-
jor disadvantage of this method is error propagation: word
segmentation errors negatively impact the identification of
named entities (Peng and Dredze 2015; He and Sun 2016).
Character-based models, on the other hand, can naturally
avoid word segmentation errors, thus outperforming word-
based methods. Moreover, to explicitly inform each char-
acter about its related word information, previous works
(Zhang and Yang 2018; Liu et al. 2019; Yan et al. 2019)
have proposed to integrate word information into character
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sequences via word-character lattice structure, as shown in
Figure 1(a).

Prior approaches have attempted to utilize different net-
work architectures to integrate word-character lattice infor-
mation, such as RNN-based (Zhang and Yang 2018), CNN-
based (Gui et al. 2019a), Graph-based (Gui et al. 2019b), and
Transformer-based models (Li et al. 2020). However, these
lattice methods have not considered capturing fine-grained
correlations between each character and its corresponding
matched word. For example, WC-LSTM (Liu et al. 2019)
adopts simple feature concatenation to fuse word-character
lattice information, while FLAT (Li et al. 2020) utilizes
position encoding to propagate information in a flat-lattice
structure. We argue that, for the Chinese NER task, effec-
tively modeling dense interactions between each character
and each matched word is crucial. Taking the sentence in
Figure 1(c) as an example, it is beneficial that the character
“长 (Long)” or 江 (River) is aware of “桥 (Bridge)” being
matched with the “长江大桥 (Yangtze River Bridge)” word.

To address the above issue, we propose a Dynamic Cross-
and Self-lattice Attention Network (DCSAN) for Chinese
NER. The key insight comes from multimodal learning in
computer vision (Gao et al. 2019; Yu et al. 2019), where
the character and word sequences are viewed as two dif-
ferent modalities. To model dense interactions over word-
character lattice structure, we first design a cross-lattice at-
tention module that aims to capture fine-grained correlations
between two input feature spaces. Then, we further con-
struct a dynamic self-lattice attention module that is capa-
ble of dynamically fusing word-character features and build-
ing direct connections between two arbitrary characters de-
spite of their distances. Given the word-character embed-
dings and the aligned lattice structure, DCSAN first utilizes
the cross-lattice attention module to generate word-aware
character features, and then adopts the dynamic self-lattice
attention module to combine character and word features,
eventually obtaining self-aware character features. In this
way, our network can fully capture dense interactions over
word-character lattice structure, thus providing rich repre-
sentations for Chinese NER prediction.

Finally, we conducted extensive experiments on four NER
datasets to evaluate the proposed model. Experimental re-
sults show that DCSAN can achieve state-of-the-art per-
formance and efficiency compared to a variety of compet-
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(a) Original Lattice LSTM

(b) Soft-lexicon feature strategy

(c) Dense interactions of lattice inputs

Figure 1: (a) An example of the original lattice LSTM model
(Zhang and Yang 2018); (b) Soft-lexicon strategy used (Ma
et al. 2020); (c) Dense interactions of lattice inputs in our
model.

itive approaches. In particular, we obtain 96.67%, 96.21%,
71.27%, and 82.62% F1 on Resume, MSRA, Weibo, and E-
commerce datasets respectively. We will release the source
code to facilitate future research in this field. 1

Related Work
Chinese NER with Lattice Structure
Since word sequence information is potentially useful for
character-based sequence learning, neural networks with
word-character lattice structures have outperformed both
word-based and character-based approaches by a large mar-
gin on the Chinese NER task. Specifically, Zhang and Yang
(Zhang and Yang 2018) first proposed a Lattice LSTM
model to explicitly leverage word boundary information, in
which matched lexical words are encoded into character se-
quences with a directed acyclic graph (DAG) structure. Yet,
this DAG structure fails to choose the right path sometimes,
which may cause the lattice model to degenerate into a par-
tial word-based model. Later, Liu et al. (Liu et al. 2019) ex-
plored four different words encoding strategies to alleviate

1https://github.com/zs50910/DCSAN-for-Chinese-NER

this issue. Gui et al. (Gui et al. 2019a) proposed a CNN-
based NER model (LR-CNN) that encodes matched words
at different window sizes. Moreover, Gui et al. (Gui et al.
2019b) and Sui et al. (Sui et al. 2019) converted lattice into
graph and use graph neural networks (GNNs) for encod-
ing. However, as NER is very sensitive to sentence structure,
these methods still need to use LSTMs as backbone encoder,
which makes the models complicated. Recently, Yan et al.
(Yan et al. 2019) proposed an adapted Transformer encoder
for Chinese NER. Ma et al. (Ma et al. 2020) constructed
the soft-lexicon feature to encoding the matched words, ob-
tained from the lexicon, into the representations of charac-
ters. Li et al. (Li et al. 2020) leveraged a flat lattice struc-
ture so that Transformer can capture word information via
position encoding. The main difference between our net-
work and the above methods is that our network consists
of cascaded attention modules to model dense interactions
across different feature spaces (e.g., word-to-character and
character-to-character).

Multimodal Learning

Multimodal learning is widely explored in computer vision
and natural language processing. A typical task is visual
question answering (VQA) (Antol et al. 2015), which re-
quires the model to perform fine-grained semantic under-
standing of both the image and the question. For example,
Nguyen and Okatani (2018) proposed a dense symmetric co-
attention architecture to form a hierarchy for multi-step in-
teractions between an image-question pair. Yu et al. (2019)
introduced a VQA model that consists of multiple modular
co-attention layers cascaded in depth. Gao et al. (2019) pro-
posed to dynamically fuse multi-modal features with intra-
and inter-modality information flow. Inspired by these ad-
vancements in this field, we aim to model dense interactions
over word-character lattice structure using cascaded atten-
tion units and gating mechanism.

The Proposed Model
In this section, we introduce the proposed Dynamic Cross-
and Self-lattice Attention Network (DCSAN) in details, as
illustrated in Figure 2. We first construct the word-character
lattice structure by applying a soft-lexicon feature strategy,
and then obtain fixed-dimensional representations of both
character and word sequences. Next, we utilize a cross-
lattice attention module and a dynamic self-lattice attention
module to explicitly model dense interactions across differ-
ent feature spaces. Finally, we apply a conditional random
field (CRF) (Lafferty, McCallum, and Pereira 2001) layer to
perform the decoding for Chinese NER.

Character-Word Feature Representations

Since character sequences and matched words are viewed as
two different modalities, therefore they are represented as
two sets of distributed representations. Below we give de-
tailed explanations on the construction of these representa-
tions.
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Figure 2: Overall flowchart of DCSAN. Characters and aligned words are first represented as distributed representations. The
cross-lattice and dynaimc self-lattice attention modules are designed to explicitly capture dense interactions over word-character
lattice structure. Finally, a conditional random field (CRF) (Lafferty, McCallum, and Pereira 2001) layer is used to perform
decoding for the Chinese NER task.

Character Representations Character embeddings are
used to map discrete characters into continuous input vec-
tors. Given a Chinese input sentence s = [c1, c2..., cn],
where ci represents the i-th character, we map each char-
acter into a real-valued embedding to express its semantic
and syntactic meaning. Each character ci is represented as:

xi = Bc(ci), xi ∈ Rd (1)

where Bc denotes BERT embeddings (Cui et al. 2019). The
character feature representations can be obtained as:

X = [x1, x2, x3, ..., xn] ∈ Rn∗d (2)

Word Representations To unify the word-character rep-
resentation space, we use ci,j to denote a word in s, which
begins from the i-th character to the j-th character. Tak-
ing the sentence in Figure 1(a) for example, c1,3 refers to
the word “南京市 (Nanjing City)”. In the original lattice
model, the i-th character is aligned with a set of matched
words wi = [ck,i, ..., cj,i], where k, j < i. For instance,
the set of matched words for the character “桥 (Bridge)” is
w7 = [c4,7, c6,7], which refers to “长江大桥 (Yangtze River
Bridge)” and “大桥 (Big Bridge)” respectively. However, as
the number of matched words for each character is dynam-
ically changed (the character “大 (Big)” has no matching
word), such lattice structure is deprived of batch training,
which makes the model inefficient and difficult to deploy.
To address this issue, we use the soft-lexicon feature strat-
egy (Ma et al. 2020), as shown in Figure 1(b). This strat-
egy selects a fixed-dimensional vector which is composed
of four word sets marked by the four segmentation labels
“BMES” , as the aligned word for each character ci. Specif-
ically, the word set B(ci) consists of all lexicon matched
words on s that begin with ci. Similarly, M(ci) consists of
all lexicon matched words in the middle of which ci occurs,
E(ci) consists of all lexicon matched words that end with
ci, and S(ci) is the single-character word comprised of ci.
When a word set is empty, we will set a special word “none”
to it to indicate this situation. Next, the aligned word wi for
each corresponding character ci is represented as:

yi = [v(B(ci)); v(M(ci)); v(E(ci)); v(S(ci))], yi ∈ R4d

(3)

where v denotes the function that maps a single word set to
a dense vector. The function works as:

v(p) =
1

Z

∑
w∈p

(z(w) + b)ew (4)

where z(w) denote the frequency of wc occurring in the
statistic data set; wc is the character sequence constituting
w; ew represents a pre-trained word embedding lookup ta-
ble; b denotes the value that there are 10% of training words
occurring less than b times within the statistic data set. Z can
be computed by:

Z =
∑

w∈(BtMtEtS)

z(w) + b (5)

To facilitate calculation, we utilize a linear projections to
transform dimension, and finally word feature representa-
tions can be obtained as:

Y = Linear[y1, y2, y3, ..., yn] ∈ Rn∗d (6)

Cross-lattice Attention Module
Cross-lattice attention module (see Figure 3(a)) aims to cap-
ture fine-grained correlations between character and word
feature representations, which is a variant of the recently-
proposed multi-head attention mechanism (Vaswani et al.
2017). Cross-lattice attention is capable of modeling dense
interactions between each pair of character and word feature.
Fisrt, scaled dot-product is chosen as the similarity scoring
function in this module. Given word feature representations
Y as queries, and character feature representations X as
keys and values, the matrix of outputs is computed using
the following equation:

α(Y,X,X) = softmax(
Y XT

√
d

)X (7)

Then, cross-lattice attention allows the model to jointly at-
tend to information from different representation subspaces
at different positions. It maps the matrix of input vectors
to updating query, updating key, and updating value ma-
trices by using different linear projections. And z parallel
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(a) Cross-lattice Attention (b) Self-lattice Attention

Figure 3: Two proposed attention modules. Cross-lattice at-
tention aims to model dense interactions between each pair
of character and word features, while self-lattice attention is
used to capture character-to-character self-correlations.

heads are employed to perform attention operation in differ-
ent parts of channels:

headi = α(YWY
i , XW

X
i , XW

X′

i ) (8)

InterX→Y = [head1; ...; headz]W
t (9)

where WY
i ∈ Rd∗d/z,WX

i ∈ Rd∗d/z,WX′

i ∈ Rd∗d/z , and
W t ∈ Rd∗d are trainable parameter matrices.

Finally, we concatenate InterX→Y with original character
features, which are transformed into the original dimension
by a linear projections. The information flow for updating
character features X̃ is obtained as follows:

X̃ = Linear[X; InterX→Y ] (10)

Now, cross-lattice attention learns the pairwise relationship
between each paired sample < xi, yj > within X and
Y , and fuses feature representations to generate word-aware
character features.

Dynamic Self-lattice Attention Module
After acquiring dense interactions across lattice structure
(word-to-character), the word-aware character features X̃
already contain rich information over lattice feature spaces.
Yet, we argue that capturing self-correlations inside charac-
ter sequences is also important for Chinese NER and should
be taken into account to generate contextualized representa-
tions. Therefore, we first propose a gated fusion unit to dy-
namically integrate character and word features. Then, we
introduce a self-lattice attention layer with relative position
encoding for modeling self-correlations inside character se-
quences.

Gated Fusion of Character-Word Pairs We design a
gated fusion unit to integrate character and word features.
For the NER task, this unit trades off how much information
the network is taking from either word features or character
features. This is achieved by first computing a gating vec-
tor g ∈ Rn, and then using it to calculate the weighted-sum

result from X̃ and Y . The fused representation of character-
word pairs is obtained as follows:

hc = tanh(X̃Wc + bc) (11)
hw = tanh(YWw + bw) (12)
g = σ(([hc;hw])Wg) (13)

F = gX̃ + (1− g)Y (14)

where Wc ∈ Rd∗d,Ww ∈ Rd∗d,Wg ∈ R2d, bc ∈ Rd, bw ∈
Rd are trainable parameters, and σ is the sigmoid activation
function.

Self-lattice Attention Self-lattice attention with relative
position encoding (see Figure 3(b)) is designed to model
character-level self-correlations, which takes the fused fea-
tures F and relative position encoding P as inputs. It
learns the pairwise relationship between the paired sample
< fi, fj > within F , and outputs attended self-aware char-
acter features by using weighted summation across all in-
stances. This module is a variant of multi-head attention
mechanism, which is calculated as follows:

headi = softmax((QWQ
i )K[i]T + P [i])(VWV

i ) (15)
O = [head1; ...; headz]W

o (16)

where Q, K, V are all set as F , WQ
i ∈ Rd∗d/z,WK

i ∈
Rd∗d/z,W o ∈ Rd∗d are trainable parameters, K[i] ∈
Rn∗d/z is the i-th partition of K, and P [i] ∈ Rn∗n contains
relative position information of the i-th partition.

To explicitly inform the module with positional informa-
tion, we utilize the relative position encoding method of
which details can be found from (Yan et al. 2019). Suppose
that t is the index of target token, j is the index of context
token, and Rt−j is the bias term for certain distance and di-
rection, then the relative position encoding P [i] can be cal-
culated as:

m = (2b ∗ z)/d (17)

Rt−j = [· · · sin( t− j
10000m

)cos(
t− j

10000m
) · · · ]T (18)

P [i]t,j = (QWQ
i )Rt−j + uK[i]Tj + vRT

t−j (19)

where u, v ∈ Rd/z are learnable parameters. b in Eq.(17) is
in the range [0; d/(2z)], and z is the number of heads.

In our network, the output O of the multi-head attention
will be further processed by residual connection (He et al.
2016) and layer normalization (Ba, Kiros, and Hinton 2016)
followed by position-wise feedforward networks, which can
be computed as follows:

Rc = LayerNorm(O + F ) (20)
FFN(Rc) = max(0;RcW1 + b1)W2 + b2 (21)

where W1,W2, b1, b2 are learnable parameters. Similarly,
residual connection along with layer normalization is fur-
ther applied on FFN(Rc) to produce the final output fea-
tures. Thus, the self-lattice attention output can be denoted
as:

Sr = LayerNorm(FFN(Rc) +Rc) (22)
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Dataset Type Train Dev Test

Weibo Char 73.8K 14.5K 14.8K
E-commerce Char 119.1K 14.9K 14.7K
Resume Char 124.1K 139K 15.1K
MSRA Char 2169.9K - 172.6K

Table 1: Statistics of four Chinese NER datasets.

To increase model capacity, we stack l layers of self-lattice
attention operation to form a cascaded architecture. Finally,
the encoding output is denoted as Srl ∈ Rn∗d, which is sent
to the decoding layer for prediction.

Decoding and Training
A standard CRF layer is used to predict NER taggings,
which takes Srl as inputs, and outputs a sequence of pre-
dicted tagging probabilities A = [a1, ..., an]. Let A

′
denotes

an arbitrary label distribution sequence (i.e., BIO tagging
scheme), the probability of the label sequence A can be cal-
culated using a softmax function:

Pr(A|Srl) =
∏n

i=1 ϕn(an−1, an, Sr
l)∑

a′∈A′
∏n

i=1 ϕn(a
′
n−1, a

′
n, Sr

l)
(23)

where ϕn(an, an−1, L) = exp(WnSr
l + bn) is the scoring

function andWn and bn are the weight vector and bias. Dur-
ing training, we optimize model parameters by minimizing
the following conditional likelihood:

Lner = −logPr(A|Srl) (24)

Experiments
Experimental Setup
To evaluate the performance of our model, we conduct ex-
periments on four datasets, including Weibo NER (Peng
and Dredze 2015), MSRA (Levow 2006), Chinese resume
dataset (Zhang and Yang 2018), and E-commerce NER
(Ding et al. 2019). These datasets involve in social media,
financial, news, and e-commerce domains, of which detailed
statistics are shown in Table 1.

Implementation Details
Following (Li et al. 2020), We utilize the BERT embedding
as our character embeddings. The BERT in the experiment
is “BERT-wwm” released by (Cui et al. 2019). We use the
word embedding dictionary (Song et al. 2018) that contains
over 8000k Chinese character and words as default lexicon
in our model. As for hyper-parameter configurations, the
sizes of character embeddings is 768 and word embeddings
is 200 by default, and the dimensionality of hidden size is
768. For attention settings, the head number of cross-lattice
attention and dynamic self-lattice attention are 8 and 4 re-
spectively for all datasets. We set the number of self-lattice
attention layers l as 2 by default. To avoid overfitting, we
regularize our network using dropout with a rate tuned on
the development set. To train the model, we use SGD op-
timizer with a learning rate of 0.0007 on Resume, MSRA,

Models Resume MSRA Weibo E-commerce

Lattice LSTM1 94.46 93.18 58.79 -
LR-CNN2 95.11 93.71 59.92 -
LGN3 95.37 93.46 59.84 -
TENER4 95.00 92.74 58.39 -
FLAT5 95.45 94.35 63.42 -
FLAT+BERT5 95.86 96.09 68.55 -
Multi-Digraph6 - - - 75.20

DCSAN (ours) 96.67 96.41 71.27 82.62

Table 2: Main results (F1) on Resume, MSRA, Weibo and E-
commerce datasets. Zhang et al.(2018)1, Gui et al.(2019a)2,
Gui et al. (2019b)3, Yan et al.(2019)4, Li et al. (2020)5, Ding
et al. (2019)6.

and E-commerce datasets and 0.001 on the Weibo dataset.
The training takes 100 epochs until convergence. We adopt
standard Precision (P), Recall (R) and F1 score to evaluate
the model.

Overall Results
We compare the proposed model with several competing
approaches and show the results in Table 2. On Resume,
MSRA and Weibo datasets, it can be seen that our model
achieves state-of-the-art performance by obtaining 96.67,
96.41, and 71.27 F1 respectively. Compared with the best
result among Lattice LSTM, LR-CNN and LGN, our ap-
proach gets absolute F1 improvements of 1.3%, 2.7% and
11.35% on three datasets respectively. When compared to
the TENER model, we find stronger performance improve-
ment with respect to Resume (+1.67%), MSRA(+3.67%)
and Weibo (+12.88%). Compared to the latest FLAT+BERT
model, our approach slightly increases by 0.81% and 0.32%
on Resume and MSRA datasets respectively. However, it can
be found that our proposed model significantly outperforms
FLAT+BERT by 2.72% F1 on Weibo. Since E-commerce
dataset is released recently, we can find that only Multi-
Digraph model, which utilizes graph neural networks with
a multi-digraph structure that captures the information of
gazetteers offers, has been evaluated on this dataset. Com-
pared to Multi-Digraph, our proposed model significantly
outperforms it by 7.42% F1. The above results indicate the
effectiveness of our model and suggest that DCSAN is able
to better leverage word-character lattice structure.

Ablation Study
We conduct an ablation study to investigate the effective-
ness of our attention modules in Table 3. Firstly, we remove
the cross-lattice attention module and only use the dynamic
self-lattice attention module for encoding. We find that the
F1 score obviously decreases by 1.66, showing the beneficial
effect of modeling dense interactions among word-character
feature spaces. Secondly, to test the effectiveness of gated
fusion, we replace the gating mechanism with simple feature
addition (X̃ + Y is fed to self-lattice attention instead of F )
and find that the performance drops to 81.22 (-1.40%) F1.
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Figure 4: Relative inference-time speed of different models,
compared with Lattice LSTM. The default batch size is 1,
while * denotes the model is run with 16 batch size.

Model P R F1

DCSAN 79.63 85.83 82.62
- Cross-lattice attention 78.72 83.34 80.96
- Gated fusion 76.73 86.28 81.22
- Self-lattice attention 78.64 84.56 81.49
- Both attention 78.09 76.89 77.49
- BERT embeddings 77.46 82.90 80.09

Table 3: Ablations on E-commerce test set.

We think the reason is that too much unrelated information
hinders the learning process. Then, we attempt to delete the
self-lattice attention, and directly use fused representation of
character-word pairs (F ) for CRF decoding. We observe that
the F1 significantly drops by 1.13%, indicating that captur-
ing self-correlations among characters is critical for the Chi-
nese NER task. Moreover, removing both attention modules
and using character representations (X) for CRF decoding
leads to further worse results on NER (-5.13%) , which sug-
gests that the proposed attention modules play a vital role
in the NER task. Finally, we utilize the pre-trained charac-
ter embeddings used in (Song et al. 2018) instead of BERT
embeddings. It leads to significantly worse results on NER (-
2.53%), which suggests that BERT embeddings can provide
better semantic representations of character sequences.

Performance against Efficiency
To explore the efficiency of our model, we conducted ex-
periments of inference time on the Weibo dataset, as shown
in Figure 4. Due to the restriction of DAG structure and
variable-sized set of matched words, Lattice LSTM and LR-
CNN are non-batch parallel, while LGN and DCSAN can
leverage parallel computation of GPU. As we can see, when
batch size is set as 16, DCSAN runs 6.64, 4.46, and 2.25
times faster than lattice LSTM, LR-CNN, and LGN respec-
tively. This is due to the multi-head attention that can make
better use of GPU parallelism than other baseline models.

To further investigate the influence of sentence length, we
analyze the performance of our DCSAN model and other
baseline approaches with respect to different grouped sen-

Figure 5: Speed against sentence length. Sen/s denotes the
number of sentences processed per second.

tence lengths on the Weibo dataset, which is shown in Figure
5. We partition the sentence length into five groups ([0-19],
[20-39], [40-59], [60-79],[≥80]). We can observe that DC-
SAN consistently runs faster than compared baselines un-
der different sentence lengths. Especially, when the sentence
length is less than 20, DCSAN (batch size=16) runs 12.57,
13.53, and 1.87 times faster than lattice LSTM, LR-CNN,
and LGN (batch size=16) respectively. However, the speed
gap becomes smaller as the sentence length increases. We
think the reason is that the longest sentence becomes an out-
lier during batch prediction and it slows down the whole de-
coding process. In summary, the DCSAN model firmly out-
performs current RNN-based, CNN-based, and Graph-based
methods in terms of efficiency.

Qualitative Analysis
To intuitively verify that our model can better utilize fine-
grained correlations in word-character spaces, we analyze
two examples from the Weibo test set, as shown in Table
4. In the first case, due to the inherently sequential nature,
the character “南 (Nan) ” has only access to its self-matched
words “湖南 (Hunan) ” in the Lattice LSTM. Hence, the
Lattice LSTM incorrectly recognizes “湖南 (Hunan) ” as a
geo-political entity. However, DCSAN can correctly detects
the organization entity “湖南广播电视台广告中心 (Hu-
nan Radio and Television Advertising Center)”. The reason
is that DCSAN can fully capture fine-grained correlations
between characters and matched words, such as a word “广
告中心 (Advertising Center) ” corresponds to the charac-
ter “广 (Guang) ”. In the second case, there is an organi-
zation entity “花开公司(Huakai Company) ”. It is difficult
for Lattice LSTM to detect the uncommon entity “花开公
司(Huakai Company) ” since it lacks cross-modal informa-
tion, which wrongly recognizes “花开公司(Huakai Com-
pany) ” as non-entity. However, DCSAN can exploit cross-
modal information. For example, the 4-th character “司 (Di-
vision) ” has access to words “开公司(Establish a company)
and “花开 (Flowers bloom) ” in “BMES2”, and model close
interaction among them. These results indicates that dense
interactions between each pair of character and word feature
are indispensable and can help model better understand the
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Case 1

Sentence
我参与了@湖南广播电视台广告中心的投票
I participated in the voting of @ Hunan Radio and Television Advertising Center

Gold labels
我参与了 @ 湖 南 广 播 电 视 台 广 告 中 心 的投票

O O O O O B-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG E-ORG O O O

Lattice LSTM
参与 湖南 广播 电视 电视台 广告 中心 投票

我→参→与→了→@→湖 →南 → 广 → 播 →电 → 视 → 台 → 广 → 告 → 中 → 心 → 的→投→票
O O O O O B-GPE I-GPE O O O O O O O O O O O O

DCSAN
BMES1 ... BMES6 BMES7 BMES8 BMES9 BMES10 ... BMES13 (B:广告中心...; M:湖南广播...; E:南广...; S:广) ...
我— 参—与—了—@ —湖 — 南 — 广 — 播 — 电 — 视 — 台 — 广 — 告 — 中 — 心 — 的—投—票
O O O O O B-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG E-ORG O O O

Case 2

Sentence
花开公司竭诚欢迎您

Huakai company sincerely welcomes you

Gold labels
花 开 公 司 竭诚欢迎您

B-ORG I-ORG I-ORG E-ORG O O O O O

Lattice LSTM
花开 公司,开公司 竭诚 欢迎

花 →开 → 公 →司→竭→ 诚→欢→迎→您
O O O O O O O O O

DCSAN
BMES1 BMES2 (B:开公司...; M:none; E:花开; S:开) ...
花 — 开 — 公 —司 — 竭 — 诚 — 欢 — 迎 — 您

B-ORG I-ORG I-ORG E-ORG O O O O O

Table 4: Examples of Weibo dataset. Contents with red and blue colors represent correct and incorrect entities, respectively.

Figure 6: Visualizations of the learned attention maps of the
cross-lattice attention over character-word pair on case 1.

contextual semantics.
Moreover, we visualize the cross-lattice attention weights

on two cases in Figure 6 and 7. It is first observed that the
attention map of case 1 form vertical stripes, and the orga-
nization entity “湖南广播电视台广告中心 (Hunan Radio
and Television Advertising Center)” involve characters ob-
tain large attention weights. This reveals that the attended
features tend to use the feature of “湖南广播电视台广告
中心 (Hunan Radio and Television Advertising Center)” for
reconstruction. Then, we can find that the attention map of
case 2 tend to focus on columns of characters “花 (Flower) ”
, “开 (Open) ”,“公 (Public) ” and “司 (Division) ” . This can
be explained by the fact that “花开公司(Huakai Company)
” have been reconstructed as the most important information

Figure 7: Visualizations of the learned attention maps of the
cross-lattice attention over character-word pair on case 2.

in input features.

Conclusion

In this paper, we propose a Dynamic Cross- and Self-
lattice Attention Network (DCSAN) for Chinese NER,
which aims to model dense interactions over word-character
lattice structure. To achieve this, we introduce a cross-
lattice attention module to capture fine-grained correla-
tions between each pair of character and word feature, and
present a dynamic self-lattice attention module to model
self-correlations inside character sequences. We evaluate the
proposed model on four Chinese NER datasets. The re-
sults show that DCSAN achieves new state-of-the-art per-
formance compared to other competing approaches, with
highly competitive efficiency.
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