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Abstract
Speech enhancement is challenging because of the diversity
of background noise types. Most of the existing methods are
focused on modelling the speech rather than the noise. In
this paper, we propose a novel idea to model speech and
noise simultaneously in a two-branch convolutional neural
network, namely SN-Net. In SN-Net, the two branches pre-
dict speech and noise, respectively. Instead of information fu-
sion only at the final output layer, interaction modules are
introduced at several intermediate feature domains between
the two branches to benefit each other. Such an interaction
can leverage features learned from one branch to counter-
act the undesired part and restore the missing component of
the other and thus enhance their discrimination capabilities.
We also design a feature extraction module, namely residual-
convolution-and-attention (RA), to capture the correlations
along temporal and frequency dimensions for both the speech
and the noises. Evaluations on public datasets show that the
interaction module plays a key role in simultaneous model-
ing and the SN-Net outperforms the state-of-the-art by a large
margin on various evaluation metrics. The proposed SN-Net
also shows superior performance for speaker separation.

Introduction
Speech enhancement aims at separating speech from back-
ground interference signals. Mainstream deep learning-
based methods learn to predict the speech signal in a su-
pervised manner, as shown in Figure 1 (a). Most prior works
operate in the time-frequency (T-F) domain by predicting a
mask between noisy and clean spectra (Wang, Narayanan,
and Wang 2014; Williamson, Wang, and Wang 2015) or di-
rectly predicting the clean spectrum (Xu et al. 2013; Tan and
Wang 2018). Some methods operate in the time domain by
estimating speech signals from raw-waveform noisy signals
in an end-to-end way (Fu et al. 2017; Pascual, Bonafonte,
and Serra 2017; Pandey and Wang 2019). These methods
have considerably improved the quality of enhanced speech
compared with traditional signal processing based schemes.
However, speech distortion or residual noise can often be
observed in the enhanced speech, showing that there are still
correlations between predicted speech and the residual sig-
nal by subtracting enhanced speech from noisy signal.

*The work was done at Microsoft Research Asia.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of different methods. (a) Most exist-
ing deep-learning-based methods directly model speech. (b)
Most traditional methods predict speech with noise estimate.
(c) Our method simultaneously models speech and noise
with information interaction.

Instead of only predicting speech and ignoring the charac-
teristics of background noises, traditional signal processing
and modeling based methods mostly take the other way (see
Figure 1 (b)), i.e. estimating noise or building noise models
for speech enhancement (Boll 1979; Hendriks, Heusdens,
and Jensen 2010; Wang and Brookes 2017; Wilson et al.
2008; Mohammadiha, Smaragdis, and Leijon 2013). Some
model-based methods instead model both speech and noise
(Srinivasan, Samuelsson, and Kleijn 2005b,a), possibly with
alternate model update. However, they typically cannot gen-
eralize well when prior noise assumption cannot be met or
the interference signal is not structured. In deep-learning-
based methods, two recent attempts (Odelowo and Anderson
2017, 2018) focus on directly predicting noise considering
that noise is dominant in low-SNR conditions. However, the
benefit is limited.

The remaining correlation between predicted speech and
noise motivates us to explore the information flow between
speech and noise estimations, as shown in Figure 1 (c).
Since speech-related information exists in predicted noise,
and vice versa, adding information communication between
them may help to recover some missing components and
remove undesired information from each other. In this pa-
per, we propose a two-branch convolutional neural network,
namely SN-Net, to simultaneously predict speech and noise
signals. Between them are information interaction mod-
ules, by which noise or speech related information are ex-
tracted from the noise branch and added back to speech fea-
tures to counteract the undesired noise part or recover the
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Figure 2: Overall network structure of SN-Net.

missing speech, and vice versa. In this way, the discrim-
ination capability is largely enhanced. The two branches
share the same network structure, which is an encoder-
decoder-based model with several residual-convolution-and-
attention (RA) blocks in between for separation. Motivated
by the success of self-attention technique in machine trans-
lation and computer vision tasks (Vaswani et al. 2017; Wang
et al. 2018), we propose to combine temporal self-attention
and frequency-wise self-attention parallelly inside each RA
block for capturing global dependency along temporal and
frequency dimensions in a separable way.

Our main contributions are summarized as follows.

• We propose to simultaneously model speech and noise in
a two-branch deep neural network and introduce informa-
tion flow between them. In this way, speech part is en-
hanced while residual noise is suppressed for speech esti-
mation, and vice versa.

• We propose a RA block for feature extraction. Separable
self-attention is utilized in this block to globally capture
the temporal and frequency dependencies.

• We validate the superiority of proposed scheme in an ab-
lation study and comparison with state-of-the-art algo-
rithms on two public datasets. Moreover, we extend our
method to speaker separation, which also shows great per-
formance. These results demonstrate the superiority and
potential of the proposed method.

Related Work
Deep Learning-based Speech Enhancement
Deep learning-based methods mainly study how to build
a speech model. According to the adopted signal domain,
these methods can be classified into two categories. Time-
Frequency (T-F) domain methods take T-F representation,
either complex or log power spectrum of the magnitude, as
input. They typically estimate a real or complex ratio mask
for each T-F bin to map noisy spectra to speech spectra
(Williamson, Wang, and Wang 2015; Wang, Narayanan, and
Wang 2014; Choi et al. 2019) or directly predict the speech

representation (Xu et al. 2013; Tan and Wang 2018). Time-
domain methods take waveform as input and typically ex-
tract a hidden representation of the raw waveform through
an encoder and reconstruct an enhanced version from that
(Fu et al. 2017; Pascual, Bonafonte, and Serra 2017; Pandey
and Wang 2019). Although these methods have shown great
improvements over traditional methods, they only focus on
modeling speech and neglect the importance of understand-
ing noise characteristics.

Noise-Aware Speech Enhancement
Noise information is often considered in traditional sig-
nal processing based methods (Boll 1979; Hendriks, Heus-
dens, and Jensen 2010; Wang and Brookes 2017) with prior
distribution assumptions for speech and noise. However, it
is a challenging task to estimate the noise power spectral
density for non-stationary noises and thus mostly station-
ary noise is assumed. They are unsuitable in generaliza-
tion to low SNR and non-stationary noise conditions. In-
stead, some model-based methods build models for speech
and noise and show more promising results, e.g., codebook
(Srinivasan, Samuelsson, and Kleijn 2005b,a) and nonneg-
ative matrix factorization (NMF) (Wilson et al. 2008; Mo-
hammadiha, Smaragdis, and Leijon 2013) based methods.
However, they either need prior knowledge of the noise type
(Srinivasan, Samuelsson, and Kleijn 2005b,a) or are only
effective for structured noise (Wilson et al. 2008; Moham-
madiha, Smaragdis, and Leijon 2013); therefore their gener-
alization capability is limited.

Deep learning-based methods can better generalize to var-
ious noise conditions. There are also some attempts on in-
corporating noise information, for example, by adding con-
straints to loss functions (Fan et al. 2019; Xu, Elshamy, and
Fingscheidt 2020; Xia et al. 2020) or by directly predict-
ing noise instead of speech (Odelowo and Anderson 2017,
2018). The former does not model noise at all and the char-
acteristics of noise are not exploited. The latter loses the
speech information and show even worse quality than corre-
sponding speech prediction method in low SNR and unseen
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Figure 3: (a) Encoder-decoder structure. The dashed arrow denotes the separation module using RA blocks. (b) Detailed struc-
ture of the gated block inside the decoder.

noise conditions. A more relevant work utilizes two deep
auto encoders (DAEs) to estimate speech and noise (Sun
et al. 2015) . It first trains a DAE for speech spectrum recon-
struction and then introduces another DAE to model noise
with the constraint that the sum of outputs of the two DAEs
is equal to the noisy spectrum.

Different from aforementioned approaches, we proposed
a two-branch CNN to predict speech and noise simultane-
ously and introduce interaction modules at several interme-
diate layers to make them benefit from each other. Such a
paradigm makes it suitable for speaker separation as well.

Two-Branch Neural Networks

Two-branch neural networks have been explored in various
tasks for capturing cross-modality information (Nam, Ha,
and Kim 2017; Wang et al. 2019) or different levels of infor-
mation (Simonyan and Zisserman 2014; Wang et al. 2020).
For speech enhancement, a two-branch modeling is pro-
posed to predict the amplitude and phase of the enhanced
signal, respectively (Yin et al. 2020). In this paper, we aim
to exploit the two correlated tasks, i.e. speech and noise esti-
mations and explicitly modeling them in an interactive two-
branch framework for better discrimination.

Self-Attention Model

Self-attention mechanism has been widely used in many
tasks, e.g., machine translation (Vaswani et al. 2017), im-
age generation (Zhang et al. 2019) and video question an-
swering (Li et al. 2019). For video, spatio-temporal attention
is also considered to exploit long-term dependency along
both spatial and temporal dimensions (Wu et al. 2019). Re-
cently, speech-related tasks have also benefited from self-
attention, e.g., speech recognition (Salazar, Kirchhoff, and
Huang 2019) and speech enhancement (Kim, El-Khamy,
and Lee 2020; Koizumi et al. 2020). In these works, self-
attention is applied along the temporal dimension only, ne-
glecting the global dependency inside each frame. Motivated
by the spatio-temporal attention in video-related tasks, we
propose to employ both frequency-wise and temporal self-
attention to better capture dependencies along different di-
mensions. Such an attention is employed in both speech and
noise branches for simultaneous modeling the two signals.

Proposed Method
Overview
Figure 2 shows the overall network structure of SN-Net.
The input is the complex T-F spectrum computed by short-
time Fourier transform (STFT), denoted as XI ∈ RT×F×2,
where T is the number of frames and F is the number of
frequency bins. There are two branches in SN-Net, one of
which predicts speech and the other predicts noise. They
share the same network structure but have separate network
parameters. Each branch is an encoder-decoder based struc-
ture, with several RA blocks inserted inbetween them. In this
way, it is capable of simultaneously mining the potential of
different components of the noisy signal. Between the two
branches are interaction modules designed to transform and
share information. After each branch gets its output, a merge
branch is employed to adaptively combine the two outputs to
generate the final enhanced speech.

Encoder and Decoder
As shown in Figure 3 (a), the encoder has three 2-D convo-
lutional layers, each with a kernel size of (3, 5). The stride
is (1, 1) for the first layer and (1, 2) for the following two.
The channel numbers are 16, 32, 64, respectively. As a re-
sult, the output feature of the encoder is FE

k ∈ RT×F ′×C ,
where F ′ = F

4 , C = 64 and k ∈ {S,N}. S and N denote
speech and noise branches, respectively. For simplicity, the
subscript k will be ignored in the following.

The decoder consists of three gated blocks followed by
one 2-D convolutional layer, which reconstructs the out-
put FD ∈ RT×F×2. As shown in Figure 3 (b), the gated
block learns a multiplicative mask on corresponding fea-
ture from the encoder, aiming to suppress its undesired part.
The masked encoder feature is then concatenated with the
deconvolutional feature and fed into another 2-D convolu-
tional layer to generate the residual representation. After
three gated blocks, the final convolutional layer learns the
amplitude gain and the phase for reconstruction, similar to
that in (Choi et al. 2019). The kernel size for all 2-D decon-
volutional layers is (3,5). The stride is (1,2) for the first two
gated blocks and (1,1) for the last one. The channel numbers
are 32, 16, 2, respectively. All the 2-D convolutional layers
in the decoder have a kernel size of (1,1), a stride of (1,1) and
a channel number the same as that of their deconvolutional
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Figure 4: Structure of the RA block.

layers.
All the convolutional layers in the encoder and the de-

coder are followed by a batch normalization (BN) and
a parametric ReLU (PReLU). No down-sampling is per-
formed along the temporal dimension to preserve the tem-
poral resolution.

RA Block
The RA block is designed to extract features and perform
separation for both speech and noise branches. It is challeng-
ing because of the diversities of noise types and the differ-
ence between speech and noises. We employ the separable
self-attention (SSA) technique to capture the global depen-
dencies along temporal and frequency dimensions, respec-
tively. It is intuitive to use attention for these two dimen-
sions as humans tend to put more attention to some parts of
an audio signal (e.g., speech) while less to the surrounding
part (e.g., noise) and they perceive differently on different
frequencies. When it comes to the speech-noise network in
SN-Net, the SSA modules in speech and noise branches per-
ceive signals differently, which will be demonstrated in the
ablation study section afterwards.

In SN-Net, there are four RA blocks between the encoder
and the decoder. Each block consists of two residual blocks
and a SSA module, as shown in Figure 4, capturing both lo-
cal and global dependencies inside the signal. Each residual
block has two 2-D convolutional layers with a kernel size
of (5,7), a stride of (1,1) and the same number of channels
as their inputs. The output feature of two residual blocks
FRes

i ∈ RT×F ′×C (i ∈ {1, 2, 3, 4} represents the ith RA
block and will be ignored in the following) is fed paral-
lelly into temporal self-attention and frequency-wise self-
attention blocks. These two attention blocks produce the out-
puts FTemp ∈ RT×F ′×C and FFreq ∈ RT×F ′×C . The
three features FRes, FTemp and FFreq are then concate-
nated and fed into a 2-D convolutional layer to generate
the block output FRA ∈ RT×F ′×C , used in the interaction
module.

Figure 5: Structure of the interaction module.

For self-attention, we employ the scaled dot-product self-
attention here. Considering the computational complexity,
channels are reduced by half inside SSA. The temporal self-
attention can be represented as

Fk
t = Reshapet(Conv(FRes)), k ∈ {K,Q, V } ,

SAt = Softmax(FQ
t · (FK

t )T /

√
C

2
× F ′) · FV

t ,

FTemp = FRes + Conv(Reshapet∗(SAt)),

(1)

where Fk
t ∈ RT×(C

2 ×F
′), SAt ∈ RT×(C

2 ×F
′) and

FTemp ∈ RT×F ′×C , respectively. (·) denotes matrix mul-
tiplication. Reshapet(·) denotes a tensor reshape from
RT×F ′×C

2 to RT×(C
2 ×F

′) andReshapet∗(·) is the opposite.
The frequency-wise self-attention is given by

Fk
f = Reshapef (Conv(FRes)), k ∈ {K,Q, V } ,

SAf = Softmax(FQ
f · (F

K
f )T /

√
C

2
× T ) · FV

f ,

FFreq = FRes + Conv(Reshapef∗(SAf )),

(2)

where Fk
f ∈ RF ′×(C

2 ×T ), SAf ∈ RF ′×(C
2 ×T ) and

FFreq ∈ RT×F ′×C , respectively. Reshapef (·) reshapes a
tensor from RT×F ′×C

2 to RF ′×(C
2 ×T ).

In the above equations, Conv denotes a convolutional
layer followed by BN and PReLU. All the convolutional lay-
ers have a kernel size of (1,1) and a stride of (1,1).

Interaction Module
In SN-Net, the speech and noise branches share the same
input signal, which suggests that the internal features of
two branches are correlated. In light of this, we propose
an interaction module to exchange information between the
branches. With this block, information transformed from the
noise branch is expected to enhance the speech part and
counteract the noise features inside the speech branch, and
vice versa. We will show in ablation study afterwards that
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this module plays a key role in simultaneously modeling the
speech and noises.

The structure of the interaction module is shown in Fig-
ure 5. Taking speech branch as an example, feature from the
noise branch FRA

N is first concatenated with that from the
speech branch FRA

S . They are then fed into a 2-D convolu-
tional layer to generate a multiplicative maskMN , predict-
ing the suppressed and preserved areas of FRA

N . A residual
representation HN2S is then obtained by multiplying MN

with FRA
N elementally. Finally, the block adds FRA

S and
HN2S to get a “filtered” version of the speech feature, which
will be fed into the next RA block. The process is given by

FRA
Sout

= FRA
S + FRA

N ∗Mask(FRA
N ,FRA

S ),

FRA
Nout

= FRA
N + FRA

S ∗Mask(FRA
S ,FRA

N ),
(3)

where Mask(·) is short for concatenation, convolution and
sigmoid operations. (∗) denotes element-wise multiplica-
tion.

Merge Branch
After reconstructing the speech and noise signals in two
branches, a merge module is further employed to com-
bine the two outputs. This is done in the time domain to
achieve the cross-domain benefit (Kim et al. 2018). The
two decoder outputs are transformed to time-domain and
overlapped framed representation using the same window
length as the STFT we use, resulting in s̃ ∈ RT×K and
ñ ∈ RT×K , where K is the frame size. These two represen-
tations are stacked with the noisy waveform x and fed into
the merge branch. The merge network uses a 2-D convolu-
tional layer, followed by an temporal self-attention block to
capture global temporal dependency and two other convo-
lutional layers to learn an element-wise mask m ∈ RT×K .
The kernel size of all three convolutional layers is (3,7) and
the channel number is 3, 3, 1, respectively. BN and PReLU
are used after each convolutional layer except the last one.
Sigmoid activation is used in the last layer. Finally, the 2D
enhanced signal is obtained by

ŝ = m× s̃+ (1−m)× (x− ñ). (4)

The 1D signal is reconstructed from ŝ after overlap and add.

Experiments
Datasets
Three public datasets are used in our experiments.

DNS Challenge The DNS challenge (Reddy et al. 2020)
at Interspeech 2020 provides a large dataset for training. It
includes 500 hours clean speech across 2150 speakers col-
lected from Librivox and 60000 noise clips from Audioset
(Gemmeke et al. 2017) and Freesound with 150 classes.
For training, we synthesized 500 hours noisy samples with
SNR levels of -5dB, 0dB, 5dB, 10dB and 15dB. For eval-
uation, we use 150 synthetic noisy samples without rever-
beration inside the test set, whose SNR levels are randomly
distributed between 0 dB and 20 dB.

Voice Bank + DEMAND This is a small dataset created
by Valentini-Botinhao et al. (Valentini-Botinhao et al. 2016).

Models SDR(dB) PESQ
Noisy 9.09 1.58
Speech branch w/o SSA (baseline) 18.06 3.05
Speech branch 18.75 3.28
SN-Net w/o interaction 19.04 3.29
SN-Net 19.52 3.39

Table 1: Ablation study on DNS Challenge dataset

Clean speech clips are collected from the Voice Bank corpus
(Veaux, Yamagishi, and King 2013) with 28 speakers for
training and another 2 unseen speakers for test. Ten noise
types with two artificially generated and eight real record-
ings from DEMAND (Thiemann, Ito, and Vincent 2013) are
used for training. Five other noise types from DEMAND are
chosen for the test, without overlapping with the training set.
The SNR values are 0dB, 5dB, 15dB and 20dB for training
and 2.5dB, 7.5dB, 12.5dB and 17.5dB for test.

TIMIT Corpus This dataset is used for our speaker sep-
aration experiment. It contains recordings of 630 speakers,
each reading 10 sentences and there are 462 speakers in the
training set and 168 speakers in the test set. Two sentences
from different speakers are mixed with random SNRs to gen-
erate mixture utterances. Shorter sentences are zero padded
to match the size of longer ones. In total, the training set
includes 4620 sentences and the test set 1680 sentences.

Evaluation Metrics
To evaluate the quality of the enhanced speech, the following
objective measures are used. Higher scores indicate better
quality.

• SSNR: Segmental SNR.

• SDR (Vincent, Gribonval, and Févotte 2006): Signal-to-
distortion ratio.

• PESQ (Rec 2005): Perceptual evaluation of speech qual-
ity, using the wide-band version recommended in ITU-T
P.862.2 (from -0.5 to 4.5).

• CSIG (Hu and Loizou 2007): Mean opinion score (MOS)
prediction of the signal distortion (from 1 to 5).

• CBAK (Hu and Loizou 2007): MOS prediction of the in-
trusiveness of background noises (from 1 to 5).

• COVL (Hu and Loizou 2007): MOS prediction of the
overall effect (from 1 to 5).

Implementation Details
Input All signals are resampled to 16kHz and clipped to 2
seconds long. We take the STFT complex spectrum as input,
with a Hann window of length 20ms, a hop length of 10ms
and a DFT length of 320.

Loss Function The loss function includes three terms,
i.e. L = LSpeech + αLNoise + βLMerge, where LSpeech,
LNoise and LMerge represent the loss of three branches, re-
spectively. α and β are weighting factors balancing among
the three. All terms use a mean-squre-error (MSE) loss on
the power-law compressed STFT spectrum (Ephrat et al.
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Figure 6: Log-scale feature visualization for the fourth inter-
action module. (a) Input feature of speech branch. (b) Trans-
formed feature from noise to speech branch. (c) Output fea-
ture of speech branch. (d) Input feature of noise branch. (e)
Transformed feature from speech to noise branch. (f) Out-
put feature of noise branch. Three channels with the highest
activities are visualized here.

2018). An inverse STFT and forward STFT are conducted
on speech and noise branches before calculating the loss to
ensure STFT consistency as that in (Wisdom et al. 2019).

Training The proposed algorithm is implemented in Ten-
sorFlow. We use adam optimizer with a learning rate of
0.0002. All the layers are initialized with Xavier initializa-
tion. The training is conducted in two stages. The speech and
noise branches are jointly trained first with the loss weight
α = 1 and β = 0. Then the merge branch is trained with
the parameters of previous two fixed, using only the loss
LMerge. We train both stages for 60 epochs for DNS Chal-
lenge and 400 epochs for Voice Bank + DEMAND dataset.
The batch size for all experiments is set to 32, unless other-
wise specified.

Ablation Study
Objective Quality We first evaluate the effectiveness of
different parts of the proposed SN-Net based on the DNS
Challenge dataset. As shown in Table 1, we take the speech
branch without SSA as the baseline. After adding SSA to the
single-branch model, we observe a 0.69 dB gain on SDR and
0.23 on PESQ. By comparing “Speech branch” with “SN-
Net w/o interaction”, we can see that when no interaction is
employed, adding another branch with merge module at the
output only marginally improves the SDR by 0.29 dB and no
improvement on PESQ. After introducing the information
flow, it evidently improves the SDR by 0.77 dB and PESQ
by 0.11 compared to single branch. These results verify the
effectiveness of the proposed RA and interaction modules
for simultaneously modeling speech and noises.

Visualization of Information Flow In order to further un-
derstand how the interaction module works, we visualize the
input feature, the output and the feature transformed from
the other branch of this module in Figure 6. An audio sig-
nal corrupted by white noises is used for illustration, whose
spectrum is shown in the first column.

Figure 7: Visualization of temporal self-attention matrices
from different RA blocks. (a) Speech branch. (b) Noise
branch. Each matrix is linearly scaled to [0, 1].

.

Figure 8: Visualization of frequency-wise self-attention ma-
trices from different RA blocks. (a) Speech branch. (b)
Noise branch. Each matrix is linearly scaled to [0, 1].

The transformed feature shown in Figure 6 (b) is learned
from the feature in (d) and added to the feature in (a), re-
sulting in the output feature of speech branch in (c) and vice
versa. Comparing (a) and (c), we can see that the speech
area is better separated with noise after interaction. For noise
branch, the speech part is mostly removed in (f) compared
with (d). These results show that the interaction module in-
deed helps the simultaneous speech and noise modeling with
better separation capabilities. In terms of interchanged in-
formation, the undesired speech part in (d) is counteracted
by features learned from the speech branch (e.g., the second
channel of the noise branch) and the undesired noise part in
(a) is suppressed by features learned from the noise branch
(e.g., the third channel of the speech branch). These obser-
vations comply with our previous analysis.

Visualization of Separable Self-Attention We further vi-
sualize the attention matrix to explore what it has learned.
Figure 7 shows the temporal self-attention matrix inside dif-
ferent RA blocks for the same audio signal as that in Figure
6. From (a) and (b), we can see that besides the diagonal
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Methods SSNR PESQ CSIG CBAK COVL
Noisy 1.68 1.97 3.35 2.44 2.63
SEGAN 7.73 2.16 3.48 2.94 2.80
MMSE-GAN - 2.53 3.80 3.12 3.14
PHASEN 10.18 2.99 4.21 3.55 3.62
Koizumi et al. - 2.99 4.15 3.42 3.57
Ours 9.83 3.12 4.39 3.60 3.77

Table 2: Quality comparisons on Voice Bank + DEMAND

Methods SDR(dB) PESQ
Noisy 9.09 1.58
TCNN 16.86 2.34
TCNN-L 16.58 2.78
Conv-TasNet-SNR - 2.73
DTLN 16.54 2.34
MultiScale+ - 2.71
PoCoNet - 2.75
Ours 19.52 3.39

Table 3: Quality comparisons on DNS Challenge

line, each frame shows strong attentiveness to other frames
and speech and noise branches behave differently for each
RA module. This is reasonable as the two branches model
different signals and their focus differs. For noise branch,
the attention goes from local to global as the network goes
deeper. The noise branch shows wider attentiveness than the
speech branch as white noises spread in all frames while
speech signal occurs only at some time.

Figure 8 shows the frequency-wise self-attention matrix
for the same audio signal. For speech branch, the focus goes
from low-frequency area to full frequencies and from lo-
cal to global, showing that as the network goes deeper, the
frequency-wise self-attention tends to capture global depen-
dency along the frequency dimension. For noise branch, all
four RA blocks show a local attention as white noises have
a constant power spectral density.

Comparison with the State-of-the-Art
Speech Enhancement Table 2 shows the comparisons
with state-of-the-art methods on Voice Bank + DEMAND.
SEGAN (Pascual, Bonafonte, and Serra 2017) and MMSE-
GAN (Soni, Shah, and Patil 2018) are two GAN-based
methods. PHASEN (Yin et al. 2020) is a two-branch T-F
domain approach where one branch predicts the amplitude
and the other predicts the phase. Koizumi et al. (Koizumi
et al. 2020) is a multi-head self-attention based method. Our
method outperforms all of them in almost all metrics. The
large improvements on PESQ, CSIG and COVL indicate
that our method preserves better speech quality.

Table 3 shows the comparison with state-of-the-art meth-
ods on DNS Challenge dataset. TCNN (Pandey and Wang
2019) is a time-domain low-latency approach. We imple-
mented two versions of it. “TCNN” is exactly the same as
described in the paper and “TCNN-L” is the long-latency
version using the same T-F domain loss function as ours.
Conv-TasNet-SNR (Koyama et al. 2020) and DTLN (West-

Methods SDRi(dB) PESQ2

Conv-TasNet 7.57 2.14
Ours 8.39 2.50

Table 4: Two-speaker speech separation on TIMIT

hausen and Meyer 2020) are real-time approaches. Multi-
Scale+ (Choi et al. 2020) and PoCoNet (Isik et al. 2020)
are non-real-time methods, among which the PoCoNet took
1st place in the 2020 DNS challenge’s Non-Real-Time track.
Since narrow-band PESQ number was reported in the DTLN
paper, we used the released model1 to generate the enhanced
speech and compute the metrics. For other methods, we use
the numbers reported in their papers. Our method outper-
forms all of them by a large margin.

Extension to Speaker Separation As SN-Net can simul-
taneously model two signals, it is natural to extend it for
speaker separation task. The merge branch is removed as
two outputs are needed. Permutation invariant training (Yu
et al. 2017) is employed during training to avoid the per-
mutation problem. We conduct the two-speaker separation
experiment based on the TIMIT corpus. The batch size is
set to 16. For comparison, we train a non-causal version of
Conv-TasNet (Luo and Mesgarani 2019), the state-of-the-art
method, using the released code3.

The results are shown in Table 4. We use SDR improve-
ment (SDRi) and PESQ for evaluation. Our method achieves
a considerable gain on PESQ by 0.36 and SDRi by 0.82 dB,
compared with Conv-TasNet. This suggests that our method
is not limited to specific tasks and has the potential to extract
different additive parts from a mixture signal.

Conclusion
We propose a novel two-branch convolutional neural net-
work to interactively modeling speech and noises for
speech enhancement. Particularly, an interaction between
two branches is proposed to leverage information learned
from the other branch to enhance the target signal model-
ing. This interaction makes the simultaneous modeling of
two signals feasible and effective. Moreover, we design a so-
phisticated RA block for feature extraction of both branches,
which can accommodate the diversities across speech and
various noise signals. Evaluations verify the effectiveness
of these modules and our method significantly outperforms
the state-of-the-art. The two-signal simultaneous modeling
paradigm makes it applicable to speaker separation as well.
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